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We analyze the conditions under which a memory
system is prone to interference between new and old
items. Essentially, these are the distributedness of the
representation and the lack of retraining. Both are,
however, desirable features providing compactness and
speed. Thus, a two-stage framework to palliate inter-
ference in this type of systems is proposed based on
exploiting the information available at each moment.
The two stages are separated by the instant at which a
new item becomes known: a) interference prevention,
prior to that instant, consists in preparing the system
to minimize the impact of learning new items and b)
retroactive interference minimization, posterior to that
instant, seeks to learn the new item while minimiz-
ing the damages inflicted on the old items. The sub-
problems addressed at the two stages are stated rigor-
ously and possible methods to solve each of them are
presented.
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1. The interference problem

Suppose one would like to learn a set of input-
output pairs {(X;, D;)}i=1...n, where D; is the de-
sired output of the system to input X;. In some ap-
plications not all the items to be learned are known
at the same time. Instead, there is a sequential or-
der of arrival, and the system must be operative
before the last item is known with, desirably, the
best possible performance. Therefore, new items
must be quickly learned and integrated. However,
when new memories are introduced in an associa-
tive system, the performance of the already stored

items can be seriously degraded. This performance
degradation is usually called interference or catas-
trophic forgetting. The effect of adding a new item
depends basically on two factors: the type of mem-
ory used and the training scheme applied.

— Two types of representations can be distin-
guished:

* Local representations, where the items are
stored in such a way that they do not in-
terfere with one other, like in a look-up ta-
ble. As a consequence, in normal conditions,
there is a perfect recall of both the old and
the new items. However, when the system
is full, there is no possibility of storing new
items without destroying completely some
old items.

* Distributed representations, in which each
element or parameter of the associative
memory intervenes in the representation of
several items. And reciprocally, each item
is represented by several parameters, each
of which supports only partially the stor-
age of the item. When a new item is in-
troduced, the recall of several stored items
is degraded. The importance of forgetting
raises very gradually with the number of
new items learned. Distributed representa-
tions exploit memory resources much better
than local ones, and are also reputed to in-
terpolate more adequately (see Section 3.2
for details about this).

— There are two basic training schemes:

* To introduce the new item isolately. In this
case, the last item is quickly learned but, in
many cases, the structure of the system is
such that this learning causes a very impor-
tant degradation of the previously learned
items. That is, catastrophic interference ap-
pears.
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* To train the new item jointly with the
old ones. The problem is that with some
kinds of systems, especially those having
distributed representations, this can be a
complex optimization process that requires
lots of computation.

In the above account of types of memories and
training schemes, we have only described the ex-
treme possibilities. There are others in between
representing a compromise between their proper-
ties.

2. Previous work

The phenomenon of interference has been noted
and studied by the connectionist community: Rat-
cliff [14] and MacCloskey and Cohen [9] first un-
veiled the problem. Their purpose was to model by
means of artificial neural networks some aspects
of human learning and memory, such as forgetting
and retroactive interference. They arrived to the
conclusion that there is too much and too sud-
den interference in neural networks to be a valid
model. Almost all the following papers on inter-
ference inherit this marked psychological charac-
ter. We briefly comment on some of them, to next
focus on the engineering aspects of the problem.

The different works will be placed in the frame-
work outlined in the preceding section, namely an
imaginary plane whose axes refer to the locality
of the representation and the extent of retraining
with old items (Figure 1).

Thus, French’s approach [4] is situated at the
extreme of localized solutions. He uses sigmoidal
units (see the next section) with a [0, 1] range, sat-
urating them and favoring the zero states.

Hetherington and Seidenberg [5] observed that,
although the old items could have large errors af-
ter the introduction of a new item, they could be
quickly relearned. Thus, they suggest to retrain
new and old items altogether after the introduc-
tion of the new pattern. This can be considered an
approach far from the origin in the retraining axis,
in which information about old items is used in a
delayed mode.

In [15] the new item is trained with a (fixed or,
preferably, randomly changing) part of the previ-
ously trained items. Thus, it can be situated in
the middle of the retraining axis. In a variation of

this strategy, he essays to produce the same result
without requiring the availability of the old items;
the associations that are jointly trained with the
new items are not old items, but (input, network
output) pairs, which we denote (X, F (X)), ran-
domly extracted from the network before introduc-
ing the new item. Although in appearance similar
to the former, this is a different approach (that
Robins calls pseudorehearsal). Training with the
old items constrains the shape of F(X) much less
than pseudorehearsal, because the latter implic-
itly aims to reproduce the previous F'(X) function,
except at the discontinuous point where the new
item is located. The repeated introduction of items
through this process leads to very local represen-
tations. It must be said that pseudorehearsal has
some intriguing points in common with brain pro-
cesses during dreaming [16], which suggests that
the brain could use some related strategy, as com-
mented below.

