MODELING AND CONTROL OF EXCAVATOR DYNAMICS DURING
DIGGING OPERATION

By A. J. Koivo,! M. Thoma,? E. Kocaoglan,* and J. Andrade-Cetto*

ABSTRACT: Automation of excavation operations can be realized by an automatically controlled excavator
system that is able to perform autonomously a planned digging work and to quickly comply to interacting
forces experienced during excavation. The development of such an automated control system is usually based
on a dynamic model of the system that describes the motion with time. A dynamic model for an excavator
that is needed for the controller design can be derived by applying Newton-Euler equations to each link in
succession. The model obtained describes the motion of the excavator. It corrects several shortcomings that
appear in previously published excavator model. On the basis of the model derived, a proportional-differential
controller is designed that makes the bucket to track a specified trajectory. It can be used to automate the
machine operations, for example, for terrestrial and planetary excavations as well as for mining applications.

INTRODUCTION

A control system can be designed to automate excavator
operations. During the digging task, it must control not only
the bucket trajectory but also the forces exerted by the bucket
(end-effector) on the soil. In order to design a controller for
an excavator system, a dynamic model describing its behavior
is necessary. The equations of motion of the excavator in the
chosen coordinate systems can be derived by applying com-
monly accepted approaches of robotics, for example, by form-
ing Euler-Lagrange's equations from Lagrange’s energy func-
tion, or by writing Newton-Euler’s equations for each link of
the system in succession.

The application of Euler-Lagrange’s equation gives the de-
signer physical insight needed to understand the behavior of
the overall system, but the resulting equations are often com-
putationally complex. On the other hand. the application of
Newton-Euler’s equations gives a computationally attractive
model in which the dynamics of each link are described by a
recursive relation relative to the link index. The driving joint
torques of the excavator mechanisms are generated by the
forces of the hydraulic rams (the actuators). The dynamic
model obtained describes the translational and rotational mo-
tions of the serially connected links. i.e.. the dynamics of the
upper structure, the boom, the arm. and the bucket in the
excavator system.

The kinematic modeling of excavators has been reported
in the literature; for example, the kinematic equations of the
positioning (Khoshzaban et al. 1992; Koivo 1994) and the
static force/torque relations (Bullock et al. 1990; Bernold 1991;
Hemami and Daneshmend 1992). On the other hand, the
dynamic modeling of excavators has attracted little attention.
Preliminary work on modeling the dynamics of excavators
has been presented (Viha et al. 1991); however, the modeling
is incomplete. A later attempt to describe an excavator model
is presented in Vahi and Skibniewski (1993); however, the
model developed is untractable. In fact, its interpretation
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raises queries in general; for example, many variables are
undefined.

The purpose here is to present a complete dynamic model
for excavators. The inputs consist of the forces generated by
the hydraulic actuators, i.e., the rams, and the output is the
pose (position and orientation) of the bucket. The forces
acting between the bucket and the soil during the digging
operations are also included in the dynamic model.

The presentation of the paper is organized as follows: First
the brief description of the kinematics and coordinate as-
signments are given. Then, the equations of motion for the
links in recursive forms are written using Newton-Euler equa-
tions. The resulting dynamic model of the excavator are pre-
sented and discussed. Finally, simulations of the implemen-
tation of a PD controller are presented in order to illustrate
the use of the dynamic model.

KINEMATICS

To describe the positions of the points on an excavator,
the designer defines Cartesian (i.e., rectangular and right-
handed) coordinate systems attached to the links, and a fixed
Cartesian (world) coordinate system with the origin on the
body of the excavator (see Figs. 1a and 1b). The coordinate
systems are assigned systematically by applying Denavit and
Hartenberg procedure described for excavators in Koivo (1994).
A possible assignment of the coordinate frames for the mech-
anism is shown in Fig. 1(b). It may be noticed that the ro-
tational axis for the first link (i.e., the supporting base) is
vertical, whereas the rotational axes for the other links are
horizontal. The nomenclature used in the sequel is presented
in Appendix VL.

For determining the transformation matrices that relate the
representations in two adjacent coordinate frames. the struc-
tural kinematic parameters d;, a,, a;, and 0, i = 1, ... .4
for the links are first defined. They are presented in Table
for the system in Fig. 1(b).

The transformation matrix relating two adjacent [ith and
(i — 1)th] coordinate frames is as follows:

cos 9, —cosa,sin® sinq;sin 8, 4, cos 6,
; _ |sin®, cosa,cos8 —sina, cos8 asinG
i 0 sin 0, cos a; d,

0 0 0 1
(M

It follows then that vector ‘p in the ith coordinate system
and vector ‘*'p in the (i + 1)th coordinate frame,i = 0. 1,
2, 3, are related by

p=A"("p) (2)




FIG. 1. Excavator: (a) Side View; (b) Coordinate Frames

TABLE 1. Structural Kinematic Parameters

Link / d; a, o; 8,
(1) 2 (3) (4) (5)
1 0 a, = [, 90 8,
2 0 a, = [, 0 0.
3 0 a, = [ 0 N
4 0 a, = I, 0 6,

which can be used to relate the vectors for the bucket pose
(position and orientation) in the base and fourth coordinate
systems (Fig. 2). Thus, vector “p in the fourth coordinate
frame and vector °p in the base coordinate system are related
as

% = Aj(p) 3

where A% = ALA3A3AY; and (AY)~' = AL If *p specifies
the center point of the bucket edge in the fourth coordinate
system, i.e., ‘p = [000 1]7, then the same position in the
base coordinate system is °p = A%4(°p).

