
LETTER Communicated by Sara Solla

Architecture-Independent Approximation of Functions

Vicente Ruiz de Angulo
Carme Torras
Institut de Robòtica i Informàtica Industrial, (CSIC-UPC), 08034-Barcelona, Spain

We show that minimizing the expected error of a feedforward network
over a distribution of weights results in an approximation that tends to be
independent of network size as the number of hidden units grows. This
minimization can be easily performed, and the complexity of the resulting
function implemented by the network is regulated by the variance of the
weight distribution. For a fixed variance, there is a number of hidden
units above which either the implemented function does not change or
the change is slight and tends to zero as the size of the network grows. In
sum, the control of the complexity depends on only the variance, not the
architecture, provided it is large enough.

1 Introduction

Neural networks are function approximators with a unique feature, their
large number of adaptable parameters, that makes them general and pow-
erful estimators. But when the number of samples is not high compared
to the number of weights, this power should be restricted in some way to
obtain useful approximations. The good results obtained almost from the
very beginning of the revival of connectionism in the past decade, particu-
larly with backpropagation networks, can be explained by the adoption of
methods against overfitting, some of them first used in the context of neural
networks, like early stopping. These methods can be divided in two groups.

The first group refers to architecture selection and manipulation, and
consists basically of choosing networks with few parameters. For certain
applications with known invariances, this can be accomplished by forcing
some groups of weights to take the same value, that is unifying parameters
(Lang, Waibel, & Hinton, 1990). But in general this is done by limiting the
number of weights or hidden units. A popular method is to begin with a
large network and then eliminate the least significant parameters for the
fitting, during or after training (Le Cun, Denker, & Solla, 1990). In the latter
case, it is usual to repeat the learning-pruning cycle several times.

The second group of methods adds a regularization term to the cost
function in order to constrain the weights to minimize the regularizer also.
The relative weight given to the regularizer is controlled by means of a
regularization coefficient. The typical regularizer for neural networks is

Neural Computation 13, 1119–1135 (2001) c© 2001 Massachusetts Institute of Technology

1120 Vicente Ruiz de Angulo and Carme Torras

a quadratic function of the weights, limiting their magnitude. The early
stopping technique, which avoids the growth of the weights in the later
stages of learning, has a similar working principle.

There is a third option: the use of random weights. The idea is that the in-
formation contained in a random weight depends on its variance and, thus,
the fitting power of a network can be controlled through the amplitude
of its weight distribution. The use of random weights was first suggested
by Hanson (1990) to avoid poor minima. Later, An (1996) and Murray and
Edwards (1993, 1994) showed the utility of the approach to improve gen-
eralization, especially for classification problems. Hinton and van Camp
(1993a, 1993b) used individual variances for each weight that were adapted
during learning to minimize a minimum description length cost.

Here we show that simple noise addition, in the sense indicated be-
low, has very interesting properties. Being a single-variance version of the
Hinton and van Camp framework, it is tantamount to a regularization ap-
proach, but at the same time, in practice, it also appertains to the architecture
selection methods. Indeed we show that the variance determines the sur-
viving architecture and the optimal weight vector, provided the network
has enough hidden units. Thus, there exists a one-to-one correspondence
between the regularization coefficient and the function implemented by the
trained network, regardless of the architecture.

2 Learning with Noisy Weights

This article studies the weight configurations obtained by minimizing a cost
function EP(W) that is the expectation of E(W),

EP(W) =
∫

E(W + R) P(R) dR, (2.1)

where W is the weight vector and R is a vector of random variables, each
obeying the same symmetric distribution P(·). In regression networks, the
error function is taken as follows:

E(W) =
∑

p
Ep)(W) = 1

2

∑
p
||F(W;Xp))−Dp)||2, (2.2)

F(W,Xp)) being the output of the network when the pth input pattern Xp)

is presented, and Dp) is the pth output pattern.
A deterministic algorithm was developed by Ruiz de Angulo and Torras

(1994) to minimize equation 2.1 without sampling the weight distribution
for the purpose of mitigating weight perturbation effects. It is rather simple
and has been shown to provide very accurate minima for all variances of P.
For this reason, we will use it in all the experiments presented in this article.

Architecture-Independent Approximation of Functions 1121

This algorithm is based on the following equivalence,

EP(W) = E(W)+ σ
2

2

∑
j,i

∂2E
∂w2

ji

+O(µ4) ≈ E(W)+ σ
2

2

∑
j,i

(
∂F
∂wji

)2

, (2.3)

σ 2 being the variance of R, µ4 its fourth-order moment, and wji the weight
departing form unit i and impinging on unit j. σ

2

2 can be considered a reg-
ularization coefficient, which we call α.

The equality in equation 2.3 holds everywhere as a consequence of the
symmetry of P, which cancels out the terms associated with the first and
third derivatives, as well as the nondiagonal terms of the Hessian. When the
variance is small, fourth- and higher-order moments are very small, and the
terms associated with them can be neglected. Instead, when the variance
is large, the minimization of EP(W) produces networks whose fourth and
higher derivatives are small, so that those same terms also can be neglected.
These phenomena complement one another in such a way that the O(µ4)

terms are not important for any variance in the minimum of EP(W). Thus,
any minimization algorithm can work asymptotically without these terms.

