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Abstract

Computer controlled construction machines outperform
their manually controlled counterpart in terms of velocity,
accuracy and time. A control scheme is here presented to
automate the digging operations of an excavator. This
controller is designed to follow the desired motion of the bucket
during digging operations, and to account for the forces
experienced on the bucket during excavation due to interaction
of the bucket with the soil. The controller designed guarantees
asymptotic stability of the system. Simulation results of a
typical digging procedure are presented to illustrate the
approach.
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Introduction

‘In order to improve productivity and effectiveness in
construction related tasks, the automation of machine operations
is desirable. Particularly, a computer controlled excavator would
outperform its manually controlled counterpart in terms of
velocity, efficiency and time.

Some of the advantages of computer controlled excavators
versus manually operated excavators include results
independent of operator skills, effective management of
machine usage and scheduling, effective planning of sequences,
repeatability, and capability of operations under hazardous
and/or hostile conditions, such as severe weather or unhealthy
environments.

The study of excavators as computer controlled machinery
has attracted robotics researchers recently. In order to design a
controller for excavation procedures, the kinematics and
dynamics that describe the behavior of the excavator are
necessary. Studies on the kinematic model of excavators and
trajectory planning are presented in [2], [3], and' [5]. The
dynamical modeling of such machinery is described in [4]. Little
work has been published in controlling the excavator. The work
presented in this article follows the one done in {3} and [4].

A control system is here presented to automate the
excavator operations. This control scheme is designed to follow
the desired motion of the bucket during digging operations, and
to account for the forces experienced on the bucket during
excavation due to interaction of the bucket with the soil.
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Simulation results of a typical digging procedure are presented
to illustrate the approach. .

Kinematic and Dynamic Models for Excavator

For the automatic motion of the excavator shown in Figure
1, it is desirable to place the bucket at different specific
positions and orientations on time. This can be accomplished by
regulating the lengths of the piston rods in the hydraulic
actuators, and thus the shaft positions of the joints properly.
During a digging operation, the rotation angle 6, of the first
joint remains constant, i.e., the digging operations are
performed on the X, Z, plane. Furthermore, é. =0 and él =0.

Figure 1. Schematic Side View of Excavator.

The mathematical expressions that relate the position and
orientation of the bucket in the Cartesian base coordinate
system to the shaft (joint variable) positions and orientations are
given by the forward kinematic relation:

a,c,y, +a,0,y + a0, +aJ
0
Q, 4.0,
. = A'pY = |
P 0P ayS33y + A3y +a,5, M
1
where pio‘ 1s the position of the bucket tip expressed in the i-th

coordinate frame of the excavator. A; is the homogeneous
transformation matrix that relates a vector in the bucket tip
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coordinate frame to a vector in the base coordinate system. The
coordinate frame assignment for the excavator shown in Figure
1 follows systematically the Denavit and Hartenberg guidelines,
and is presented in [3].

The dynamical model for an excavator describes the
equations of motion of the system. These equations can be
obtained by considering each link of the excavator (the
upperstructure, the boom, the arm, and the bucket) as free
bodies, and obtaining their equations of motion in succession on
the basis of Newton’s and Euler’s laws of movement. The
equations of motion for an excavator are calculated in this
fashion in [4], and will be adapted in this work.

The dynamics of the excavator shown in Figure 1 are
described in Lagrange formulation by

D(0)0+C(0,6)0+G(6)+pd=1 )
where 0 , 6 ,and 0 are four-dimensional vectors specifying the
shaft angles, velocities and accelerations, respectively. D(8) is
the 4x4 symmetric positive definite pseudo-inertia matrix.
€(0.8)0 describes the Coriolis and centripetal generalized
forces. G{0)represents the gravitational effects. B is a constant
diagonal 4x4 matrix that represents the frictional loading on the
joint shafts. 1= I’(B)F~FW(F, F, ) is the 4x1 torque vector,
where the 4x4 matrix I'(0) is a function of the moment arms;
F=[F, F,, F, Fy| specifies the forces of the hydraulic
actuators which produce the torques acting on the joint shafts;

and Fi.eq is determined by the normal and tangential forces £,
and F, observed on the bucket due to soil and bucket interaction.

Equation (2) describes the dynamics of the excavator, in
which the joint torque vector is expressed as a function of the
link masses, the joint positions, velocities, and accelerations.
The joint position vector 6 determines the configuration of the
excavator via the kinematic relations given in Equation (1).
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Figure 2. Forces on Bucket Tip Due to Bucket Soil Interaction.

Reaction Force

During the digging operation, the reaction force on the tip of’
the bucket due to interaction of the bucket with the soil has the
form [1]:

F = kph+pN +e(1+V,/V,)bh)_Ax (3)
where 4, is the specific resistance to cutting for silty clay, b and
h are the width and thickness of the cut slice of soil
respectively, p is the coefficient of friction of the bucket with
the soil, NV is the pressure force of the bucket with the soil, € is
the coefficient of resistance to filling the bucket and movement
of the prism of soil, F; and F7 are the volumes of the prism of
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soil and the bucket respectively, and Ax is the increment on the
horizontal axis in meters.