The bucket pose is related to the joint angles. The joint
angles can then be expressed in terms of the lengths (line
segments) of the hydraulic actuators (rams). These relation-
ships together establish the usual kinematic pose equations

FIG. 2. Excavator Bucket

qf the mechanism. They are presented in detail in Koivo
(1994), and are not repeated here.

A dynamic model for an excavator is next presented by

applying Newton-Euler equations of motion to each link (i.e.,
a free body) of the machine.
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EQUATIONS OF MOTION

The dynamic model for an excavator will be described next.
For convenience, the dynamic model for the excavator is
presented in the digging mode, that is, the rotation angle 6,
of the first link is held constant. It follows that the movements
of the excavator mechanism during the digging occur in the
vertical plane. The equations of the motion can then be de-
rived in a standard manner, and can be found in the common
textbooks on introductory robotics [e.g., Koivo (1989)]. The
model equations are written for each link of the excavator
by considering the links as free bodies shown in Fig. 3.

First, the equations are determined for the velocities and
accelerations of all links in the local coordinate frames. Then,
the corresponding variables for the centroids of the links are
obtained. The foregoing equations for the velocities and ac-
celerations of the excavator links are presented in detail in
Appendix I and summarized here.

The rotational and translational velocities and accelerations
for each link are described in recursive forms as follows:

i“‘;’n(iu) = *1gy, + éiﬂ(iﬂk::) (4)

FIG. 3. Free Body Diagrams: (a) Link 1, Upper Structure; (b) Link
2, Boom; (c) Link 3, Arm; (d) Link 4, Bucket
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where i = 0, 1, 2, 3; w,; specifies the rotational velocity of
link i in the base coordinate frame; and *'wy, in the (i +
1)th coordinate frame. Moreover, "*la, = (Ri, )(R))wy
with Ri,; = (Ai, )z being the rotation submatrix of the
homogeneous transformation matrix Af,, that relates a vec-
tor in the ith coordinate frame to a vector in the (i + 1)th
coordinate frame (Koivo 1994). 9, is the rotational velocity
of link (i + 1) relative to the previous link about the (positive)
Z;-axis and measured from the positive X;-axis to the coun-
terclockwise direction.

Similarly. the translational velocity v,y of the origin of
the (i + 1)th coordinate frame (i.e., the distal end-point of
link i + 1) is specified in the (i + 1)th coordinate frame as

- Pl - _itim
Wi + gy X ['+ Poii+ 1) " Pni] (5)

where *'p,; = vector from the origin of the base coordinate
system to the origin of the ith coordinate frame expressed in
the (i + 1)th coordinate system; and the ** X represents a
cross-product operation.

The corresponding expression for the rotational accelera-
tion is as follows:

i1y -
Yoi+1y =

i”&uuu) = lay, + éi+l(i+lk:i) (6)

where i*'&, = *'®, is the rotational acceleration of the
origin of the ith coordinate frame expressed in the (i + 1)th
coordinate system.

The translational acceleration ‘*'ag;.,. 1y = '* 'y, of the
origin of the (i + 1)th coordinate frame expressed in the
(i + 1)th coordinate system is

”]50(.‘“) = "3, + [iﬂdouﬂ)] X (Hlf’fn
+ [i+l(:'()(i+l)] X {[i+16:‘0(i+l)] X (i+]i‘)i+l)} (7)
where *1p%.; = "*'Pyis1y — P describes the position of

the origin of the ith coordinate frame in the (i + 1)th co-
ordinate system.

The translational velocity v,; and acceleration ‘a,; of the
gravity center G, of link i are then defined by

Foei = Vo + '@y X PG (8)
s = - i~ - - -
Ao = By T By X PG F Dy X (@ X PE) (9)

where pZ; = R)(poci — Pui), and ‘a,;, = RYa,,. It is noted that
the variables without the front superscript are expressed in
the base coordinate system.

The inertial force ¥}, and moment ‘M, acting on link i can
then be expressed in the ith coordinate frame (about the
gravitational center of link i) as follows:

'F{) = m,fy; (10)
iMf; = iI(lii(j’()i + '@y X iI(li(i‘:’()i) (1D

where Pyg; = ayg; is the translational acceleration of the
gravity center G; in the base coordinate system and I, =
RYI,;Rj is the “‘reflected” second order inertial moment, I,
is the moment of inertia of link i about the gravitational
center, and ‘w, = [0, 0, Z}_, 6,]".

Egs. (4)-(11) represent (forward) difference equations with
respect to the link number. They can be solved by starting
from the first link, and proceeding toward the end-effector
(the bucket), i.e., by setting i = 1, 2 and 3.

