
ABSTRACT

This paper presents a novel approach to planning
the sending of messages along a meshed transmis-
sion network with limited bandwidth paths. The
approach allows determining the topological route-
ing of messages and a feasible time schedule satis-
fying three basic constraints: maximum bandwidth
capacity per path, integrity of packages and maxi-
mum receiving time for each message. Constraint
Logic Programming (CLP) is used to solve the
combined problem of routeing and scheduling in an
integrated manner. To this end, a finite-domain
model with global constraints has been derived for
a generic transmission network. The model imple-
mentation, in the CLP language CHIP, is explained
in detail. An implementation has been run on exten-
sive test cases, showing the efficiency of this
approach.

Keywords: Constraint Logic Programming, global con-
straints, transmission networks, bandwidth packing, path
assignment, routeing, scheduling, integrated model.

1 INTRODUCTION

Given a generic transmission network, the number
of messages that can be simultaneously transmitted
along any one of its lines is constrained by the
line’s capacity or bandwidth. We will assume that,
when a message is transmitted from one node to
another, the sent information occupies a fixed por-
tion of the bandwidth of all the lines along its route.
Hence, if on a given line the whole of the available
bandwidth is being used - we say the line is satu-
rated - it will be impossible to transmit any addi-
tional message through it. This aspect of the

problem statement is referred to as bandwidth pack-
ing.

In this context, one of the posed problems consists
of determining an optimal routeing for a set of mes-
sages between pairs of nodes of the network [8].
More precisely, given a set of requests for mes-
sages where each one is to be sent from an origin to
a destination node, one wishes to determine a cor-
responding set of feasible routes along which mes-
sages can be simultaneously transmitted, while
guaranteeing that no bandwidth constraint is vio-
lated.

The problem gets more interesting if one cares tak-
ing into account the temporal dimension. In the lat-
ter case, the transmission of each message must be
additionally scheduled in time, and each message
lasts for a certain duration and should reach its des-
tination node before a given due date. Hence, we do
not only want to know the topological routeing of
messages, but also obtain a feasible time schedule.
In this work, we tackle this combined problem of
scheduling and routeing.

In [8] routeing and scheduling are solved sepa-
rately; the generation of feasible routes is done by
the Constraint Logic Programming system
ECLiPSe [6], while several schedulers based on
random search, simulated annealing, classifier sys-
tems or hill climbing, are compared. In [9], Guided
Local Search [10] was applied to this problem, but
the inclusion of the temporal dimension was aban-
doned and the problem was viewed as a pure path
assignment problem [2].

Our approach is different in that the entire com-
bined routeing and scheduling problem is repre-
sented as one single constraint model and solved

A GLOBAL CONSTRAINT MODEL FOR INTEGRATED ROUTEING AND
SCHEDULING ON A TRANSMISSION NETWORK ♦

Lluís Ros*, Tom Creemers*, Evgueni Tourouta† and Jordi Riera*

* Institut de Robòtica i Informàtica Industrial. Llorens i Artigas, 4-6, 2ª planta. 08028
Barcelona, Spain. e-mails: llros@iri.upc.es, creemers@iri.upc.es, riera@iri.upc.es .

† Faculty of Automatic Telecommunication, Informatics and Computer Science.
Moscow Technical University of Communication and Informatics.
Aviamotornaya St., 8a. 111024 Moscow, Russia. e-mail: turuta_en@mail.ru .

♦ This work has been partially funded by the spanish CICYT project TAP-99-1086-C03-01.

Lluís Ros
7th Int. Conference on Information Networks, Systems and Technologies
Minsk, October 2001, pp. 40-47

together efficiently by constraint propagation,
always ensuring global optimality. Routes are con-
structed simultaneously with the construction of the
time schedule. Hence, the notion of path “assign-
ment” is not strictly applicable any more. The
approach is based on the use of global constraints
[3] in the Constraint Logic Programming system
CHIP++ v5 [4,5].

