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Energy: Evaluation of the Power Profile for
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Abstract—This paper considers an electric vehicle charging
station based on the combination of a wind turbine, as a
primary power source, and a vanadium redox flow battery
(VRFB), as an energy storage system. The latter plays a key
role in the application under study, storing the intermittent
power produced by the turbine and timely dispatching it when
demanded. To guarantee VRFB proper operation, it is necessary
to have information regarding its internal parameters which,
in general, cannot be directly measured. Therefore, this work
analyses the feasibility of conducting a model-based estimation
by studying a classic identifiability measure, the persistence of
excitation. Special attention is given to the influence of the wind
power profile, as well as the rated power of the turbine, on
the performance of the estimation algorithms. It is demonstrated
that increasing the wind energy conversion system nominal power
might compromise the estimation results, provided that systems
with higher inertia reduce the persistence of excitation levels.

Index Terms—parameter estimation, persistence of excitation,
redox flow battery, wind turbine.

I. INTRODUCTION

The transition towards a sustainable energy matrix, primar-
ily based on renewable sources, presents a set of technological
challenges. Arguably, one of the most important is the lack
of predictability and intermittency of the energy obtained
from renewable sources [1]. In this scenario, energy storage
systems will play a key role, storing the surplus energy during
high production periods and delivering in accordance with
the energy consumption levels [2]. Therefore, by combining
different energy storage and sources, it is possible to create
versatile hybrid topologies that overcome the limitations of the
renewables, eliminating grid stability issues and guaranteeing
a continuous energy supply [3]. Specifically, in the case of
electric vehicle charging stations (EVCS), schemes based on
renewable energy sources (such as wind, solar and marine),
and advanced energy storage systems are gaining a great
deal of attention in recent years [4], [5]. In particular, the
latter would allow eliminating the necessity of building costly
transformer substations, needed to meet demands greater than
500 kW, and even to install the EVCS in off-grid locations.
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Among the different energy storage systems developed so
far, Redox Flow Batteries (RFB) are now emerging as one
of the most promising technologies for large-scale stationary
applications [6]. Amongst its main advantages, it is possible
to highlight their high energy efficiency (∼80%), long lifes-
pan, low self-discharge rate and simple and safe operation.
Moreover, they have low maintenance requirements and, since
the chemical reactants are stored in two tanks separated from
the electrochemical stack, their energy capacity can be scaled
independently from their power. In particular, all-vanadium
redox flow batteries (VRFB) are the most deeply studied, with
some important facilities already in operation, such as a 200
MW/800MWh plant in Dalian, China [7]. By utilising only one
chemical element as active species, the cross-contamination
problems that affect other RFBs are substantially reduced.

Despite the remarkable advantages exhibited by VRFB, the
estimation of its internal parameters and indicators, such as
the State of Charge (SoC) and State of Health (SoH), remains
a challenging open field [8]. To ensure the proper functioning
of VRFB, it is essential to have accurate information of the
system which, in turn, should be continuously updated to track
possible changes in the battery status. Although it is feasible
to experimentally measure these parameters under controlled
laboratory conditions, the development of advanced estimation
setups that rely only on easily measurable variables such as the
voltage, current, flow rate and temperature, becomes essential
in large-scale applications [9]. These allow to optimise the sys-
tem performance and detect possible malfunctions without the
need of incorporating additional sensors that would increase
not only the cost but also the complexity and maintenance
requirement of the system.