For the mathematical analysis, the links of the excavator
are separated at the joints to form the free bodies (Fig. 3).
Then, for each free body, such as link i, the forces are bal-
anced and expressed in the ith coordinate system to obtain

‘F ni = iFi(H nt ; ‘Fi + 'Fj (12)



where ‘F, 1 = force acting on link  from link (! — 1) and
expressed in the ith coordinate frame. ‘F¢* signifies an ex-
ternal force (e.g., the piston force of a hydraulic actuator)
acting on link .

‘M, = ’Mmu) + (P — Poi) X Fiion,

+ [Iﬁﬂ(h - lﬁ()(i 'I)] X 'F(l 1) + iM(’Y (13)

where ‘M,,_,, is the moment acting on link i from link (e
1) and expressed in the ith coordinate frame. Eqs. (12) and
(13) can be combined to obtain

M, 4y = iMi{: ot [’f’m - ibmi—n] X 'Fm»x;

+ [i")(.(’_’ - iﬁ()(i 'l)] X lF{l + [ib(’(ii - ,l-)“(l' I)]

iRexp iNi

X }T“ Foor + M, (14)
Egs. (12) and (14) can be solved backward by starting from
the end-effector (i = 4) and proceeding toward the base.

The dynamics of link i of the excavator are governed by
(10) and (12), and (11) and (14), which represent Newton's
and Euler’s equations. These equations for the entire exca-
vator are presented in detail in Appendix II.

By combining the equations of all links. i.e., (51), (59),
and (79). the dynamic model for the motion of the excavator
can be expressed concisely as follows:

D(6) + C(0, 6)0 + G(8) + B(§) = I'(8)F — F,, (F,. F,)
(15)

where ® = [0, 6, 6, 6,]"and 6,,i = 1, 2. 3. 4 represents the
shaft angle of joint i. The (4 X 4) matrix I'(8) is a function
of the moment arms; vector F = [F, Fy,. F,., F,i]" specifies
the forces of the hydraulic actuators which produce the torques
acting on the joint shafts; the first component F, = 0 since
the first joint is not moved. Term F,,, is determined by the
forces F, and F, acting on the bucket due to soil and bucket
interaction as shown in Fig. 2 and presented in Appendix III.
Vector G(0) describes the gravity, C(0, 6)0 is determined
by the Coriolis and centripetal effects, D(8) is the (pseudo)
inertial matrix, and B(0) signifies friction.

Specifically, G(0), C(0, g) and D(0) are given by the fol-
lowing expressions:

G(®) = [G, G, G, G]7 (16)

C Cp Ci, Cy (:)1
Cs, Cs CZJ Cs, 8,

CO.06 =" . c. c. 6, o
Cu Co Cy Cy 8
where in G, = —m,gll,c; + Lieyn + Ligy cos(B25, + a,)]

= myg[lic; + Luags €08(823 + 05)]— miagLlyis cos(8y + oy);
Gy = —mygllicas + Liyags c08(Ba3s + 03)] = Mg Lyacs cos(8y3
+ 05); Gy = —mu8Lysis €08(034 + 04); Cay = —2[d’ +.k
sin(8;, + 0,)]0; — 2[k sin(8;, + o)) + nsin(0, + a,)]d.,
andd’' = m_\lzL“:(;_‘; Sin(@; + 0'5) + m412[353, k = m.t[ZL(BG-h

n = nl4l3L()3(;4; C23 = —'[d’ +. k Sin(934 + 04)103 - Z[k
sin(0;, + 0,) + nsin(8, + 0,)]0,; Coy = —[k sin(8;, + 04)
+ nsin(8, + 0,)]0,; Cy, = [d' + k sin(6;, + 0,)]8, — [n
sin(8, + 0,)]04; Cy3 = —[n sin(6, + 0,)]05; Coy = —[n

sin(8, + 0.)J(8; + 6; + 6,); Cp, = [ksin(8s + 0,) + 1
sin(0, + 0,)]8, — [n sin(8, + 0.)]165; Cs3 = [n sin(8, +
a,)](6; + 6,); C,, = 0. Moreover
D, D, Ds; D,
_ | D2 D2 Dy Dy
P®) = b, D, D, D, (18)
D, D, D43 c

where Dy, = a4, + 2d + 2n cos(8, + oy) + 2k cos(0,, +
0.); Dy = Dy, = d, +d + 2ncos(8, + o,) + k cos(8;, +
0,4); Doy = Dy, = ¢ + n cos(8, + 0,) + k cos(8;, + oy);

Dy; =a, + 2ncos(8, + 0,); D3y =Dy =c + n cos(6, +
;8 =a+b+cia=b+ca= myLiiGe + Ly +
(my + m)I3; b = miLdin + Iy + ml3; ¢ = m,Lisgs +
Log; d = mylyLoyi5 c08(0; + 05) + mylylicy; myand [, = mass
and length of link /, respectively; I; = its second-order inertial
moment about the rotational axis through the gravity center;
g = —9.81 m/s? ¢, = cos B; ¢; = cos(B; + 8;); ¢, = cos(9,
+ 8; + 6,); and 5, 5, 5% = corresponding expressions of
the sin function.