This reaction force is defined to be at an angle 0.1 rad
below the tangent line to the digging direction, in order to
achieve a resultant force parallel to the digging direction {5]). Its
tangential and normal components are F, = F,  cos(0.1) and

F =-F,_, sin(0.1) respectively.

Controller Design

The dynamical model of the excavator given in Equation (2)
is highly nonlinear and computationally complex. Most general
methods for controller design are based on linear time invariant
models. For this reason, to design a controller for the gross
motion of an excavator, two stages may be considered. First, one
may design a primary controller that under ideal conditions
makes the bucket tip track the desired position (velocity) and
force excavation trajectories. Then, based on a linearized model,
to design a controller that compensates for undesirable
deviations of the motion from the desired trajectory caused by
external and/or internal disturbances, i.e., inaccuracies in the
excavator model, small deviations from the desired digging
trajectory, or deviations from the expected values of the digging
forces experienced during excavation due to interaction of the
bucket with the soil.

The purpose of the first controller is to produce the
generalized torque values that when applied to the system,
result in the desired motion of the bucket under ideal
conditions. A primary controller is next designed by means of
the computed torque method.

The dynamical model for the excavator during digging
operations, given by the last three rows of Equation (2) can be
rewritten as a set of first order differential equations of the form

()] [x() [ 0
liil(t)]_[fz(x)}- Bz(xl)Ju(t) (4)
where the six-dimensional state vector

X0 =[6,(r) 6,(1) 8,(r) 8,(0) 8,0) 6,(n)]  is decomposed
in two three-dimensional vectors x'(t):[ez(!) 6,(1) 6,(t)]r
and x*(r)=[6,(r) 8,(r) 64(1)]1, and the three dimensional
input vector is u(r)=[F, (1) F,l(1) F,K(t)]T. The vector

valued nonlinear functions f 2(x) and Bz(xl) are defined next

relating the dynamical model of the excavator to Equation (4),
and in the sequel, omitting the time notation for convenience.

f:(x)z—[D(x')]_l[C(x)xz+G(x')+Bx:+FM] (3
Bz(x')=[D‘xl)]‘l[’(x') (6)

where the inertia matnix D, the Coriolis and centripetal terms
matrix C, the gravitational effects matrix G, the function of the
moment arms matrix I' | and the external force vector Fi.qs are
defined in [4]. The constant diagonal friction matrix f§ accounts
tor frictional ctfects on the motion of the excavator.

The desired input vector u? will be chosen so that x will
track the desired trajectory x“ and achieve the desired external
“ o o . ..
force F, w(’) under 1deal conditions, this 1s:



u’ =[I‘(x“)]‘|[D(x”)iM + C(x")x” +G(xu)+ Bx“ +F,';,]
N

where the inverse of I'(x') is assumed to exist at all times.

Equation (7) specifies the primary controller. It also

represents the ideal inverse dynamics of the excavator.
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' Figure 3. Excavator System Driven by Primary Controller and
Secondary PD Position-Force Controller.

A feedback-feedforward linearization method is applied to
the nonlinear model of the excavator to determine a linearized
model. This method is more suitable than the common
linearization method accomplished by determining the
variational equations about a nominal trajectory, since the latter
requires expressions of the derivatives of the model and, in the
case of the excavator, these expressions are quite lengthy.

The excavator model will have now the linear time-invariant
form:

X=Ax+Bu (3)
- 0 I 0

where the constant matrices A = ,and B= will
* 2 An Bz

be chosen in the design of the secondary controller to meet
certain given design specifications.

By selecting the control input force u as:

u= [I‘(x')]-l[D(x')[Bzﬁ +Ax' +A,,x
®
+Ox)x* + G(x') +Bx? + F,m,]
the nonlinear model given by Equations (4), (5), and (6)
assumes the linear form given by Equation (8). This makes the
total system appear linear.

A secondary controller is inserted into the system to
compensate for the effects of internal modeling errors and
disturbances. To design a secondary PD position-force controller

to drive the tracking error e=x' —x'? and the external force
error AF,  =F,_ - F::...; asymptotically to zero, one can select
~ . -1 1 .
A,=A,=0 and B2u=—KPe—Kve-D (x )KIAFW in
Equation (9), where matrices K,, K.. and K/ are constant

controller gains. If such a selection is chosen, the secondary
controller & will be proportional to the position and force errors.

ﬁ=[I‘(xl)]>l[D(xl)[—er—Kvé]-K‘,-_\F,W:] (10)
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The total input u to the excavator system is determined by
the combination of the primary and secondary controllers:

d ~
u=u +1u (11)
Under the assumption that Bz(x')=B2(x”) and

i (x)=f 2(x" ) » this input can be expressed as follows:

u= [ﬂx“)]_l[Di";+C(x")x“ +G(x") +Bx™ + F
+Dx")[-K,e- K.¢| - K ,AF,M]

When the composite controller in Equation (12) is
substituted into the excavator Equation (4), and assuming that
the nonlinear terms cancel exactly, the dynamical model for the
error equation becomes:

(12)

e . -if _1d
é+K é+K,e+D'(x)K AF,, =0 (13)
The 3x3 matrices K, K,, and K are chosen diagonally in
order to achieve independent joint control, i.e., the error of each
Joint will evolve in time independently of the errors of the other
joints. The values of Kpiand K.y, i = 2, 3, 4, are chosen so as to
guarantee the eigenvalue assignment corresponding to the
design specifications. Simulations are presented to demonstrate
the performance of the proposed controller.