In particular, to estimate the internal parameters of the
VRFB, in [10] it was successfully developed a scheme based
on the combination of sliding-mode algorithms with recursive
estimators. Such methodology allows to obtain, in real time,
accurate estimations of the parameters of an Equivalent Cir-
cuit Model (ECM) used to describe the dynamic behaviour
of the battery. However, the possibility of estimating these
parameters strongly depends on the Persistence of Excitation
(PE), which is a measure of the harmonic content of the
system’s input and output signals [11] [12] [13]. In stationary
applications, where prolonged periods with a constant or
slowly varying power profiles are not uncommon, it is not
easy to guarantee that the PE condition will be fulfilled, thus
making the estimation task especially challenging.
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It is a matter of fact that wind turbines provide a fluctuating
power, whose peaks are regulated by its associated control
systems, which may have a strong influence on the estimation
task. In this sense, this work presents a preliminary study of the
PE generated by a three-blade wind turbine throughout a 24 h
period, and evaluates its effect on the accuracy of VRFB pa-
rameter estimation. Specifically, turbines with different power
capacities are considered, to assess whether the rotor inertia
affects the harmonic content of the power produced by the
generator. Accordingly, the considered application is a EVCS
with five fast-charging points, connected to a wind turbine,
as primary power source, and a VRFB, as energy storage
module. In addition, the system is connected to an electrical
grid to provide reference parameters to the WECS: frequency
and voltage. The considered system is shown in Fig. 1.

The remainder of this work is structured as follows: Section
II briefly explains the hybrid system under study, together
with the model used to describe its behaviour. Section III
presents the proposed estimation methodology and introduces
the concept of PE in the context of this specific application. In
Section IV, the results obtained using the proposed estimation
methodology are presented and discussed. Finally, Section V
collects the main conclusions of the study.

Figure 1: Schematic of the considered hybrid system.

II. SYSTEM DESCRIPTION: ELECTRIC VEHICLE CHARGING
STATION BASED ON WECS AND VRFB

The hybrid topology under study is composed of a wind
turbine as main energy source, an energy storage system
based on VRFB, and five charging points for electric vehicles.
This type of micro-grid is of paramount interest for isolated
regions rich in wind resources, such as the Patagonia Region
in South America. The system could also be connected to a
weak electric grid, responsible of powering small settlements.
The demand of the EVCS is given by the number of the
connected electric vehicles and the power demanded by each
of them. This topology would provide a reliable power source
to isolated regions, enabling the use of EVs in regions far from
large urban centres.

A. Wind profile and energy conversion system

This subsection presents the employed wind profile and its
associated wind energy conversion system (WECS). On the
one hand, it is assumed a three-bladed vertical turbine. The
turbine operates with a squirrel cage induction generator which

works at a quasi-constant speed, determined by the electric
grid frequency. Therefore the grid provides both nominal volt-
age and frequency. An illustration of the open-loop connection
employed to simulate the WECS is presented in Fig. 2.

Figure 2: Illustration of the connection scheme.

On the other hand, the AC/DC converter is in charge of
absorbing the WECS power, thus also regulates the voltage
at the grid connection point. In this topology, the WECS is
designed to provide the average power demand profile from
the EVCS, and the power fluctuations coming from variations
in the wind profile are absorbed by the VRFB in the DC bus.

(a)

(b)

Figure 3: (a) Wind profile; (b) extracted power throughout the
considered 24-hour period.

The proposed scheme is highly versatile, with the VRFB
being able to efficiently absorb the wind power fluctuations as
well as the demand peaks, hence resulting in an optimal an
robust of the produced energy. Moreover, having the possibility
of connection to the electric grid allows the sell of energy
surplus in case this is necessary.

In order to thoroughly analyse the PE of the power gen-
erated by the turbine, a 24-hour wind profile is utilised,
such as the one displayed in Fig. 3.a. The profile has been
made using the Van der Hoven spectrum, and following the
analysis guidelines presented in [14] and [15]. However, due
to the inertia of the turbine rotor and generator shaft, these
fluctuations are slightly filtered out. As mentioned in the
introduction section, the variations of the WECS inertia might
affect the estimation results. Therefore is essential to compare
the effects of employing turbines with different power capacity
and subsequently, different inertia. In accordance with [16], it
is possible to compute the turbine generator inertia depending
on the WECS power capacity. In essence:

J = kJML2 (1)
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with M and L being the blades’ mass and length respectively,
and kJ ≈ 0.212 an experimentally measured constant. In the
same way, L and M can be obtained as a function of the
turbine’s power capacity P :

L =

(
P

1350

) 1
2.01

(2)

M = 2.95L2.13 (3)

For further details please refer to [16]. As a result, considering
different wind turbines, it is possible to determine the power
profile generated by the WECS. For instance, considering a
150 kW asynchronous squirrel cage generator, is obtained the
profile presented in Fig. 3.b.