McClelland et al. [8] claim that the brain avoids
catastrophic interference by using a rapid -local-
memory to store new items, which afterwards
should be integrated slowly in the long-term, dis-
tributed memory!. This approach can be consid-
ered a combination of a temporal local solution
and delayed retraining. To be successful it needs
a method to discriminate when the output for
an input must be generated using the local or
the distributed memory. Other requirements are
the availability of the old items, and free time to
train the distributed memory with them and those
stored in the local memory. Following McClelland
et al., the cortex is the long-term memory in the
human brain, and the hippocampus is the local
memory, able also to recognize when a pattern is
new. Dreaming could be, as suggested by Robins
[16], the time for integration, and the information
about the old patterns would be extracted by ex-
citing the cortex randomly, in a way similar to the
pseudorehearsal technique commented above.

3. A closer look at the interference problem

3.1. Associative systems and neural networks

At this point it is convenient to enter into details
about the kind of systems that will be dealt with

!Note that this requires to know whether an association
has been introduced recently in the quick memory.
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Fig. 1. Imaginary plane on which the different approaches to deal with catastrophic interference can be placed.

in this paper. Although we will try to keep the
discussion at a rather general level, our results will
be centered on neural networks.

First of all, we require the associative mem-
ory system to be able to generalize. This means
that for any input X the system must yield
a response or output F(X;W) parametrized by
a vector of parameters W. To store a set of
items {(X;, D;)}i=1..n, the system must mini-
mize some function E(W) enforcing the similar-
ity of F(X;;W) and D;, as for example E(W) =
Yict.nE(W) =3y n(F(Xi;W)—D;)?. The
exact shape of this function influences the way in
which the network responds to inputs outside the
training set and, for this reason, E(W) could in-
clude terms aimed at determining the way the sys-
tem should generalize.

Another condition we impose is the derivabil-
ity of F(X; W) and E(W), this allowing the mini-
mization of E(W) with standard methods such as
gradient descent using its derivatives.

The usual models of multilayer neural networks
satisfy the above specifications. For example, a
typical regression? two-layer neural network has
the form

Fy(X;W) =Zwijyj(X), (1)

where Fj is the ith component of F', w;; are modi-
fiable parameters and y; is a nonlinear function of

2By regression network we mean one whose output is a
vector of real numbers.

the input that, in the terminology of neural net-
works, is known as the output of hidden unit j.
Depending on the shape of the y;’s, feedforward
neural networks can be classified into two types.
The most frequent one uses

yi(X) = sig(Y_ v Xr), (2)
P

where X}, is the kth component of X, vj;’s are
modifiable parameters (also components of W)
and sig is a function of sigmoidal shape, such as
the hyperbolic tangent. The other type of net-
works is the Radial Basis Function (RBF) net-
works, whose y;’s are RBF units, typically gaus-
sians:

—ew A IR
yJ(X) =€ ’ ) (3)

where vj; and o} are modifiable parameters (in-
cluded in W).

3.2. Distributed representations

Up to now we have associated catastrophic for-
getting with the existence of crossed dependencies
of different outputs of the system on many parame-
ters. This corresponds to systems with distributed
representations, which seem to be at the heart of
the problem. It is convenient to take a closer look
at this relation and at the arguments against re-
nouncing to distributed representations.
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The term ”distributed representations” is often
used in the connectionist literature ambiguously
or with different meanings. Here, to avoid misun-
derstandings, we put forth a precise definition. We
say that the response of the system to input X
has a distributed representation if the majority of
the derivatives g—i(X ; W) have a significant mag-
nitude. In the opposite case, we say that it has a
local representation. Note that the different items
stored in a system may have representations with
very different degrees of distributedness. Moreover,
an arbitrary input which has not yet been associ-
ated to a desired output, but producing anyway an
output response, can be said also to have a local or
a distributed representation. The above definition
is adequate to analyze the interference problem,
while at the same time bearing resemblance to the
common conception of distributed representations.

The easiest way to introduce a new item X,,¢q
is to change those parameters to which the current
(erroneous) system response is more sensitive. If
there is a great overlap between this set of param-
eters and those having a large g—i(Xp;W) mag-
nitude, the response of item p will be seriously
perturbed (in a way approximately proportional
to g—i(Xp; W)g—ui(Xnew; W)). Thus, catastrophic
forgetting appears when a) the stored items have
distributed representations and b) the response of
the system to the new item prior to learning has
also a distributed representation.

Sigmoidal networks, due to the euclidean prod-
ucts in (1) and (2), tend to produce very dis-
tributed representations for all their possible in-
puts, unless the sigmoidal functions work in their
saturated zones.

Instead, RBF networks can have distributed or
local representations, depending on the relation
between the distance among the RBF centers and
their widths.

Then, why not simply use a very local repre-
sentation of the memories to avoid interference?
There are two main reasons for not doing this:

— Compactness. It is clear that local represen-
tations using an exclusive set of parameters
for each item will require many resources to
deal with large quantities of data. Indeed,
purely local representations must always have
at least as many parameters as data stored.
Instead, when data are introduced by mini-
mizing an error function without any locality
constraint, the result is naturally distributed.

With high data-to-parameter ratios, there are
not local representations producing equivalent
results.