N ~ - -
lII [IZ ll.‘ llJ

0 Iy Iy Iy

re =1, ror (19a)
0 0 o0 Iy
where the elements of I'(8) are defined as
[y = Lyg sin(p — 8, — a,));
Iy = Ly, sin(8; + o), + Y) — L sin(8, + Y2) (196)
Iay = Ly sin(y, + 6:)
. sin y, — cos v, tan g,
— Ly + 6, -
ooz Sin(e, + 6,) [sm(e:, — &) + tan g, cos(8,, — 85)]
_ . _ cos vy, tan(0,; — &) + sin v,
Loz sin(y: = &) l:cos €, tan(0,;, — €5) + sin g, (19¢)

Iy = Ligpsinoy — v,) = L, sin(y, — g;)

cos vy, tan(B,; — &) + sinvy,
cos e tan(B., — €<) + sineg, (194)

- L(l}(l_l Sin(ez.‘» - Eﬁ) [

tan(0,, — €5)cos y, + sin 'y,]

Iy, = =L, sin(e, — o, -
H 2. SIn(es ) [sm €, + COs €, tan(B,; — &)

+ Ly sin(o; = y,) + [ sin(es — 0s;)

] tan g, cos y, — sin vy,
| sin(8,; — &5) — tan g, cos(0.; — &) | (19¢)

[y = Lysp sinfes— (£poro: = 8234)]

) [ tan g, cos y, — sin 1,
| sin(8,; — &5) — tan g, cos(8,; — &) | (191)

Moreover, the loading torque F,,4 in (15) is
Fio.a(F,, F,) =

F,
a)[F, sin(8, — 8,) — F, cos(8, — 0,4,
a,[F, sin(0,, — 94,,-) — F, cos(8,, — edg)]
a(—F,sin®, + F, cos 9,) (20)

Elements Dy, D, C,;,, C;, Ty, i = 1, 2,3,4,G,, and F, are
not specified here because the joint variable 8, is not changed
during the digging operation.

One may observe that the inertia matrix D(0) is symmetric
and positive definite (due to the kinetic energy expression for
the excavator motion) as in the model of robotic manipula-
tors.

It should be noted that the model in (15) differs in many
respects from the one given in Vihi and Skibniewski [(1993)
their equation 4]. Ignoring the obvious typos in their model,
the main difference is in the expression I'(8) of our (15) and
(19), which contains also nonzero off-diagonal terms contrary
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FIG. 4. Control Architecture

to Vaha and Skibniewski (1993). It appears that it is assumed
implicitly in Viha and Skibniewski (1993) that the gravity
centers of the links are on the line joining the endpoints of
the links; this assumption in most cases is not valid. The model
presented here corrects several of the shortcomings of the
foregoing paper.

SIMULATIONS

A simulation study on a (hypothetical) excavator was per-
formed in C language programming environment (C++ 4.0,
Borland, Scotts Valley, Calif., 1993; MathCad 3.1, MathSoft,
1992). During a digging operation, soil is removed by a plow-
ing action. The depth of the bucket edge. i.e., the cut depth
is determined so that the bucket is full at the end of the stroke,
and that the excavating forces do not unduly impede the
progress of the bucket.

A desired trajectory is first designed in the Cartesian space.
Using the inverse kinematic equations of the excavator (Koivo
1994), the desired joint positions are calculated. The joint
positions are used to generate the joint velocities and accel-
erations with software.

To make the bucket of the excavator track the desired
trajectory, the control system shown in Fig. 4 is designed. As
Fig. 4 indicates, the primary controller generates the gener-
alized torques to be applied to the system. producing the
desired motion under ideal conditions. It is specified by the
inverse dynamics of the excavator, (15). A secondary con-
troller in Fig. 4 is then designed to compensate for deviations
of the actual motion from the desired trajectory. In fact, the
gains of the controller can be determined experimentally so
that the a specified overshoot and settling time in the step
responses (Koivo 1989) are obtained.

The excavator motion was simulated using (15) with the
numerical values given in Appendix IV. The primary con-
troller was calculated using 10% offset in the values of the
masses. The secondary controller F(r) was chosen as a PD-
controller operating on the tracking error e(¢) and a P-con-
troller on the force error

F() = K,e(t) + K,e() + K [F..(0) — FiLu0] (1)

where e(t) = 0(r) — 09(r); force F¢ 4(1) = desired force
exerted by the bucket on the soil; and K,.. K, and K, =
controller gains that are adjusted experimentally for 10%
overshoot and 0.1 s settling time in the step responses.

The simulation results are presented in Fig. 5. The mean
squared tracking error of the three joints is 8.095 10~* rad.
The simulations illustrate that the controller performs very
well during the free (gross) motion and the constrained mo-
tion (digging).

CONCLUSION

A dynamic model for an excavator performing a digging
operation is presented in Newton-Euler’s formulation. The
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nate Error of Bucket Position versus Time; (¢) z-Coordinate Error
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equations of motion are derived by first presenting the ve-
locities and accelerations of the gravity centers of the links
as forward difference equations relative to the link number.
Then, the equations for the forces and torques acting on the
links are described by backward difference equations relative
to the link number. By combining the equations, the dynam-
ical model for the joint variables is obtained. It is in a form
similar to the equations of motion of robotic manipulators.
The model derived systematically corrects several inade-
quacies that appear in previously published (Vihi and Skib-
niewski 1993) model of excavators. Simulations that illustrate




the use of the proposed dynamical model and the perfor-
mance of the proposed control scheme are presented.