B. VRFB electric circuit model

VRFB are a fundamental pillar of the EVCS. These store
the energy generated by the WECS and timely release it in
order to satisfy the electric vehicles power demand. However,
in order to efficiently operate the system and develop its asso-
ciated control and supervision setups, it is necessary to have
information regarding its internal states and parameters. One
of the most promising approaches is model-based parameter
estimation, which relies on a mathematical description of the
system behaviour.

To model VRFB in real-time, ECM are one of the most
popular alternatives, mainly because of their low computa-
tional cost. Moreover, by means of a continuous estimation
of the system parameters, it is possible to track its evolution
and recognise possible changes in the battery condition. In
particular, second order systems such as the one presented in
Fig. 4 have exhibited a good trade-off between the accuracy of
the estimates and the computational burden required to process
the information.

Figure 4: Second-order equivalent circuit model of the VRFB.

The ECM presented in Fig. 4, is composed of:
• Series resistance (Rohm): it represents the ohmic losses

associated with the resistance of the electrodes, electric
connectors, membrane, bipolar plates and other internal
elements of the cell.

• Open circuit voltage (voc): it models the ideal voltage of the
battery, namely, the voltage of the battery when the applied
current is equal to 0. It is strongly dependent on the state
of charge and hence is typically modelled as a non-linear
function of the charge (Q). In this work, as in [10] and [17],
is represented as the sum of a constant source and a non-
linear capacitor, whose capacitance is related to the open
circuit voltage as follows: Cbat(voc) = ∂Q/∂voc. Note that

this representation is compatible with the Nernst equation,
used to calculate the theoretical voltage of VRFB [8].

• Series Impedance: it models the transient polarisation ef-
fects that exist in VRFB, such as concentration and acti-
vation overpotentials. A higher number of RC modules in
series would allow to collect more details of the dynamic be-
haviour of the system. at the expense of a higher complexity
and computational cost. In general, it has been found that
a first order RC network is enough to accurately represent
the electric response of the VRFB.

The dynamic equations of the model presented in Fig. 4 can
be formulated, without loss of generality, assuming that the
VRFB is controlled by current:

v̇ = Av +BI =[
v̇oc
v̇pol

]
=

[
0 0
0 −1/(RpolCpol)

] [
voc
vpol

]
+

[
1

Cbat
1

Cpol

]
I

vout =Cv +DI =
[
1 1

] [ voc
vpol

]
+

[
Rohm

]
I

(4a)

(4b)

where vi is the voltage in the capacity Ci (with i = oc, pol),
and the output of the model is the terminal voltage of the
battery, vout.

In order to conduct the estimation of the parameters of Eq.
(4), the system is previously transformed into the Generalised
Fliess Canonical Form (GFCF) [18]. The latter is obtained by
taking the system’s output as the first state, and the remaining
ones as the successive derivatives of the first one. In this case,
considering that the output is of relative degree zero with
respect to the current, the second state derivative will contain
the derivatives of the control action I up to order two, as
it is developed below. Accordingly, the diffeomorfism Φ that
allows to transform the system into the GFCF is defined as
follows:

z=Φ(v, I, İ) =[
z1
z2

]
=

[
C
CA

][
voc
vpol

]
+

[
D

CB+ Ḋ

]
I +

[
0
D

]
İ (5)

which results in the following dynamic equations for the
system: 

ż1 = z2

ż2 = m1Ï +m2İ +m3I +m4z2

vout = z1

(6a)

(6b)
(6c)

Assuming that all the parameters are slowly time varying
for almost all t, the expressions for the elements m1 to m4 in
terms of the original parameters result:

m1 = Rohm (7a)

m2 =
1

Cbat
+

1

Cpol
+

Rohm

CpolRpol
(7b)

m3 =
1

CbatCpolRpol
(7c)

m4 = − 1

CpolRpol
(7d)
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It is highlighted that Eq. (6b) is linear in the unknown
parameters of the system. On the one hand, contains the output
derivative (z2) and the control action I and its derivatives,
which are employed to conform a linear regressor. On the
other hand, it contains the coefficients m1 to m4, which are
algebraic combinations of the elements of the ECM presented
in Fig. 3. Therefore, Eq. (6b) is utilised to conduct a linear
regression and identify the ECM parameters, as presented in
Section III. This method, which requires of estimation of the
derivatives up to order two of the VRFB voltage and current,
has been previously developed and evaluated in [10] [17] [19].
For the interested reader, those references are recommended
to get a deeper insight about the estimation methodology.