— Generalization. To determine the output of
an arbitrary input X, any good general-
izer should take into account multiple stored
items, especially in stochastic or noisy do-
mains. When data are scarce and sparse,
items far from X should influence the sys-
tem response. This influence can be only re-
alized through commonly dependent param-
eters. The sharing of parameters by several
items implies, at least, a certain degree of dis-
tributedness in the representations. Note that
in the sense we are using the term distributed,
RBF networks composed of units with a lim-
ited ”local” activation function can exhibit
distributed representations, the determinant
factor being the degree of overlap between the
units.

3.8. Our goal

In this paper we intend to deal with the engi-
neering aspects of the core problem. This core is
for us at the origin of the retraining and represen-
tation axes (refer to Figure 1), i.e., catastrophic
interference avoidance without requiring repeated
presentations of the old items, and without explic-
itly imposing local representations. We coincide
with [13] in pursuing this goal and in taking a pure
engineering perspective.

However, theoretical reasons forbid a perfect so-
lution to this problem. When a feed-forward net-
work with a fixed number of units has enough ca-
pacity to encode a fixed set of items, there is a
bound on how fast learning can take place, since
this problem has been proven to be NP-complete
[3] [6]. Therefore, we cannot aim at finding a pro-
cedure that in approximately constant time learns
a new item while leaving the old ones intact, be-
cause by iterating this procedure learning could be
carried out in time linear in the number of items.
As a consequence, our goal must be limited to try
to palliate interference as much as possible.

4. A two-stage approach to palliate interference
We consider that the interference problem must

be handled in two stages separated by the arrival
of the new item:
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— A priori stage: encoding the old, known, items
in the best way to prepare the network to min-
imize the impact of learning new items. We
call this stage interference prevention.

— A posteriori stage: learning the new items
while minimizing the damages inflicted on the
old items stored with a given weight configu-
ration. We call this stage retroactive interfer-
ence minimization.

We will concrete the scenario in a set of items
1...N —1 which are stored prior to the arrival
of the new item N. Let E;. , denote the error in
items 1,2...p. With this notation we formulate
our problem as how to find efficiently a minimum
of Ey.. n(W) with the constraint of having item
N available in a moment posterior to the arrival
of items 1...N — 1. The optimization to be per-
formed prior to this moment constitutes the in-
terference prevention, whereas those optimizations
posterior to that moment conform the retroac-
tive interference minimization. We will enforce this
division by reflecting the calculations of interfer-
ence prevention in the variable W itself, fixing its
value afterwards. The changes to be made to the
weights during retroactive interference minimiza-
tion will be reflected in the variable vector AW,
so that the value of the weight vector after the
introduction of the new item will be W + AW.
For clarity of explanation, we make all the deriva-
tions assuming a perfect encoding of the new item
(En(W + AW) = 0). However, the N-th item
can also be introduced partially within this frame-
work. Instead of using (Xn,Dy), we would take
(XN, F( XN, W)+ AMDny —F(Xn,W)),0< A< 1
as the new item. Reducing only a fraction of the
error can be useful when dealing with noisy data
[21].

The minimization of E; n(W) is approximately
equivalent to:

Wrilglw Ei.Nno1(W +AW)

subject to En(W + AW) = 0.
And making the above distinction explicit:

nin [Br.N-1(W) + AE, N1 (AW; W)]

subject to En(W + AW) = 0.

For clarity of explanation, we make all the
derivations assuming a perfect encoding of the
new item En(AW + W) = 0. Let us abbreviate

E;. n-1 with E. We need to express AE(AW +
W) in a manageable way. Evaluating accurately
AE(AW + W) for a given AW can have a high
computational cost. For example, in a supervised
feedforward neural network, it would entail pre-
senting the whole set of items to the network. If
the optimum is to be found through some search
process, this evaluation has to be performed re-
peatedly, leading to a high computational cost.

An alternative solution to accurate evaluation
is to approximate the error function over the old
items through a truncated Taylor series expansion,
for example, with a second-order polynomial in
the weights. A linear model is too rude and not
feasible because it may turn the problem into an
unsolvable one [21]. The coefficients of the poly-
nomial have a direct interpretation, namely the
first and second derivatives of E. Cross-terms are
not included because the calculation of the Hes-
sian requires computations very costly in memory
and time. The Hessian diagonal is, therefore, the
only information about old items that we require
in principle.

Thus, the most faithful problem formulation we
can reasonably aspire to deal with is:

0*E

. 1 2
Jnin EW)+ 3 ; o2 AWE +

OFE

- ow;

—AW;

subject to En(W + AW) = 0.

The problem is how to carry out this constrained
minimization on W (interference prevention) and
on AW (retroactive interference minimization).
In the latter, W is by definition a constant al-
ready known, and the minimization takes place
over AW . Interference prevention is more complex
because the minimization must be performed over
W, but the cost function is parametrized by AW,
which is unknown at that moment. This leads to
the minimization of the expected cost for the a
priori distribution of AW. We begin by the easier
one, namely retroactive interference minimization.