The paper is organised as follows. Section 2 starts
with necessary notation and definitions, including
the notions of time schedule and message routeing.
The problem statement is given in Section 3, by
listing the constraints that define a feasible sched-
ule and message routeing. This constraint-satisfac-
tion problem will be tackled via the Constraint
Logic Programming paradigm, for which Section 4
provides an introduction. Using this paradigm, a
high-level constraint model solving the problem is
then given in Section 5. How the model can be
implemented with the global constraint predicates
of the CHIP system is then analysed in Sections 6
and 7. Finally, Section 8 concludes and points out
possible extensions.

2 DEFINITIONS

We model a transmission network as a pair
, where:

• is a directed graph with a set of
 nodes, , and a set of
 arcs, . All arcs

are oriented. Each arc models a line of the net-
work, while each node models the linking device
between three or more of these lines.

• is a function that assigns a non-negative
integer capacity to each arc , which
models its bandwidth.

A path of (or G) is an alternating sequence of
nodes and arcs, ,
such that, , , and none
of the nodes appears twice. An
path is a path with and . A cycle of

 (or G) is a path with .

On the network we can consider a set of mes-
sages to be transmitted. A message is rep-
resented as a tuple ,
where:

• and are, respectively, the origin
and destination nodes between which the com-
munication of message will take place.

• is the required bandwidth for .

• is the time instant when should
begin to be emitted.

• is the duration of the message, that is, the
total number of time intervals that the i-th mes-
sage is occupying the bandwidth , on all lines
which it flows along. The message begins at time

 and ends at time .

• is the due date of message .

• is the path of X along which the message will
flow to go from node to node .

We assume that all message transmissions take
place within a time horizon discretised in time
intervals, delimited by the time instants

. We index these intervals so that
the i-th interval is the one ranging from
to , and will denote the set
of these indices.

A time schedule is an assignment of values to the
variables within the set . A message
routeing is an assignment of a path to each mes-
sage.

3 PROBLEM STATEMENT

Our goal is to find both a time schedule and a mes-
sage routeing that satisfy the following constraints:

• Saturation (or bandwidth packing). No arc can
transport more messages than the maximum
allowed by its bandwidth capacity. Thus, if
denotes the set of messages flowing along arc
in the time interval , then, it
must hold:

. (1)

• Continuity and unbranching. Every message
arrives at a node along only one of the arcs inci-
dent to it, and leaves it through only one of the
arcs emanating from it. Thus, the information
contained in a message cannot be partitioned
into smaller packages to send them along differ-
ent paths.

• Due date. Message must arrive at node
before time instant .

We could optionally add other constraints to the
problem, as for example impose that specific mes-
sages never flow along intersecting paths, or assign
priorities to the messages in order to obtain a sched-
ule where the important messages are scheduled
earlier than lower-priority ones. Although the con-
straint-solving paradigm we use is general enough

X
X G bw,()=

G V A,()= V
n V v1 v2 … vn, , ,{ }= A
m A a1 a2 … am, , ,{ }= V V×⊂

bw
bw a() a

X
v0 a1 v1 a2 … vl 1– al vl, , , , , , ,()

ai vi 1– vi,()= i 1 … l, ,=
v1 … vl 1–, , o d–

v0 o= vl d=
X v0 vl=

X M
mi M∈

mi oi di bi ti li fi Pi, , , , , ,()=

oi V∈ di V∈

mi

bi Z+∈ mi

ti T 0{ }∪∈ mi

li T∈

bi

ti ti li+

fi T∈ mi

Pi
oi di

tf

t 0 1 2 … tf, , , ,=
t i 1–=

t i= T 1 2 … tf, , ,{ }=

ti T 0{ }∪
Pi

Oj
t

aj
t t∀ T aj∀ A∈,∈

bi
mi Oj

t∈
∑ bw aj()≤

mi

mi di
fi

Lluís Ros
41

to deal with these constraints, we do not consider
these possibilities in this work.