The dynamical model obtained can be used as the basis for
automating the operations of excavators. It can be accom-
plished by designing a control scheme so that the entire system
can operate in an autonomous mode. The approach presented
can equally well be applied to the operations of backhoes.
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APPENDIX |. FORWARD EQUATIONS FOR
VELOCITIES AND ACCELERATIONS

It will be assumed that the excavator is operating on the
plane determined by the centerlines of links 2, 3, and 4 (the
bucket). Thus, link 1 (the base of the carrier) is not moved
during the digging operation, which is usually the case. To
determine the equations of motion for links 2, 3, and 4 of
the excavator, the equations for the rotational and transla-
tional velocities of the links are first obtained.

For link 2, the rotational and translational velocities ex-
pressed in the second coordinate frame are

2wy = [0, 0, 6,]7 (22)
Va2 = [0, Loyosds, 0]7 (23)
2y, = 2w, = [0, 0, 6,]7 (24)
a, = [~ Lo,o8% Loods. 0]7 (25)
Vog: = [ = Lo $in(0,), ~ Loys8, cos(0,) + Lo,ob., 0]7
(26)

Where o, = LGZOZOI.

_L0202§2 sin(o) + Lo_vc;;éi cos(o,) — Lo,o:ég
By, = | — Loy, ¥, cos(a)) ~ Lgy6,85 sin(o,) + Lo,o.02

0
(27)
Then, by (10) and (11),
F2 =
= Loy, miby sin(e)) + mabi—Loo, + Lo, cos(o)]
+ m.gs,
mléz[Loloz = Loy, cos(oy)] - m:égLO:G: sin(a,)
+ m.gc,
0
B (28)
™3 = [0, 0, [,,6,]" 29)

where I, = second (inertial) moment about the rotational
axis through the gravity center of link 2. Egs. (26)-(29) es-
tablish the velocity, acceleration vectors, the inertial force
and moment for link 2.

For link 3, the corresponding equations are written

oy, = [01 0, 62 + 63]1- (30)
o = [Lo.o:ézs.zv Lo.o:‘ézcﬁ + (éz + éJ)Lo:Gn 0] (31)
Yoy = 3d’u3 = [0, 0, éz + 63]T (32)

Lo.o:ézss - L()quégc.% - (92 + 61)214():0;.
‘ay, = Lo0:835: + Loo8.c; + (92 + é})L()z()\ (33)
0
JVU(;; =

L()|0:62‘y3 - (62 + é})L(h()x Sin(crz)
Louo:éz".\ + (03 + éz)Lo:o; - (9: + éz)L(no; cos(o,)

0
(34)
where o, = £G,0,0,
33(1(.'; =
( Loyo8:5,— Lo.o:égcs = Loyo(8:+8,)
- (92 + és)chm sin(a,) + L(;:()_: COS(U:)((’: + 63 )y
Lo;o;ssé% + LO|():C.162 + Lo:o_:(é: + 91)
= Lg;o: COS(Uz)(é: + 91) =Lg.o, Sin(o':)(éz + 63 )
0 J
(35)
Then (10) and (11) for i = 3 yield
Fi = m, 3an(;; + m.g, (36)
M = {0,0, 1,8, + 6)]7 (37

where g = [gss: ge.y 0]7;and I, = second (inertial) moment
about the rotational axis through the center of the gravity of
link 3.
Eqgs. (34)-(37) describe the velocity and acceleration vec-
tors, and the inertial force and moment vectors for link 3.
For link 4 (bucket), the forward equations are written when
i =4

‘o = [0,0,6, + 6, + 6,]7 (38)
Wy =
Lolo.“.uéz + L010354(éz + 63)
Loi08:63 + Losoca(d; + 65) + Loso6: + 6, + 6.)
0
(39)
‘o = [0,0,6, + 8, + §,]7 (40)
Ja(u =
[ . . . . I
= L6,0:383 + LoosSi8: — Lo,o.c4(6, + 8;)°
_LO}OJ(él + 8; + 6,)° + Lo;o§4(é; + 8,
Lo:o:s.u6§ + Lo;o:cs.néz + L0:0.=54(éz + és): (41)
+ Lowoci(B: + 6;) + Lo 6. + 8, + 6,)
0 )
Vog, =

[ LOIO:sBJéZ + Lo:o_xs-t(éz + 9;)
= Lg,o, sin(o;)(8, + 6, + 6.)