5. Minimizing retroactive interference

5.1. Problem formulation

Now we consider W as a constant, and therefore
(4) becomes

(4)
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1min % > GAW + ) bAW;

subject to EN(AW) =0,

with ¢; assigned to g—;‘fg and b; to ;—Vﬁ. Note that
usually b; will be close to zero because, by intro-
ducing the first N — 1 items we should have min-
imized E and, therefore, also the absolute value
of its first derivatives. In any case, this is part of
interference prevention. Thus, we assume b; = 0,
and our definitive formulation for the retroactive
interference subproblem is:

i . 2
min XZ: c;AW;
subject to En(AW) =0, (5)

: 8%E
with ¢; = .
i W2

5.2. Selection of coefficients

The above formulation is similar to that adopted
by Park et al. [13], and also in previous works by
the authors in [18], [20] and [21], the difference
being in the value assigned to ¢;. In [13] a mod-
ified second derivative of E, weighted by the er-
ror of the outputs of the network is used. In [20]
a sensitivity measure dependent on the history of
the first derivatives g—vﬁ(t) and the changes made
by the back-propagation algorithm §W;(¢) in each
iteration t is used,

. > () OWi()
E Wif in _ Wiin

?

where Wim and W™ are the initial weight and the
final weight after the training, respectively. In [13],
o°E

¢; = a2 and, ¢; = 1 are tested and compared.

The latter option is interesting for its cheap com-
putational cost, and because it is intuitively ap-
pealing, since (5) calculates in this case the nearest
solution for the new item in parameter space.

We next show that the option ¢; = g—;}% is the

best in average to estimate AE(AW) with a cost
model of the form ), ¢;AW?, even outside a mini-
mum for the old items. First, note that ), ¢; AW?
cannot distinguish between the effect produced by
positive and negative increments of the same mag-
nitude, i.e., the sign information is lost. The quan-
tity >, ¢; AW? could have been generated by 2"

vectors, denoted AW?Y | n being the number of
components of AW, by considering two opposite
values for each component. The best one can do in
this situation is to use as cost function the average
of the error increments produced by these vectors:

(BE(W) — E(W + AW)) =

1 &
=on ;(E(W) —~E(W + AWY)) =
—BW)- S EW + AWD)Zi",
=1

where < - > denotes expectation. Now we need to
use the following result [22], [17]:

/g(U +R) P(R) dR =

1 &g
=9(U) +35 ZW o; + O(pi), (6)

where g is an arbitrary differentiable function, P is
a symmetric, zero-mean probability density func-
tion, and o7 and y; are the variance and the fourth
central moment of the marginal distribution of U;,
respectively. This formula can be particularized
to discrete distributions, so that considering P;
is the probability of AW" given the information
about the square components, Pj(AW?Y) = 2%

and, therefore,

2 £ W2 2 ’
and finally
1 O’E )
(E(W)—E(W + AW)) =~ 32 o2 AW;.
(7)

Thus, we see that the absence of sign informa-
tion leads naturally to a cost function of the form
>, ciAW? with the assignment ¢; = g—sfg, even in
points far from the minimum. This result can be
easily generalized to the estimation of an arbitrary
function in the same conditions.



V. Ruiz de Angulo and C. Torras / A framework to deal with interference 7

This conclusion is in agreement with the results
of an experimental comparison of all the above-
mentioned options for assigning ¢; [20].

Another conclusion emerged from this compari-
son: the difference between using ¢; = 1 and ¢; =
giva'g decreases with the number of items stored in

thelmemory system. This can be interpreted in the
following way: the weights that are more changed
by the solution of (5) are those with lower second
derivatives. Thus, second derivatives can be con-
sidered as a measure of how much the encoding of
the previously stored items are supported by the
corresponding weights. Those weights with current
lower derivatives change to support the new items
and, then, their second derivatives grow. As the
number of stored items increases, all weights tend
to have similar, high-magnitude second derivatives
and, thus, using ¢; =1 or ¢; = g—;fg tends to yield
the same results. '

5.8. Minimization method

Now the question remains of how to solve (5)
efficiently. A usual way to tackle a constrained op-
timization problem is to linearly combine the cost
function with the deviation of the constraint from
zero, and then minimize this new error function:

min | o Z ciAW? + 8 Ex(AW)| . (8)

In the minimization of this function, there is a
tradeoff between En and ), c,-AWZ-2 that depends
on a and (3, and the error in the new item will
not be 0 unless the g relation tends to infinite
with time. In practice this is impossible and it is
approximated through an appropriate schedule for
changing a and S.

More sophisticated algorithms from the theory
of constrained optimization can also be applied,
as in [13], where the reduced gradient algorithm
for nonlinear constrained optimization is used. The
advantage of these methods is their generality, in
the sense that in principle they can deal with gen-
eral functional forms3, but they can be complex
and computationally expensive.

In [20] and [17], an algorithm to solve (5)
that exploits the structure of multilayer neural

3But not always. For example, the reduced gradient
method only works with linear constraints. Because of this,
E N (W) is approximated linearly in [13].

networks is developed. The drawbacks of solv-
ing a constrained minimization problem are here
avoided through the transformation of retroactive
interference into an unconstrained minimization
problem. The finding underlying this transforma-
tion is the existence of an one-to-one mapping be-
tween the hidden unit configurations and the best
solution in the subspaces of weights that produce
those hidden unit configurations. Besides allow-
ing a non-constrained optimization, this transfor-
mation has other advantages, like a number of
variables much lower than in the original prob-
lem, and an always perfect encoding of the new
item. The algorithm derived from this transforma-
tion, called LMD (Learning with Minimal Degra-
dation), is completely parallel, even among layers.