4 CONSTRAINT LOGIC PROGRAMMING

The idea behind Constraint Programming is the
declarative expression of problems as constraints
and the use of constraint solvers specialised in
restricted domains (like real numbers, or finite sets)
to find their solutions. A problem is represented by
an underlying network of variables and constraints.
As soon as information becomes available any-
where in the network, constraint solvers are woken
up to propagate this information through the whole
network, prunning the variable domains as much as
possible by eliminating unfeasible values. This in
turn may wake up other constraint-solvers and the
process iterates until no further prunning is
achieved. As it would be out of the scope of this
paper to give a detailed discussion of Constraint
Programming methods, we refer the interested
reader to surveys such as [11] and [7] for an intro-
duction.

Consistency techniques form an important subclass
of constraint handling methods, and particularly
popular here are the so-called finite-domain con-
straint models, where decision variables range over
finite sets of possible values. Such variables are
called finite-domain variables. Techniques like arc-
and path-consistency are then used to remove
inconsistent values from the domains until feasible
solutions are found. Consistency techniques have
been succesfully integrated within Logic Program-
ming, giving rise to the so-called Constraint Logic
Programming paradigm [5], or CLP, for short.

Most finite-domain constraints are based on syntac-
tic, domain-independent propagation methods.
However, in [1] and [3] a new type of finite-domain
constraints based on semantic methods was first
introduced in the CLP language CHIP. These con-
straints use domain-specific knowledge to derive
better propagation properties. Constraints of this
type are called global constraints and combine the
following important properties:

• They model a complex condition on larger sets
of variables.

• The constraint reasoning often detects inconsist-
ency rapidly and prunes the search space signifi-
cantly.

• They can be applied to large problem instances
and their semantics fits in multiple contexts.

In this paper we develop such a finite-domain

model with global constraints for the combined
scheduling/routeing problem presented above. Our
implementation is entirely based on CHIP++ v5,
mainly making use of the global constraints
cycle/10 and diffn/1 of this language.

5 CONSTRAINT MODEL

Solving a problem in the CLP paradigm boils down
to defining a proper constraint model, which
involves defining a set of proper finite-domain var-
iables modeling the decisions, and proper predi-
cates modeling the constraints. The constraint
model for the problem in Section 3 is next devel-
oped.

We represent each path in the message routeing
with finite-domain variables Si,1, Si,2, ..., Si,n,
hereafter referred to as topological variables,
defined as follows:

• We let , , to mean that node
 has been chosen as the successor of in the

path .

• If , then node does not belong to the
path .

For the message scheduling, we represent the initial
time instant ti of message with an additional
finite-domain variable . Its initial domain is set
to , which implicitly ensures satis-
fying the due date constraint for this message.
These variables are hereafter referred to as tempo-
ral variables.

The following predicates will allow an easy top-
level description of the constraint model:

• path(o,d,Ss)

Ss= is a list with domain vari-
ables. and are nodes. The list Ss stores a
path between and . We say that Ss is a path-
list. We use the same convention used for the
topological variables: if , then
node is the successor of in the o-d path,
otherwise, when this will mean that
does not belong to this path.

The path/3 predicate1 is true if the path-list Ss
defines an o-d path of . Its implementation is
given in Section 6.

1. The notation predicate/n is common in Logic
Programming. The number n indicates the amount
of arguments of the predicate.

Pi
n

Si j, k= 1 k n≤ ≤
vk vj

Pi

Si j, n> vj
Pi

mi
Ti

0 1 … fi li–, , ,{ }

S1 S2 … Sn, , ,[] n
o d

o d

Si k 1 k n≤ ≤,=
vk vi

Si n> vi

G

Lluís Ros
42

Lluís Ros

• non_saturation(Ts,Ls,Cs)

Ts= is a list of finite-
domain temporal variables. Ls= is
a list of integers storing the durations of the mes-
sages. Cs= is a list of path-lists.
Each is a path-list of the form

 and defines the path along
which the message will flow. The
non_saturation/3 predicate is true if dur-
ing the time intervals between time instant
and time instant , , there is
no line saturation at any of the lines in the paths
contained in Cs. This constraint corresponds to
Equation (1) and its implementation is given in
Section 7.