Loyoicaf; + Lowocs(8, + 6;) + Lo 6; + 65 + 8,)
= Lg,o, COS(UJ)(éz + 93 + 64)

{ 0 J
(42)
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where 03 = £G,0,05. By writing ‘ag, = [Yapa 04y 04,7,
one obtains

‘a4, — Lo, sin(0'3)(§2 + 63 + é4)
+ Lo, 005(03)(62 + 93 + 64)2

8,6, = |*Goyy = Lo, cos(a:)(8: + 6 + 6,) (43)
- LOJGJ Sin(c:;)(éz + 63 + 64)2

By assuming that the mass of the bucket stays constant
during the motion, it then follows that the inertial force and
moments are

Fi = m44au(;4 + m,g, (44)
My = [07 0, 1()4(62 + 91 + 64)]7- (45)

where g, = [g5.34 gC2aq 0]".

Eqs. (42)-(45) specify the velocity and acceleration vec-
tors, as well as the force and inertial moment vectors for
link 4.

APPENDIX Il. EQUATIONS OF MOTION FOR
EACH LINK

For each free body i, i = 2, 3, 4 in Figs. 3(a), (b), and (c),
the force and moment equations are determined by starting
from the end-effector, i.e., from the last link i = 4, and
proceeding toward the base. The general equations (12) and
(14) are next applied to each link.

For link i = 4, (12) is first written as column vectors in
the first-coordinate system

Foy = Fys — Fpp — F§ (46)

where Fy, = [Fay,. 0, F34.]7 in the zeroth coordinate frame.
The specific expressions of the variables in (46) are

F,s = [F, cos 8, — F,sin 8, 0, F,sin 6, + F, cos 68,]"

(47)

di>

and F, and F, = tangential and normal reaction forces, re-
spectively. acting between the bucket and soil.

Fox = [Fpx cos €5, 0, Fpg sin e4]7 (48)
Fi = [Fi.0, Fi)" (49)

where g5 = angle that PK makes with the line that is parallel
with the positive X -axis; it can be measured by an encoder,
or a trigonometric relationship can be established for e5 in
terms of 6,, 05, 8, and the structural link-parameters. Also,
F} = RJ(‘F}) where R} = (A{)x is the rotation submatrix in
the homogeneous transformation matrix A, and *F} is spec-
ified in (44).

Egs. (46) and (13) can be combined and the result ex-
pressed in the fourth coordinate frame to obtain [(13) with i
JMM = 4M45 + (45("’ - 450(;4) X JFI‘K - (4f)<u - 4l3n(;4)

X 4F45 + (4503 - 450(;4) X 4FJ4 + *M; (50)

Force *F,, is obtained from (46) after it is expressed in the
fourth coordinate frame. Thus

;‘N-I.H = 4]\-445 = (*Pos — *Pos) X "Fu
+ (Jﬁo(;a - 45[13) X 4F(41 + "Mf‘» (51)
,'\‘M:u = 4M34 = (*Por — *Pua) X 4i?mc (52)
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where moment *M,s about the bucket edge axis is zero. By

setting 8, + 0; + 6, — w™ — 0, = 0, in (47), one has
“F,s=[—F, cos 8, — F, sin 0,, F, sin 8, — F, cos 8,, 0]7 (53)
(%Pos — *Pos) X Fus = Loo(F,sin 8, — F, cos 0,)k., (54)
(*Por — *Puz) X 4FPK = FpxLosp(sin §)R:4 (55)

where EM = the unit vector in the z,-direction, £ = &5 —
(LPO3O4 + €5 — 0234) and 6234 = 93 + 93 + 94. One observes
that vector

*Pocs = Pos = [Losc, €08 04, Loy, sin g, 0]7 (56)

emanates from point G, and that o, = £2G,0,0,.

Since “F§ and *M}§ are given by (44) and (45), respectively,
all terms in (51) are specified. Thus, moment *M,, can be
calculated. Since all joint moments are about the joint axes,
which are parallel, the superscripts in front of the moments
and the unit vectors on the z-axis, i = 1, 2, 3, 4, are omitted
in the sequel.

For link 3 (i = 3), (12) and (14) assume the following
forms:

3F23 = "Fu - JFLK - SFJK - 3FFI - 3?8 57
Mza = MM = (Pos — *Pocs) X 3F34 + (Poz — 350(;3)
x F,y + M + CPor — *Pocs) X Fix + (Chw = o)

*ocs) X Fr (58)
By combining (57) and (58), one has

X 3F,x + CPor —

My, = Moy — (Bor — Bex) X Frx = Chos = o)

X e = (Bor = Boz) X Fry = Bz = Box) X Frx (59)
lel = Mu =~ (*pos — 3f’uz) X 3F34 + CPocs — Jf’oz)

x 3F3 + M} (60)

where 3F,; = F., + Fp = F,; — F3 Moment My, is
given in (51) where *M,, = M,;,. Moreover,

Cios — *Poz) X ff?“ = Lo:o;(fEu_\)R:

0.,) + ‘Filk.
(61)

= Lo:o;[‘“F: sin(8,; — edg) + F, cos(8,; —

*Pocs = Pz = [Loys; €05 05, Lo, sin as, 0]7 (62)

where a5 = £G;0,0;, and *F} is specified by (36).

*por = *Poz = [Low €0S 04, Loy sin oy, 0]7 (63)
where o, = £L0,0; and
3F,x = [FLx cos &,, F| sin g,, 0]7 (64)

€, is the angle that LK makes with a line that is parallel with
the x;-axis.