5.4. Relation between retroactive interference
minimization and pruning

Pruning is a technique commonly used in con-
nectionist systems consisting in trimming the net-
work by eliminating the most superfluous weights.

To palliate retrograde interference, one of the
more important issues is the determination of the
less significant parameters for the encoding of a
number of stored memories. These are the pa-
rameters that should support most of the neces-
sary changes to introduce new information. In-
stead, pruning detects the less profited parameters
to eliminate them. Indeed, we have used as rel-
evance measure the second derivatives, also used
in Optimal Brain Damage [7], the most popular
pruning technique.

The relation with pruning suggests that ad-
vances in pruning techniques can be incorporated
into retroactive interference minimization algo-
rithms.

6. Interference prevention
6.1. Problem formulation

The interference prevention subproblem is for-
mulated as the selection of a set of system param-
eters able to codify items 1... N — 1 in such a way
that they are disrupted minimally when item N is
introduced. Now, we have to solve (4) in W, taking
AW as an unknown constant.
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w ow?

subject to En(W + AW) = 0.

Before knowing the new item, we must solve this
problem without assuming any particular value for
AW . The ideal solution is that which, in average,
best solves the problem, taking into consideration
the distribution of AW:

And developing the second term:

E(W / ( ZAwf 6W2

OF
+ Z AWia—Wi> P(AW) dAW

min
w

(9)

where P is the density function of AW. Let us as-
sume that P(AW) is equal for each of the com-
ponents AW;, or at least that they have equal
variances (although this assumption can be eas-
ily relaxed). It is also very natural to assume a
zero mean for this distribution: otherwise item
N would not be really new and the information
of the mean of P(AW) could be used to train
the system We can apply (6) to (9) by making

g(U)=1%,0? 8W +>; U@aavg , S0 that the inte-
gral in (9) becomes 'the expectation of 9(0+AW).

Since ¢(0) is null and gng (AW) = 2gv£’ we get

2 2E
min | E(W) + z Z 9B , (10)
K3
without any error?.

This result can be derived in another way, with-
out supposing a particular shape for AF; n 1
(AW; W). The problem of interference prevention
can be understood as the search for a W such that,
after being modified by the introduction of the new

4The term in (6) disregarded here implies fourth
or higher-order derivatives, and these are null for

3> AWZ’W—I—E AwW; 2L

min ZAWQ(?E +ZAW"§—£/

item, it would be still able to reproduce old ones.
As the new items are by definition unknown, they
produce unknown modifications in the parameters
when they are learned. Thus, the problem consists
in getting a point of low E(WW) stable with respect
to random perturbations of W. This resistance to
perturbations can be expressed as

min / E(W + AW) P(AW) dAW. (1)

This expression is made exactly equivalent to
(10) by applying (6). Thus, reassuringly, we have
obtained the same result with two different rea-
sonings.

6.2. Selection of coefficients

Unfortunately the above discussion did not sug-
gest which is the density function P(AW) This
amounts to decide the variance o2, which is the
main parameter of the distribution 1nﬂuenc1ng the
minimization (10) or (11)°. The variance of the
weight changes produced by future items could be
approximately deduced from their expected error,
which in turn may be estimated from the error
that the most recently introduced items had at
their arrival. However, this is a context-dependent
hypothesis, which can lead to significant errors.
Moreover, there is another important issue about
the selection of o2 to be dealt with: it influences
not only the error increments produced by new
items, but also the way in which the non presented
items are interpolated. In fact, the way in which
the items 1... N — 1 are encoded determines the
answer of the system to all possible inputs. The
quality of these answers is often more important
than exact storage of the presented items. In this
case, o2 should be tuned in accordance to the for-
mer desideratum.

In conclusion, either because of ignorance of the
appropriate value or because it is tuned for other
purposes, the parameter o2 used in (10) could be
significantly different from real weight variances.
What are the consequences of this parameter im-
precision? Could it have effects opposed to those
desired, i.e., in these conditions, the introduction
of new items can be worst after minimizing (10)
than after minimizing E(W)? A detailed mathe-

5The terms disregarded when approximating (11) with
(10) are significant in general, but are close to zero in the
minimum of (10).
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matical analysis of this question is carried out in
[17]. The conclusions can be summarized in a few
words. If o2 is smaller than the real variance, the
minimization (10) is always beneficial. The oppo-
site case is also safe if the remaining error E(W)
in the minimum of (10) is not much higher than in
the minimum of E(W). E(W) in the minimum of
(10) has a sigmoidal shape when considered as a
function of 02 and, therefore, o2 can be increased
until the error begins to grow quickly.

6.3. Minimization method

There is a direct way of minimizing (10) or
equivalently (11). It consists in adding noise to the
weights while minimizing E(W), so that a sam-
ple of the gradient distribution of g_lf&(W + AW)
is calculated in each iteration. Lots of samples
of AW must be extracted from its distribution
to get a good estimate of the average derivatives
(or alternatively, very small minimization steps
must be done in the direction of g—vﬁ(W + AW)).
This noise addition during training has been al-
ready used for other purposes, such as ameliorat-
ing fault-tolerance in neural networks [11] or im-
proving their generalization properties [12], [1].