With these definitions, and using PROLOG-like
syntax, the logical program modeling our problem
can be written as follows:

The declarative semantics of this program is as fol-
lows. The variables and

 define a feasible sequence of message
transmissions and a feasible routeing of them if and
only if all the following conditions hold:

• define an - path, for
.

• define a sequence of sendings
such that no saturation is produced at any of the
lines traversed by the messages.

6 IMPLEMENTING path/3

The predicate cycle/10 has been added to the
CHIP language so as to ease the modeling of sev-
eral problems of assignment, routeing and graph
partitioning and will be here used to implement the
path/3 predicate.

6.1 The Constraint Predicate cycle/10

Basically, given a graph and a natural
number N > 0, cycle/10 expresses a partitioning
of into exactly cycles, , of ,
in such a way that every node in appears in
exactly one of these cycles. cycle/10 has the fol-
lowing structure:

cycle(N, Ss, Ws, Min, Max, Ds,
Ls, Ms, Origin, Eq).

By using these 10 arguments, one can establish sev-
eral constraints on the cycles. For the purpose of
our problem we will not use the Ms and Origin
arguments, which will be set to the atom unused.
The reader may find an exhaustive description of
all the arguments in the CHIP reference informa-
tion [4]. The remaining arguments are as follows:

• N: is a natural number different from zero. It is
the number of cycles into which is parti-
tioned.

• Ss: is a non-empty list [S1, ..., Sn] of n finite-
domain variables or integers, where n is the
number of nodes in G. To use cycle/10, one
has to provide in Ss the structure of , by ini-
tializing the domain of each variable to con-
tain the identifiers of the adjacent nodes from .

• Ws: is a non-empty list [W1, ..., Wn] of n inte-
gers or domain variables, representing the
‘weights’ of the nodes. To simplify, we will take
all weights equal to 1. Hence Ws is a list of ones,
and the notion of ‘weight’ corresponds to the
‘length’ of a cycle.

• Min and Max: are two integers indicating
respectively the minimum and maximum weight
of the nodes accumulated in a cycle. With the
node weight equal to one we can set Min equal
to 1 and Max equal to n.

• Ds: is a list [D1, ..., Dp] of p integers, indicating
the nodes which cannot belong to a same cycle.
It expresses the partitioning into different cycles,
by identifying a representative node for each
one.

• Ls: is a list [L1, ..., Lp] of p domain variables or
integers, expressing a weight (a length) for each
one of the cycles identified in Ds.

• Eq: is a list of c elements, [E1,...,Ec]. Each Ei
is a list of integers and contains two or more
identifiers of nodes of . No identifier can
appear in more than one list Ei. All nodes whose

T1 T2 … T M, , ,[] M
l1 … l M, ,[]

C1 … Cn, ,[]
Ci

Ci Si 1, … Si n,, ,[]=
mi

Ti
Ti li+ i 1 … M, ,=

routeing_scheduling(,
):-

/* Statement of constraints */
path(,[]),
...
path(,[]),
non_saturation([],

[],
 []),

/* consistent labeling */
labeling([]).

S1 1, … S M n,, ,
T1 T2 … T M, , ,

o1 d1, S1 1, … S1 n,, ,

o M d M, S M 1, … S M n,, ,
T1 T2 … T M, , ,

l1 … l M, ,
S1 1, … S M n,, ,

S1 1, … S M n,, ,

S1 1, … S M n,, ,
T … T M, ,

Si 1, … Si n,, , oi di
i 1 … M, ,=

T1 T2 … T M, , ,

G V A,()=

G N C1 C2 … CN, , , G
V

N

G

G
Si

vi

G

Lluís Ros
43

identifier appears in the same list are said to
belong to the same equivalence class and belong
to the same cycle.