*pos = Pz = [Lo,s c08(a3), Lo, sin(a;), 0]" (65)

where 0; = £J0,0; is a constant angle. The components of
F,x in the x;- and y,-directions emanating from point J are

Fix = [Fjx cos v,, Fjxsiny,, 0]7 (66)

where vy, = £CJL + £LJK - (w — o) is the angle that
JK makes with a line that is parallel to the x;-axis, and £ZCJL
is a constant angle; angle £LJK is determined by the cosine
theorem




Lix = L3 + L; — 2L,L,, cos(£LIK) (67)
The moment arm of *F,, is
Por — Pz = [Lowr €08 Oy, Loy sin gy, 0] (68)

where o, = £F0,0,. The components of *F,, in the x,- and
ys-directions are

Fri = [Fr €08 ¥, Fgy sin y,, 017 (69)

where v, = angle that line segment F1 makes with a line
parallel to the positive x;-axis; specifically, m — y, = £ICO;
=7~ [2w — 8, — (v — B3 — £IAC) + LFIC], angles B,
= £AIC and £IAC are constant, and £FIC is determined
by

Lic = L} + L}, — 2LgL, cos(LFIC) (70)

Force *F} and moment M} are given in (36) and (37), re-
spectively. Thus, all terms in (59) have been specified, and
the equation of motion for link 3 is determined.

The forces at point K will next_be balanced. It is assumed
that the masses of the short links (KJ, KL, KP) are negligible.
The force balance equation at point K and the moment equa-

tion about point L yield, respectively,
-SFI.K - 3l-".u( - 31‘?."[\’ =0 (71)

where the forces are expressed in the third coordinate frame,
for convenience. In the component form, (71) gives

Fixcose,) | (Fcosyi) | (Frxcos(b — e5)) _
F,xsin g, Fi sin v, Fppsin(0.; — €5)
Since F,, represents an input, (72) is solved for Fpx and F, ¢

in terms of F

F. - F sin y, + cos vy, tan ¢,
PR 7K sin(8,; — €5) — tan €, cos(0,; — &)

tan(6,; ~ e5)cos y, + sin vy,
Fix = Fie | =
sin e, — cos g, tan(6,; — &)

] (73)

(74)

Thus. forces Fpy and F, x have been expressed as functions
of the input F,.. Therefore, expressions (73) and (74) can be
substituted in equations (52) and (59).

For link 2 (i = 2), (9) and (10) are:

ZFIZ = Zizs + :FFI - 2ii‘m: - 2F5 (75)

MIZ = M:s = (Poz — Poga) X Zi.“:3 + Gy — *Poc2)

X lix: + MS - (zf)()l - l.)ucz)

X *Fe + (Bua + Buc) X Foe (76)
Egs. (57), (75), and (76) are next combined to obtain
.\'N.IIE = Mz.x = (Poz = Po) X SFZJ

+ (zi’uaz - f’m) X 2F(l) + M(z) (77)
.er'l = Mlz - (Zﬁm - 2lT-'(u) X 2i‘n - (zr’oa - 2501)
X F s — (Poz — o) X ¥ (78)
Where zf“z:; = 2F23 + ZFFI = 2?45 - ZF?) - zi‘wg‘ Moment
M,; and force ?F3 in (77) are specified by (58) and (28),
respectively. Also

CPoz — 2Por) X Eizs = Lo:oz(gp 23y)Ez (79)

and 2F,;, = Y,-directional component of Fy, in (57). ¢y =
£G,0,0, and 0, = + £10,0,, then

*Pucz — P = [Lois: €OS 0y, Ly,q, sin a,, 0]7 (80)

2py; — Po = [Low €08 04y, Lo, sin oy, 0]7 (81)
*F,, = RY(Fp)
= [Fr(cos ya¢; + sin ¥,53), Fry(—€0s v,55 + sin v,c;), 0]7
= [Fg cos(y, — 8;), Fg, sin(y, — 65), 0]7 (82)
By denoting o,, = £BO,0,, then
Pos — Poy = [Lows €08 0y, Lo, sin oy, 0]7 (83)
If p is the angle that BE makes with the positive x,-axis, then
*Far = [Fpe cos(p — 8,), Fppsin(p — 6,), 0] (84)
p = tan " Y[L,psin(8, + o) + L,
N[Lagcos(8: + o) + L0} (85)

Moment M7, is given in (29). Thus, all terms on the right
side of (77) are determined. Eq. (77) specifies the motion of
link 2.

APPENDIX lll. REACTION FORCE

During the digging operation, the reaction force on the
edge of the bucket is determined by (Alekseeva et al. 1985)

Up

F, = k, [k,bh + RN + e <1 + 3—) bh Y, Ax,] (86)

where k&, and k, = specific resistances in cutting silty clay;
constants b and 4 = width and thickness of the cut slice of
soil, respectively; p = coefficient of friction between the
bucket and the soil: N = pressure force of the bucket with
the soil; ¢ = coefficient of resistance experienced in filling
the bucket during the movement of the prism of soil; V, and
V, = volumes of the prism of soil and the bucket, respec-
tively; and Av = increment along the horizontal axis (in me-
ters).