C. Electric vehicle charging station power demand profile

To obtain the power demand profile from the EVCS, is
created a random sequence. To determine the probability of
EV’s arrival to the charging station, without loss of generality,
Gaussian distributions are considered. These are tuned estab-
lishing that there is a large probability of arrival in the rush
hours of the day. This is, during the first hours of the day,
around noon, and finally around 5:00 p.m.

Besides, to generate the profile it is assumed that the
vehicles to be charged can be hybrid or 100% electric, each of
them with a power demand range between 15kW and 100kW.
Assuming charge periods of 20 min each, and a maximum of
5 vehicles charging simultaneously, it results in the charging
profile displayed in Fig. 5.

Figure 5: Power demand profile of the EVCS.

III. ESTIMATION METHOD AND PERSISTENCE OF
EXCITATION ANALYSIS

This section introduces the concept of PE in the context
of the proposed application. Subsequently, it is introduced a
procedure to compute PE, to assess the feasibility of estimating
the VRFB parameters through a recursive algorithm.

A. Persistence of excitation

To formalise the analysis of the PE measurement, Eq. (6b)
is used and rewritten using the standard notation:

η(t) = ż2 = v̈out = θ(t)⊺φ(t) =

=
[
m1 m2 m3 m4

][
Ï İ I z2

]⊺
(8)

with φ(t) being the so called linear regressor, and θ(t) the
vector of unknown parameters.

Assuming that the derivatives of up to order 2 of the input
and output of the system are known (these can be obtained by
means of robust differentiation algorithms designed for this

class of estimation methods [10] [17] [20]), it is possible
to perform an analysis of the PE of the linear regressor
at sampling instants kT , that is: φ(kT ) := φk ∈ R4.
The linear regressor must have enough harmonic content to
obtain the parameters θ(kT ) := θk. More specifically, the
linear regressor is persistently exciting if and only if provided
positive constants α1, α2 and δ, with α1 < α2, the following
condition holds [12] [13]:

0<α1I ⩽
j+δ∑
k=j

φkφ
⊺
k = Rk ⩽ α2I <∞ (9)

Note that for an instant k, the matrix φkφ
⊺
k is singular of rank

1. Thus, the requirement in Eq. (9) is that the vector φk rotates
enough in R4 so that the summation Rk is positive definite in
an interval of length δ. If Eq. (9) is satisfied, then it is feasible
to perform a linear regression to obtain the parameters θk of
the ECM [11]. On the contrary, if this does not occur, it will
not be possible to obtain the model parameters, which could be
an indication of either an over-sizing of the model, or a lack of
persistence in the linear regressor. In other words, it is essential
to consider the system dynamics in order to have an adequately
dimensioned ECM, as well as to have enough excitation in the
input signals that compose the linear regressor.

It is important to remark that Eq. (9) requires Rk to be
positive definite. This implies that evaluating the minimum
eigenvalue of this matrix in an interval δ is sufficient to
determine the PE. Depending on the type of estimation al-
gorithm used, PE allows defining convergence bounds and
guaranteeing stability. However, in practice, Eq. (9) depends
on the selected interval, and the bounds α1 and α2 are not
easy to determine. Therefore, an algorithm that allows to
measure the PE, intended for the practical implementation of
the estimator is presented below.