The declarative semantics of cycle/10 is as fol-
lows. Given a graph defined by the initial values
of the domains of the variables in the list Ss, and
given a natural number N, cycle/10 is true when
it is possible to find exactly N cycles of , such
that each node of appears in exactly one cycle
and, moreover, the nodes included in different
equivalence classes appear also in different cycles.
Moreover, each in Ss will store the number of
the successor node of in the cycle traversing .

We describe the constraints imposed on S1,...,Sn by
the cycle/10 predicate.

• S1,...,Sn must be initialised to take values in the
set of possible node identifiers of nodes of .

• No two nodes can have the same successor:
, .

• , let be the set recursively
defined as follows:

Thus, contains the identifiers of the nodes of
the cycle traversing . Each node must appear
in exactly one cycle:

• Let ei1, ..., eik be the integers occurring in Ci ,
then the accumulated weight of a cycle must sat-
isfy .

• There must be exactly different cycles
.

• The nodes in Ds cannot belong to the same
cycle. That is, ,

, .

• Let d = Di and ed1, ..., edk the integers occurring
in Cd, then the accumulated weight (length) of
its cycle must satisfy .

• Finally, nodes belonging to different equivalence
classes must belong to different cycles as well.
That is, , , it must be:

 if l=k, and if .

6.2 cycle/10 Constraints for the
Routeing subproblem

Now consider our transmission network and its
associated graph . We want to take
advantage of the constraints imposed by cycle/
10 in order to implement the path/3 predicate
and implicitly define all the possible paths linking
each pair of nodes oi and di. Our use of cycle/10
to implement path/3 is motivated by the fact that
it will allow us to combine the constraint in an ele-
gant way with another global constraint and in this
way achieve a true integration of the routeing,
bandwidth packing and scheduling problems, as
shown below. However, the cycle/10 cannot be
directly used due to the following limitations:

(1) It does not generate paths, but cycles.

(2) It requires the graph to be partitionable in
exactly N cycles.

We can overcome these limitations by adding extra
nodes and arcs to the graph . For each
message we will construct a new graph , in
such a way that it is possible to use cycle/10 to
implicitly define all paths between any couple of
nodes in . is called the augmented graph. Let

. The set of nodes is defined as
, where

are the nodes of the original graph ,
 is a set of auxiliary nodes,

and is an additional node called phantom. We
define the set of arcs as

where:

, and

The definition of is not as artificial as it may
seem. Its schematic view of is depicted in Figure 1.
In order that all - paths are present in at least
one cycle of , we introduce a phantom node
and two arcs , . We hence solve the
first limitation above. In order to partition using
a fixed number of cycles (limitation (2) above), we
introduce the auxiliary nodes in , and the arcs
in and . This augmented graph will be parti-
tionable into exactly two cycles: the cycle C fol-
lowing a path from oi to di and returning back to oi
via the single node fi. All the remaining non-visited

G

G
G

Si
vi vi

G

Si Sj≠ i j,∀ 1 … n, ,{ }∈ i j≠,

i∀ 1 … n, ,{ }∈ Ci

vi Ci,∈

if vj Ci , then Sj Ci∈∈

Ci
vi

V Ci
i 1=

n

∪=

Ci Cj∩ ∅ ,=

i j,∀ 1 … n, ,{ }, vi Cj , vj Ci∉∉∈

Min Wei1
… Weik

+ + Max≤ ≤
N

C1 C2 … Cn, , ,{ } N=

k∀ D1 … D, p{ , }∈
l∀ k D1 … D, p{ , }∈≠ Ck Cl∩ ∅=

Li Wed1
… Wedk

+ +≤

vi El∈ v, j∀ Ek∈ i j≠
Ci Cj= Ci Cj≠ l k≠

X
G V A,()=

G V A,()=
mi Gi

a

G Gi
a

Gi
a Vi

a Ai
a,()=

Vi
a V W fi{ }+ += V v1 v2 …, , vn{ , }=

G
W w1 w2 … wn, , ,{ }=

fi
Ai

a

Ai
a A A′ A″ di fi,() fi oi,(),{ }+ + +=

A′ v1 w1,() v2 w2,() … vn wn,(), , ,{ }=

A″ w1 w2,() … wn 1– wn,() wn w1,(), , ,{ }=

 w1 v2,() … wn 1– vn,() wn v1,(), , ,{ }.∪

Gi
a

oi di
Gi

a fi
di fi,() fi oi,()