The reaction force is defined to be parallel to the digging
direction. Its horizontal (F,) and vertical (F,) components
with respect to the soil are related as: F, = F, cos(,, — 0.1);
F, = F,sin(6,, — 0.1) (Véaha et al. 1991). Then, the tangen-
tial component F, = F, cos(0.1) and the normal component
F, = —F, sin(0.1) can be calculated.

APPENDIX IV. PARAMETERS USED IN SIMULATIONS

The numerical values of the parameters used in the sim-
ulations are as follows.

The lengths of the links are: @, = 0.05m; a4, = 5.16 m; a;
= 2.59 m, a, = 1.33 m. The controller gains are: K, =
638,863 and K, = 800. The distances between points (Fig.
1) described by the subscripts are: d,p = 2.71 m; d,py =
0.56; dAI = 2.6 m, dAP = 2.5 m; dCF = 0.77 m; d(vl =28
m; de; = 0.63 m; de, = 0.63 m; dep = 0.37 m; dp =
04m,dpp =05m;dpr = 0.65m;dp, =223 m; dey =
0.42 m.

The angles between the line indicated by the two sub-
scripted letters are: DR-DN, o, = 0.3933 rad; DQ-QC, o;
= 0.3316 rad; LC-CD, g, = 0.1536 rad; JC-CD, ¢, = 1.4661
rad; FC-CD, ¢y = 2.7105 rad; CA-Al, o,, = 0.4782 rad;
BA-AC, o, = 0.4957 rad; DJ-JK, vy, = w/6 — 6, rad; DF-
FL,y, = w — 6;rad; ¢, = 6,; DL-LK, e, = /2 — 0, rad;
DP-PK, &5 = w/6 — 0,/2 rad; BE-EH, p = 7 — tan~{[d,,,
+ dAE Sil’l(ez + cll)]/[dAB COS(BZ + 0'“) - dEH]}‘

The inertial moments: I, = 14,250.6 kg m?; I; = 727.7
kg m?; Io, = 224.6 kg m2. The link masses: m, = 1,566 kg;
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. my = 735 kg; m, = 432 kg. The specific resistances to cutting
for silty clay: k, = 1.0005; k, = 5,500. The width and thick-
ness of the cut slice of soil respectively: & = 0.61 m, h = 0.5
m. The coefficient of friction of the bucket with the soil: p
= 0.1. The pressure force of the bucket with the soil: N =
1 kg m/s?. The coefficient of resistance to filling the bucket
and movement of the prism of soil: ¢ = 55,000 kg/(m?/s?).
The volume of the bucket: V, = 0.58 m®. The soil density:
‘Ysihycluy = 1,921.8 kg/m3.
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APPENDIX VI. NOTATION

The following symbols are used in this paper:

C, = (i, j) element of Coriolis and cen-
tripetal torque C(0, 6)0;

Cih S, cos 9;, sin 0;, respectively;

c; S, = cos(8; + 8)), sin(9, + 6,), respec-

tively;

I

D, = (i, j) element of (pseudo) inertia
matrix D(0);
d;, = offset distance in link i;
Fy,r = piston force of hydraulic activator

connected between B and E;
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F,
tixl
Fo, ‘M

iF(i-— 1)i» 'M(i— i

i i i
PoGi> VoGis ‘AoGi

i+1 i+l
Voir 'y

i+l i+l
W, 7,

[ | ]

o n

[ T T

[l

loading force acting on bucket;
normal reaction force;

tangential reaction force;

external force acting on link i;
force and torque, respectively, act-
ing on gravity center of link i ex-
pressed in the ith coordinate frame;
force and torque, respectively, act-
ing on link / from link (i — 1);

ith component of gravity torque
G(0);

moment of inertia of link i about
centroidal axis parallel to z;-axis;
unit vector on the z-axis;

length of line segment joining points
A and B. and A, B signify any two
points on excavator;

a; = length of line segment between
O;,_yand O0,,i = 2, 3;

mass of link i:

position, translational velocity, and
acceleration, respectively, of the
gravity center of link 7/ expressed in
ith coordinate frame;

translational velocity and acceler-
ation, respectively, of the origin of
the ith coordinate frame in (i + 1)th
coordinate system;

ith coordinate system. i =
2,3, 4

offset angle of link /;

(i, j) element of control matrix I'(8);
angle between JK and positive x;-
axis; _

angle between IF and positive x:-
axis; .

angle between LK and positive x-
axis; .

angle between PK and positive x -
axis;

6, — ® — 0, (angle between
bucket bottom and X ,-axis);
angle between bucket edge and
horizontal line (digging angle);
the angular. velocity and accelera-
tion of joint i, respectively;

0; + 6,

0, + 6 + 6,

€5 + 6.5, — £PO.O,:

angle between EB and positive x-
axis;

£G,0,0,:

£G;0;0.:

£G,0,0;;

£G,0,0,:

£G;0.0;

2L0,0;;

£30,04;

£FO.0;;

£G;0,04;

£10,0,;

£B0,0,: and

angular velocity and acceleration.
respectively, of ith coordinate frame
in the (i + 1)th coordinate system.

w,0,1,