B. Persistence of excitation in recursive least squares with
forgetting factor algorithms

As previously mentioned, this work utilises a recursive al-
gorithm with a forgetting factor (λ), which allows to determine
an exponential forgetting window: λ= e−qT , where T is the
sampling time, and q is the desired exponential weight. Taking
this into consideration, it is possible to design the recursive
estimation algorithm as follows:

θ̂k = θ̂k−1 +
Pk−1φk

λ+φ⊺
kPk−1φk

(ηk −φ⊺
kθ̂k−1) (10a)

Pk =
1

λ

(
Pk−1 −

Pk−1φkφ
⊺
kPk−1

λ+φ⊺
kPk−1φk

)
(10b)

where Pk is the so-called covariance matrix, which defines the
update direction of the estimated parameters. In the algorithm
described by Eq. (10), the estimation can easily become
unstable if the persistence is lost. Therefore, guaranteeing
PE is not only necessary to find a convergence time of the
estimates, but also to avoid their divergence.



5 IEEE LATIN AMERICA TRANSACTIONS , Vol. , No. , March 2023

As demonstrated in [13], using the covariance matrix is
sufficient to determine the PE of the regressor, given that only
with PE the following condition holds:

0<α1
λ−1 − 1

λ−(δ+1) − 1
I ⩽ P−1

k−1

P−1
k−1 ⩽

α2

1− λδ+1
I +O(λk) (11)

which implies that the covariance matrix (or its inverse) are
bounded in an interval defined by the PE level and the
forgetting factor. On the other hand, due to the form of the
expression in Eq. 10b, in the case of loss of PE the covariance
matrix grows unbounded. In terms of the minimum eigenvalue
of P−1

k , this tends to zero in the case of loss of PE in the
regressor vector.

IV. RESULTS AND DISCUSSIONS

In this section, the results of the PE analysis are presented.
To compare the estimation results with known parameters,
a MATLAB-Simulink simulation test bench is employed. To
this extent, it is possible to vary the WECS nominal power
(see the employed WECS in Table I), as well as the VRFB
storage capacity. Firstly, to unify the results and simplify
their presentation, the WECS power profiles are presented in
p.u.. Secondly, regarding the VRFB, is assumed that this is
composed of several parallel modules with identical nominal
characteristics. Aiming to simplify the comparisons, the results
presented in the estimation section correspond to a single
module, whose nominal parameters are presented below in
Table II.

Table I: Parameters of the employed WECS.

Nominal System Rotor Gearbox
power [kW] inertia [kg m2] diameter [m] ratio

150 1.098 · 104 22 25
450 1.066 · 105 38 43

1800 1.88 · 106 77 86
2300 3.125 · 106 87 98
20000 2.75 · 108 123 168

Recall that to analyse the PE, the identified model (In this
case the VRFB) must be both observable and controllable
[11]. This is essential to guarantee that the system is not
overdimensioned [21]. Since the first order ECM for the VRFB
satisfy these requirements, every change in the PE levels is
directly assignable to variations of the power profile in the
DC bus, i.e., to the variations in the regressor vector [11] [12]
[13].

Table II: Nominal parameters of a VRFB module.

Nominal Rated RΩ Rpol Cpol

Capacity [Ah] Voltage [V] [mΩ] [mΩ] [F]
2200 500 50 25 750

A. Wind and power profile harmonic content evaluation

The main goal is to evaluate the PE levels obtained with
different WECS. As mentioned, as a result of increasing the

blade’s length as well as varying other mechanical constants of
the generator, the system’s inertia increases as well. In Table
I, the main characteristics of the employed WECS are listed.
These parameters were obtained employing Equations (1), (2)
and (3) from Section II.

Firstly, the power density of the power profiles, obtained
from WECS with different power capacities is analysed. Due
to variations of the WECS mechanical constants, it is expected
a reduction of the harmonic content in the higher portion
of the spectrum of the power profiles [14]. To analyse the
spectrum of the power profiles obtained with different WECS,
the discrete Fourier transform is used. The results of these
computations are presented in Fig. 6. On the one hand, in
Fig. 6a., is presented the normalised power density obtained
employing the 24 hs power profile from Fig. 3. On the other

Figure 6: (a) Power density of the wind in p.u. (b) Power
density of the different WECS in p.u..

hand, in Fig. 6b. the power density computation correspondent
to WECS with different nominal power are overlapped. It can
be observed that the portion of the spectrum correspondent
with the turbulent wind variations (around 102 cycles/h),
is noticeably filtered with every WECS, regardless of the
system’s inertia and nominal power. Accordingly, the resulting
24h power profile extracted by the WECS will correspond to
a filtered version of the one presented in Fig. 3 (see Fig. 7).
In the following section the resultant parameter estimation and
PE analysis is presented.