G

n W
A′ A″

Lluís Ros
44

nodes can be visited in one single second cycle.
This can be seen easily: if all the nodes of the origi-
nal graph belong to C then all the nodes of W can be
collected trivially in their numbering order (and
back from wn to w1). If a node was not col-
lected in C, then it suffices to substitute the arc
(wj-1,wj) in the second cycle by the deviation
formed by the two arcs (wj-1,vj) and (vj,wj).

For each message , we must avoid the presence
of auxiliary nodes in the cycle C traversing and

. For this purpose we define two equivalence
classes: and .

Now, the definition of the extended graph associ-
ated with each message, allows an easy implemen-
tation of the path/3 predicate:

path(oi, di, Gai):-
extended_graph(Gai, oi, di),
cycle(2, Gai, [1, ..., 1],

1, fi, Ds, Ls,
 unused, unused, [[fi],W]).

where the predicate extended_graph/3 builds
up the extended graph associated with the current
message. The implementation of this predicate is
straightforward and, hence, it is not given here. The
argument Ds can be set to the list [fi, w1], identify-
ing the first cycle as the one containing the phan-
tom node fi and the second one containing node w1.
In this way the argument Ls can recollect or con-
strain the lengths of both cycles.

7 IMPLEMENTING non_saturation/3

The diffn/1 predicate was introduced in CHIP
to model constraints that frequently arise in sched-
uling, packing or geometric positioning problems,
and will be used here to implement the predicate
non_saturation/3.

7.1 The diffn/1 Predicate

Suppose we want to fit n-dimensional rectangles
inside an n-dimensional rectangular volume (Figure
2). Then by setting a diffn/1 constraint one can
force that no pair of rectangles intersect.

diffn/1 has the simple structure diffn(Rec-
tangles), where Rectangles is a list of m
n-dimensional rectangles. We define an n-dimen-
sional rectangle as a tuple ,
where and are either integers or domain var-
iables and represent, respectively, the origin and the
length of the rectangle in the i-th dimension. Rec-
tangles has the form

diffn/1 establishes the following constraints:

 [1] , ,

 [2] , ,
 such that either
, or . In other

words, no two any rectangles can intersect.

7.2 diffn/1 Constraints for the Scheduling
Problem

We will use diffn/1 to implement the
non_saturation/3 predicate. For this pur-
pose, we define a 4-dimensional space E, and a set
of 4-dimensional rectangles, and we set the appro-
priate packing constraints on these rectangles
within E using diffn/1. For each line in the
transmission network we put a rectangle for each of
the sent messages along it. In one of the directions
E, the length of each of each rectangle will be equal
to the bandwidth of the corresponding message. In
a second dimension, the length will be the duration

vj V∈

oi
di

vi

V

W

Figure 1. The structure of .Gi
a

C

vi+1

wi+1

fi

wi

mi
oi

di
Ei1 v v W∈{ }= Ei2 fi{ }=

diffn/1 is satisfied

diffn/1 is violated

Figure 2. (a): Graphical interpretation of the param-
eters in diffn/1. (b) and (c): if there is a pair of
rectangles that intersect, diffn/1 is violated.

O1

O2
L1

L2

dimension 1

di
m

en
si

on
 2

R1

(b)

(c)

(a)

O1 … On L1 … Ln, , , , ,()
Oi Li

[O11 … O1n L11 … L1n, , , , ,[], ...