Simulations

Simulation studies were performed with the use of a
hypothetical excavator model on a 486DX computer using
MatLab 4.2¢ for Windows (MathWorks, Inc. ©1994). On a
digging operation, the soil is to be removed by a ploughing
action. The depth of the bucket edge, i.e., the cut depth is
determined by two factors: the need to have the bucket full at
the end of the stroke, and the requirement that the excavating
forces stay at sufficiently low values so as not to unduly impede
the progress of the bucket.

A desired trajectory is first designed in the Cartesian plane
(see Figure 4). The direction of the digging operation must be
tangent to the trajectory of the bucket. This is achieved by
properly selecting the digging angle as a function of the
Cartesian position of the fourth coordinate frame. Using the
inverse kinematic equations of the excavator [3], the desired
joint  positions are calculated.  First-order forward
approximations of the joint positions are used to generate the
desired joint velocities and accelerations.

(m)

Figure 4. Desired Cartesian Trajectory.

On the design of computer controlled excavation special
attention has to be focused on the transient response of the
system. No oscillation shall be permitted such that the actuators
are required to generate torques that surpass their limits. The
designer compromises in this case the settling time of the
system for the undesirable overshoot. Simulation results of the




PD position-force controller are presented here, where the
underdamped response of the joint position was designed for a
10% overshoot of the steady state value, and the settling time
was selected at 0.1s.The sampling period was 0.01s, and the
sampling subinterval 0.001s. Figures 5 and 6 show the desired
and simulated joint positions for a homogeneous soil case, and a
situation where a sudden change in the soil composition is
detected; respectively. Figures 7, 8, 9, and 10 show the
Cartesian position error for both cases.
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Figure 5. Desired and Simulated
Joint Positions for Homogeneous

Figure 6. Desired and Simulated
Joint Positions for Bilayered Soil
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Figure 8. Bucket Tip Cartesian
Position Error Parallel to the Z, axis
tor Homogeneous Soil Case.

Figure 7. Bucket Tip Cartesian
Position Error Parallel to the Xj axis
for Homogeneous Soil Case.
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Figure 10. Bucket Tip Cartesian
Position Error Parallel to the Z, axis
for Bilayered Soil Case.

Figure 9. Bucket Tip Cartesian
Position Error Parallel to the Xj axis
for Bilayered Soil Case.

During the simulations, the reaction force is estimated using
Equation (3). However, in a real implementation force sensors
should be attached to the tip of the bucket to measure the
reaction force. The volume of the soil recovered, and the
increase on the mass of the last link (the bucket) are also taken
into account in the model.

The torques required on the joint shafts are presented in
Figures 11 and 12. They are related to the actuator torques by
the I matrix. A common measure of the overall performance of
the system is the average of the Euclidean norm of the error of
the joint positions. For the homogeneous soil case,

le.], /v =10825x 107 rad, [, |, /¥ =62551x107 rad, and
|le_'||2/N=7.5729x10_5rad; and for the bilayered soil case,
e,|, /N =68592x107rad, |e,], /N =59203x107 rad , and
"e4"2 /N =72126x10" rad , where N=200 is the number of

samples. The simulation demonstrates that the controller
performs properly during the excavation procedure.
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Since the excavator normallv operates at low speeds, a
reduced dynamical model was also tested, where the Coriolis
and centripetal effects were neglected. The controller performed
well with the reduced model.
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Figure 11. Joint Shaft Torques Figure 12. Joint Shaft Torques
for Homogeneous Soil Case. for Bilayered Soil Case.
Conclusions

A control system is described to automate the operations of
an excavator. The control scheme presented is designed to
follow the desired motion of the bucket during digging
operations, and to account for the forces experimented on the
bucket during excavation due to interaction of the bucket with
the soil.

The kinematics, dynamics and reaction forces on the bucket
tip for a typical excavator are taken into account in the design of
the controller. One drawback of this approach is that the control
scheme depends on a sufficiently accurate dynamical model for
the excavator, and on an accurate estimation of the expected
reaction forces in the bucket of the excavator due to soil-bucket
interaction.

Simulation results of a typical digging procedure illustrate
that the controller performs properly during free miotion as well
as during soil constrained motion.

One intermediate step previous to complete automatic
excavation would be to perform manually a digging task
recording the positions and forces exerted by the excavator at all
times, and then, take advantage of the repeatability of an
autonomous system to perform the same task without the help of
the operator. Teleoperation should also be considered for the
cases when an operator cannot perform the teaching experience,
such as at hazardous or contaminated sites.
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