Again, this method is very general, it being valid
for any type of E(W) and P(AW). However, it
is extremely inefficient for systems such as neural
networks, which have a high-dimensional parame-
ter space to be sampled in order to obtain the av-
erages in the optimization steps. In [19] and [22],
a method based on the gradient of (10), especially
adapted for feed-forward networks, is developed. It
has the advantage of being deterministic and much
more stable. In addition, it is easily computable
with an algorithm of the same order as the back-
propagation of the gradient of E(W).

6.4. Relation between interference prevention and
generalization

There was an implicit assumption in the deriva-
tion of our interference prevention method: the ba-
sic features of P(AW) and especially its variance
are independent of the W used to encode the old
items. We have supposed that this variance, which
is directly related to the expected error for the new
item, does not change while performing the min-
imization (11). In other words, we minimize fu-

ture interference assuming an expected error for
the new items that is independent of .

But the error in the new items (or equivalently,
the variance of P(AW)) is another factor deter-
mining the interference that these new items will
produce and, of course, it is also controlled by the
selection of W. Thus, there exists an alternative
way to prevent interference, namely reducing the
error in the new items. This is nothing more than
improving generalization.

The point we want to make next is that the min-
imization (11) is also useful to control generaliza-
tion. This can be understood in two ways:

- First, by reducing second derivatives of the pa-
rameters, their information content® with respect
to the encoding of the items is also reduced. Con-
trolling the information content of a model is a
general way of controlling its generalization.

g

- The other way is considering the term 72

> AW? gsﬁ as a regularizer that constrains the
system to be simple or smooth. The use of regular-
izer terms is another classical technique that con-
trols the smoothing of F(X) by means of a regu-
larization coefficient that regulates the importance
of the regularizer. In our case this regularization

coefficient is o2.

7. Experimental results

We show now results obtained by combining the
two complementary algorithms for catastrophic in-
terference avoidance. First the robustness against
changes is enhanced by the minimization of (9),
and then the new patterns are introduced while
minimizing retrograde interference by means of the
LMD algorithm. Plain back-propagation and ret-
rograde interference minimization with LMD have
been extensively compared [18], [20], [21].-We con-
centrate on studying the benefits of complement-
ing LMD with the interference prevention algo-
rithm.

6The information content of a parameter can be approx-
2
imated by log (%), assuming a uniform a priori distri-
i

bution for it [17].
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7.1. A first example

The following experiment used a neural net-
work architecture with seven hidden units. Four-
teen random samples of the function sin(z; + x2)
were chosen as an initial training set for the net-
work. The network was trained using our interfer-
ence prevention method, i.e., by minimizing (10)
following its gradient. This process was repeated
eleven times using different o2, producing eleven
different networks. For each of these networks, we
tested the effect of introducing twelve more ran-
dom samples of the same function, using the stan-
dard (¢; = %) and the coarse (¢; = 1) versions
of the LMD afgorithm for retrograde interference
minimization. Note that, adhering to our simpli-
fied formulation, the LMD algorithm always en-
codes perfectly the new patterns. Thus, the state
of the network after their introduction is entirely
characterized by the error increment in the old pat-
terns.

Figure 2 shows the average error increments
produced by the introduction of the new items.
An important fall of catastrophic interference can
be observed, especially in the second half of the
graph. This reduction is due in part to the im-
provement in generalization, which is reflected in
Figure 3, where the coarse version distances suf-
fer a small drop located more or less in the same
place, due to the lower error of the new items at
arrival time, which requires smaller weight modifi-
cations. Observe that the origin of abcissas corre-
sponds to coding the old patterns with plain back-
propagation (i.e., no interference prevention is ap-
plied). Applying also plain back-propagation in-
stead of LMD to code the new pattern (i.e., no
retrograde interference avoidance) produces error
increments that go beyond the scale of the graph.

The distances in general are greater in the stan-
dard LMD than in the coarse LMD, because the
latter explicitly minimizes ||AW||, while the for-
mer looks for privileged directions suggested by the
second derivatives. When the network is trained
with the classical backpropagation method, i.e.,
following the gradient of En (W) in discrete steps,
the results depend on the length of these steps.
The total distance covered in weight space tends
to decrease with the shortening of the length of
the steps (at the cost of longer training times). In
the infinitesimal limit, the solution tends usually
to approximate the coarse version of LMD [20].

Note that the distances covered by the standard
version grow with o2. The reason is that not all
second derivatives decrease in the same way when
o2 increases. The minimum of (10) does not make
a pressure proportional to the second derivative’s
value, but an equal pressure for large and small
ones. Therefore some of them become almost null,
while others remain large.

This has consequences for the retroactive in-
terference problem formulation: the cost coeffi-
cients are the second derivatives and, thus, weights
with null second derivatives can be changed arbi-
trarily. This problem is similar to the excessively
large steps that optimization methods based on
the Hessian (like Newton or Pseudo-newton) per-
form when the second derivatives are small. We
solve it in the usual way, namely by adding a con-
stant k to the coefficients so that ¢; = %”; + k.