..., Om1 … Omn Lm1 … Lmn, , , , ,[]]

i∀ 1 … m, ,{ }∈ j∀ 1 … n, ,{ }∈, Lij 0≠

i∀ 1 … m, ,{ }∈ j∀ 1 … n, ,{ }∈, j i≠
k∃ 1 … n, ,{ }∈

Oik Ojk Ljk+≥ Ojk Oik Lik+≥

Lluís Ros
45

of the message. In the other dimensions the length
will be set to 1. These elements are further
described next.

Consider the transmission network
at hand.

• We let be the sum of all the bandwidths
required by the messages :

• We define as the maximum capacity of any
line:

.

• Let .

• Let

Then, E is defined as the cartesian product:

.

Here, the first and second dimensions are topologi-
cal: we assign a point of to each pair

, . The third is a temporal dimen-
sion where each coordinate corresponds to an
instant of our temporal horizon, and we represent
the bandwidth in the fourth dimension.

Each message is being transmitted along the
path defined by , within the time
instants and . Hence, to model the fact
that each message occupies a certain portion of
the bandwidth of any line in , each arc

, , , is assigned a
rectangle

,

for each one of the mesages flowing along it,
defined as follows (Figure 3):

Both the origin and length of the rectangle in the
two first directions are fixed. The origin of the rec-
tangle in the third dimension is equal to and,
thus, depends on the time instant in which message

 begins to be transmitted. The length of the rec-

tangle in this direction is fixed and equal to the
duration li of the message. The origin of the fourth
dimension is free, but not its length, which is equal
to the bandwidth required by .

In order to reflect the fact that each line disposes
only a limited capacity, which can be different from
one line to another, we introduce several auxiliary
4-dimensional “limiting” rectangles. We will fix
their positions in such a way that the position of the
rest of 4-dimensional rectangles (those correspond-
ing to messages), be restricted in its fourth dimen-
sion. For each arc , ,

 we define a rectangle

where:

X G c w, ,()=

b̂
mi M∈

b̂ bi
mi M∈
∑=

ĉ

ĉ maxa A∈ bw a(){ }=

B max b̂ ĉ,{ }=

Va Vi
a

mi M∈
∪=

E Va Va× 0 1 … tf, , ,{ } 0 1 … B, , ,{ }××=

Va Va×
u v,() u v, Va∈

mi
Si 1, … Si n,, ,

Ti Ti li+
mi

X
a vk vl,()= vk v,

l
Va∈ l Si k,=

O1
ia … O4

ia L1
ia … L4

ia, , , , ,()

O1
ia vk = L1

ia 1=

O2
ia vl= L2

ia 1=

O3
ia Ti = L3

ia li=

O4
ia O4

ia= L4
ia bi= 










Ti

mi

...
...

...

......
......

a
mi

Figure 3. The space E. There is a hyper-rectangle
associated with each arc a, for each of the messages
flowing along it. The picture does not represent the
bandwidth dimension.

Va

Va

vk

vl

li

temporal dim.

mi

a vk vl,()= vk v,
l

Va∈
l Si k,=

O1
0a … O4

0a L1
0a … L4

0a, , , , ,()

O1
0a vk= L1

0a 1=

O2
0a vl= L2

0a 1=

O3
0a 0= L3

0a tf=

O4
0a 1=

L4
0a B bw b() , if vl Va∈()–

B b̂ , otherwise–



=

















Lluís Ros
46

With all previous definitions the high-level descrip-
tion of non_saturation/3 is
non_saturation(Ts, Ds, Cs):-

declare_temporals(Ts),
build_rectangles(Rectangles,

Ts, Ds, Cs),
diffn(Rectangles).

The predicate declare_temporals(Ts)
declares all variables and initializes its domain
to take values in the set . The
predicate build_rectangles/4 builds a list of
rectangles in the format accepted by diffn/1.