(a)

(b)

Figure 7: Power profile extracted from the WECS in p.u.
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B. Persistence of excitation levels and estimation results

To analyse the intricacies of the power profile harmonic
reduction, and its implication on the PE decay, five param-
eter estimations are conducted, one for each power profile.
Simultaneously, the minimum eigenvalue of Pk is computed.
This practical approach allows matching the RLS algorithm
divergence with the level of PE and determining the critical
PE levels for this particular application.

It is worth noting that the reduction of the harmonic content
in the regressor might occur as a consequence of different
phenomena. For instance, periods with no wind result in
no power fluctuations. Also, the AC/DC converter plays a
fundamental role provided that this is capable of regulating
the current profile in the DC bus. Thus, it is important to
evaluate the system’s working conditions, having evaluated the
PE levels under a normal operation.

(a)

(b)

Figure 8: PE evaluation via minimum eigenvalue of Pk.

In Fig. 8 it is possible to note that the reduction of the
minimum eigenvalue of Pk is directly correlated with the
WECS nominal power increase. That is, systems with a
larger inertia, also provide lower PE levels to estimate the
VRFB parameters. However, even in the worst realistic case
scenario (employing a 2.3MW WECS) the VRFB parameters
are accurately obtained (see Fig. 9). The accuracy of these
estimates is essential to obtain other states of the VRFB (for
instance, the SoC and SoH). In this sense, it is worth noting
that WECS of approximately 500kW would be appropriate
for this type of application, and the measured PE levels and
estimation results suggest that in such case the conditions are
favourable to conduct an online estimation. In Fig. 9, it can
be observed that in spite of the reduced PE levels provided by
turbines of up to 2.3 MW, the estimation results remain inside
a 3% confidence interval.

To ascertain the WECS’s inertia threshold beyond which
the PE is no longer sustained, escalations in the turbine
dimensions were examined (despite being aware that this
type of WECS is not commonly used at those power levels).
Following that procedure, it is possible to identify that hypo-
thetical WECS of approximately 20MW considerably reduce
the harmonic content of the regressor vector, hampering the
estimation process. This can be particularly visualised in the
last period of Fig. 9.

This procedure allows determining an order of magnitude
for the maximum inertia levels that provide adequate PE to

Figure 9: Parameter estimation results considering a 2.3 MW
WECS. (a) Series resistance Rohm; (b) Polarisation resistance
Rpol; (c) Polarisation capacitance Cpol; (d) Open circuit volt-
age voc.

conduct a precise parameter estimation. In addition, it is worth
noting that regardless of the significance of the employed
estimation methodology (see [10] [17]), the validity of the
presented PE analysis is general, since the reduction in the PE
due to the increase in the system’s inertia is independent of
the estimation algorithm.

V. CONCLUSIONS

The persistence of excitation of wind turbines acting as
primary energy supply for an electric vehicle charging station
was assessed, aiming to contribute to the large-scale imple-
mentation of EV fast charging points. The analysis focused
on the feasibility of wind power as a means for parameter
estimation of the redox flow battery, which is operating as the
storage module of the station.

It has been found that power variations provided by typical
wind profiles, based on the Van der Hoven spectrum, are a
sufficient source of PE to estimate the energy storage system
parameters. Several tests covering a wide range of generating
capacity, from small turbines up to 2.3MW, were conducted
obtaining satisfactory estimation results. In addition, larger
turbines were considered to find a validity limit, obtaining
that for this topology from 20MW on the regressor vector
turns out to be not sufficiently persistently exciting (in any
case, this power range is not practical for this application).
Note that, periods with exceptionally scarce wind or low PE,
may require ancillary countermeasures, such as the injection
of appropriate excitation signals.
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