In [17] we argue that a sensible value for this con-
stant in the case of feedforward neural networks is
the square of the maximum possible activation of
the hidden units.

7.2. Ezperiments using the Pumadyn datasets

The next series of experiments have been per-
formed using data from the Pumadyn family
datasets [24](loaded from the Delve database [25]),
which come from a realistic simulation of the dy-
namics of a Puma 560 robot arm. The inputs in the
datasets chosen consist of angular positions, ve-
locities, torques and other dynamic parameters of
the robot arm. The output is the angular acceler-
ation of one of the links of the robot arm. We have
used the two datasets in the family labelled with
the attributes: 32-dimensional input, fairly linear,
and medium noise in one case, and high noise in
the other case. We made the same type of experi-
ments shown in Figure 2, but only with the stan-
dard version of LMD, since it is the one that works
best. Moreover, we have added a very important
information to the graphs: the generalization er-
ror obtained for each of the values of o2, evalu-
ated over 2000 untrained patterns. Networks with
forty hidden units were first trained with 200 or
400 patterns and then the average error increment
produced by introuducing 200 new patterns sepa-
rately was evaluated. The results of all combina-
tions of number of previously trained patterns and
degrees of noise are displayed in Figures 4 through
7.
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Fig. 2. Average error increments produced by the application of LMD to eleven networks trained with our interference
2
prevention method. The networks have resulted from minimizing (10) for %- between 0 and 0.05, as represented in the axis
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Fig. 3. Average ||AW]|| produced by the application of LMD to the networks in Figure 2.
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Fig. 4. Same experiments as in Figure 2 but using networks with 40 hidden units and, as training set, the 400 patterns
of the high-noise Pumadyn dataset. Damage is measured as the average error increments for the old patterns, whilst the
generalization error is evaluated over 2000 untrained patterns.

These figures show that interference can be al-
leviated while ot the same time improving general-
ization. This is in contrast with other strategies for
interference avoidance based on a special coding of
patterns (e.g., saturating the hidden units to get
more local representations), which produce input-
output functions F(X;W) (e.g., piece-wise step
functions) of a different nature from the function
being approximated, thus resulting in high gener-
alization errors. However, we are forced to use the
same regularization coefficient for controlling gen-
eralization and prevention of interference, the best
values for each of these purposes being usually dif-
ferent. Therefore, there is a trade-off that should
be considered depending on the application.

If generalization takes priority, the potential
benefit of the interference prevention procedure
depends on several factors. One of such factor is
the number of patterns already stored in the net-
work. The more information a network has stored
in, the more its approximation power is well di-
rected and, therefore, the less it requires to be
regularized. This can be seen by comparing the
curves in Figures 4 and 5: with double number of
trained patterns, the generalization curve is more
squashed against the left vertical axis. It can also
be seen in how the generalization curve of Figure
7 increases more slowly when compared to Figure
6. Another factor is the amount of noise in the ex-
amples. The more noisy the training patterns are,
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Fig. 5. As in Figure 4, but using the 200 training patterns of the high-noise Pumadyn dataset.

the more convenient it is to smooth F(X;W) by
increasing the regularizer coefficient. This is very
evident when comparing Figures 6 and 7 (medium
noise) with Figures 4 and 5 (high noise), which ex-
hibit generalization error minima at higher values
of o2. Moreover, the error raises very gently with
0?2 in these figures, allowing for large reductions
in interference without paying a high cost in the
generalization account.

Therefore, when priority is given to generaliza-
tion, the narrowest margins for benefits in interfer-
ence prevention occur for networks trained inten-
sively with a large number of noiseless patterns.
But this is precisely the case in which interfer-
ence is less serious, since the new patterns are bet-
ter predicted and their introduction produces less

damage. This can be checked by observing that the
generalization minimum for the network trained
with 400 medium-noise patterns (Figure 6) has an
associated damage that is an order of magnitude
lower than that of the opposite case (200 high-
noise patterns) displayed in Figure 5.

Finally a few words about an aspect of Fig-
ures 6 and 7 that could seem strange: the damage
curve quickly drops to zero and apparently contin-
ues with negative values. In fact, interference takes
negative values; that is, the encoding of old pat-
terns is improved (rather than disrupted) by the
introduction of the new patterns. Note that this
happens when the network is highly over regular-
ized, so that the smoothing constraint pushes the
interpolating curve F(X; W) far from the trained
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Fig. 6. As in Figure 4, but using the 400 training patterns of the medium-noise Pumadyn dataset.

patterns. Then the introduction of new patterns
(that in Figures 6 and 7 have not much noise) with-
out such constraint brings the interpolation curve
nearer to the old patterns with high probability.