8 CONCLUSIONS

We have presented a CLP model to solve the inte-
grated routeing and scheduling of messages on a
transmission network. The presented model was
tested using test cases adapted from the SdRtDemo
[9]. The network topology was the 30-node BT
Visual Broadcast Services Network (VBS), origi-
nally provided by British Telecom plc. Test cases,
consisting of sets of 25 or 50 services, were given
random time windows within an horizon of 25 time
slots (the SdRtDemo did not take into account the
temporal dimension). The combined scheduling
and routeing problem in all cases was solved in less
than 1 second of CPU time on a SUN Ultra-80 sta-
tion.

Although we have focused our efforts in just com-
puting a feasible scheduling and routeing plan,
using the CLP framework it would also be possible
to search for the optimal scheduling and routeing
among all the feasible ones, according to some
specified criterion. For example, one could associ-
ate a cost to the sending of a message through a
line, and ask for the routeing that minimizes the
overall cost of the transmissions. In order to obtain
the cost of a particular schedule and routeing plan,
it suffices to use CHIP’s variant diffn/6 of this
constraint. The sixth argument of diffn/6
allows specifying a subregion R of the n-dimen-
sional space and represent it with a domain variable
U, counting the overall volume occupied by the
rectangles. This volume can be directly interpreted
as the overall cost of the transmission, and it only
remains to use the optimization meta-predicate
min_max/2 of CHIP to minimize U with a
branch-and-bound method. This point is part of the
next extensions we aim at including in the system.

REFERENCES

[1] A. Aggoun and N. Beldiceanu. “Extending CHIP in
Order to Solve Complex Scheduling Problems”.
Journal of Mathematical and Computer Modeling,
Vol. 17, No. 7, pp. 57-73, Pergamon Press, 1993.

[2] A. Anderson, K.F. Jones, M. Parker and J. Ryan.
“Path Assignment for Call Routeing: An Applica-
tion of Tabu Search”. Annals of Operations
Research, Special issue on Tabu Search, Vol. 41,
pp. 301-312, 1993.

[3] N. Beldiceanu and E. Contejean. “Introducing Glo-
bal Constraints in CHIP”. Journal of Mathematical
and Computer Modeling, Vol 20, No 12, pp. 97-
123, 1994.

[4] COSYTEC SA, Proceedings of the 1995 CHIP
Users’ Club, Parc Club Orsay Université, 4, rue
Jean Rostand, 91893, Orsay Cedex, France.

[5] M. Dincbas, P. Van Hentenryck, H. Simonis, A.
Aggoun, T. Graf and F. Berthier, “The Constraint
Logic Programming Language CHIP”, in Proceed-
ings of the International Conference on Fifth-Gen-
eration Computer Systems 1988, edited by ICOT,
pp. 693-702, 1988.

[6] M. Meier, J. Schimpf. “Control in ECLiPSe”. Tech-
nical Report, ECRC-95-07, Munich, 1995. Availa-
ble through http://www.clps.de/html/
reports.html.

[7] T. Frühwirth and S. Abdennadher. “Constraint Pro-
grammierung”. Springer, 1997. (In German.)

[8] B. Purohit, T. Clark and T. Richards. “Techniques
for Routeing and Scheduling on a Transmission
Network”. BT Technology Journal, Vol. 13, No. 1,
pp. 64-72. 1995.

[9] E. Tsang and C. Voudouris. “Guided Local Search
Demonstration Program for a Network Scheduling/
Routeing Problem”. Department of Computer Sci-
ence, University of Essex. 1995. Available at
http://cswww.essex.ac.uk/CSP/demos/
sdrtdemo.tar.Z.

[10] C. Voudouris and E. Tsang. "Guided Local
Search". Technical report CSM-247, Department of
Computer Science, University of Essex. 1995.
Available at http://cswww.essex.ac.uk/CSP.

[11] M. Wallace, Practical Applications of Constraint
Programming, in Constraints, an International
Journal. Vol. 1., pp. 139-168, 1996.

Ti
0 1 … fi li–, , ,{ }

Lluís Ros
47