7.3. Limitations of the proposed algorithm

Together with the benefits above, we must also
point out the limitations in the application of our
method for interference prevention. We said the
drop in the distances for the coarse LMD in Figure
3 was due to generalization. This is true, but the
fall that would correspond to the improvement in
generalization should be greater. This means that,
although the errors are lower, the weights have had
to be modified almost the same. The reason is that
the algorithm minimizing (10) makes the network

output insensitive to changes in the weights for the
stored items, but this insensitiveness is transmit-
ted or generalized to the rest of the input space.
Because of this, it is also necessary to modify more
the weights to introduce the new items, and the
potential benefits of the strategy get limited. Like
in generalization, the greater the number of items,
the greater and more likely the insensitiveness of
the items outside of the learning set will be. When
the items are few, the results are irregular, as the
network has become insensitive for the new items
located near a group of old items.

8. Conclusions

Two conditions are required for catastrophic in-
terference to occur:
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Fig. 7. As in Figure 4, but using the 200 training patterns of the medium-noise Pumadyn dataset.

- The isolated training with new items without
reminding the old ones, and

- The use of distributed representations.

We have typified the approaches to solve the in-
terference problem by their degree of retraining
with old items, and by the locality of their repre-
sentations.

We have proposed a two-stage framework to deal
with the interference problem based on the in-
formation available at each moment. Retroactive
minimization deals with interference when the new
item is already known. It can be formulated as the
search for the weights minimizing the error incre-
ments of the already stored items subject to the
encoding of the new information. In practice, the
best model affordable for a highly dimensional sys-
tem is a weighted sum of squares of the changes

in the parameters. We have shown that the best
coefficients are in average the second derivatives of
the parameters, even outside of the minimum. For
feedforward neural networks, a very efficient algo-
rithm can be used to solve this constrained mini-
mization.

Instead, at the earlier stage of interference pre-
vention, when the new item has not yet arrived, the
corresponding weight changes are also unknown.
Thus, the only reasonable way of minimizing in an-
ticipation the cost function is minimizing the co-
efficients, i.e., the second derivatives, jointly with
the error. The effect of this is to make the stored
items insensitive to future changes. When tested
experimentally, we have found a limited success of
this strategy due to an unexpected reason: the in-
sensitiveness to which old items were trained gets
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” generalized”, especially to nearby zones. If a new
item has to be introduced in one of these insensi-
tive zones, larger weight changes are required, and
most of the expected benefits are lost. When the
old items cover densely the input space, there is
no possible gain. There is a solution for this situ-
ation: to accept and assume that the average sen-
sitivity is the same for old and new items. Thus,
the weight increments for the new items will de-
pend on the sensitivity (second derivatives) of the
old items. This is reflected by expressing o2 as a
function of the second derivatives for the old items,
and the cost function (10) becomes [17]:

2
’E
> (5)

(=58)
where < En > is the expected error function for
the new item. Unfortunately, this function is more
complex than (10) and its gradient is harder to
calculate. This failure to avoid interference com-
pletely with a simple procedure was previously ex-
pected, as explained in Section 3.3.

Moreover, there are many scenarios in which the
blind application of the hypothetically best possi-
ble algorithm could be inappropriate. In fact, as
mentioned in Section 4, usually it would be better
to introduce only partially the new item, leaving
a certain error that is exchanged for a minor error
increment in the old items. The appropriate bal-
ance point in this trade-off depends critically on
several factors:

- The capacity of the memory system, i.e., in
what measure it is able to assimilate all the items.

- The amount of noise in the data.

- The number of already stored items. As it
grows, the comparative importance of the new
item error decreases.

- The variability in time of the function to be
approximated. If the function changes quickly, the
comparative importance of the errors in new items
becomes more important, and more interference
should be allowed.

A rule of thumb that is generally correct when
the objective function is static or changes steadily
is that the error in the new item should not be
made lower than the average error in the old items.

We have argued, with others, that distributed
representations are indispensable for good gener-
alization. But, is this completely true? Think in
this extremely localist representation: the items

EW)+2(N-1)< Ex > (12)

themselves as a list of input-output pairs, with no
other structure or parameter. But, each time an
answer to an arbitrary input is required, one can
make some very complicated process, for example,
building a sigmoidal feedforward network, train-
ing it with the stored items, and producing as an-
swer the output of the network. When a new item
is introduced there is no catastrophic interference,
because it is just added to the list. Thus, the key
point is shifting the processing time from training
to the generation of answers by the system. More
practical methods than the one above could be
imagined and some work in the literature [2] can
be considered as other, more practical examples of
moving computational cost to the recall phase.

So, under this point of view, the question is
where to put the burden of processing. Putting it
in the learning phase is advantageous if there is
enough time for it and one continuously has to
generate outputs and react very quickly to the in-
puts. This is the scenario for animals in their envi-
ronments. Thus, based on engineering principles,
we think that there are two ultimate reasons for
which the cortex uses distributed representations
that constrain it to slow learning. The first is that,
being the residence of long-term memory, it must
be able to store great quantities of information,
which implies a high degree of compactness that
can only be reached using distributed representa-
tions, as explained in Section 3.2. The second rea-
son is the requirement of very quick responses to
the stimuli (on which life or death can depend)
that must be however ”"optimal” in the sense of
well generalized form past experiences. This can
be obtained only if the influences of past mem-
ories required to respond to new stimuli are al-
ready calculated during a previous learning phase
and explicited as distributed representations, as
explained before.
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