In the approximation step of equation 2.3, a term dependent on both the
pattern misfits F(W;Xp)) − Dp) and the second derivatives of F has been
dropped. This term can also be neglected in the minimum of EP(W) due to
similar reasons: when the variance is small, the misfits are small, and when
the variance is large, the minimum tends to have small second derivatives
of F. Observe that this argument requires that for σ = 0, the network is
able to approximate all the training points fairly well. When the training
set contains points with the same input and different outputs, we assume
that the network is able to interpolate the average of these outputs (which
is the result of the minimization of the plain sum-of-squares error).1 If this
condition is satisfied, the sum of the neglected terms dependent on the
misfits is null.

The accuracy of an algorithm based on this approximation was demon-
strated for all variances in Ruiz de Angulo (1996) and Ruiz de Angulo and
Torras (1998) by means of comparisons with the exact minimization for a
very simple form of P, namely, one giving equal probability to the extreme
points of a cross centered at the origin, and zero probability elsewhere.

With this approximation, the derivatives of the expected error for pattern
p, Ep

P(W), for a two-layer regression network with the above-defined E(W)2

1 Thus, we are assuming that the network is large enough to do this, and that the
control of the complexity of the approximation is carried out by regulating σ and not the
number of hidden units.

2 The derivatives for a classification network using the relative entropy error function
and whose output units’ activation function is tanh are the same as in equation 2.4.

1122 Vicente Ruiz de Angulo and Carme Torras

and linear output units, are

∂Ep)
P

∂wji
(W) ≈ ∂Ep)

∂wji
+ α

2wji
(
y′i
)2 Qp) if j is an output unit, i 6=bias

0 if j is an output unit, i=bias
xiSj if j is a hidden unit

(2.4)

where Qp) = ||Xp)||2 + 1 (we are considering a network with a bias unit
connected to all hidden and output units), Sj = 2y′j(nOyj + y′′j Qp)∑

m w2
mj),

nO is the number of output units, yj is the activation function value of the jth
hidden unit, and y′j and y′′j are its first and second derivatives, respectively. Sj

is the same for all the connections impinging on a hidden unit and thus must
be calculated only once for each hidden unit and not for each input-hidden
layer weight.

The deterministic algorithm consists of using the derivatives, equation 2.4,
instead of the plain error derivatives, inside a backpropagation procedure.3

An alternative to this algorithm would be to add noise to the weights dur-
ing learning (An, 1996), but an insurmountable computational time would
be required to get the experimental results presented here. This is due to
the high dimensionality of W, which imposes the use of very small learning
rates to permit collecting enough statistics of 5EP(W), through samples of
Ep)(W + R), before the characteristics of EP(W) change too much.

3 Experimental Results

In this section we present two types of experimental results: qualitative
comparison of the weight configurations resulting from training networks
of different sizes under the same variance and numeric evaluation of the
similarity of networks across a range of variances. The experiments are
aimed at determining under what conditions using the same weight vari-
ance leads to equivalent or quasi-equivalent network configurations. Even
if two networks in their global minima may have identical weight config-
urations, this is hard to visualize, because it is impossible to reach exactly
those minima, and having different architectures, the networks follow dif-
ferent minimization paths. For this reason, we have chosen a convenient
criterion for stopping learning: the quantity

AVG(W) =

√√√√√∑
j,i

(
∂EP
∂wji
(W)

)2

np
(3.1)

must be less than or equal to a fixed number, where np is the number of
patterns in the training set.

3 A similar algorithm based on equation 2.3 for radial basis function networks is also
simple to derive and implement (Ruiz de Angulo, 1996).

Architecture-Independent Approximation of Functions 1123

In all the experiments, we will use symmetric activation functions for
the network units. With this kind of unit, when all weights (except the
biases of the output units) are zero, the derivatives of the network function
F with respect to all the weights are zero. Therefore, the regularizer term
σ 2

2
∑

j,i

(
∂F
∂wji

)2
has its minimum in this type of configuration. This implies

that for infinite variance, the minimizer of EP is that with all weights set to
zero except the biases of the output units, which are set to the mean of the
corresponding output pattern component.

3.1 Architecture Independence. We first illustrate the workings of the
algorithm on the one-dimensional function .3x3+.3x2− 10

3(x+3)2 in the interval
[−1.5, 1.5], as plotted in Figure 1a. In Figure 1b the weights of a network
with four hidden units (HU) resulting from applying the algorithm to 20
patterns randomly drawn from that interval, up to AVG(W) = .0001 and
using α = .001, are shown. Figure 1c displays the results obtained under
the same conditions with a network of 8 HU. The visible result is that the
number of surviving units is the same in both networks: two. Moreover, the
weights of the first unit in Figure 1b are the same as those of the fifth unit in
Figure 1c. The fourth unit in Figure 1b shows a direct correspondence with
the first unit in Figure 1c. The weights have pairwise the same magnitude,
and since the signs of both the input weights and the output weights are
inverted, the two units have the same functionality. It can be concluded
that the two networks implement the same approximation of the function
.3x3 + .3x2 − 10

3(x+3)2 , represented also in Figure 1a.
This is not a rare event but a common outcome of our algorithm: same

number of surviving hidden units and exact (except for sign inversions)
one-to-one weight correspondences, as can be seen in a more systematic
experiment. This time the training set was 30 samples of the function sin(x1+
x2)+η in the interval [−π ,π], η being a gaussian noise of standard deviation
.5. Figure 2 displays this function for η = 0 and the noisy points used to
train the networks in this experiment. Two networks, one with 6 HU and
another with 12 HU, were randomly initialized and subsequently trained
with these data up to AVG(W) = .00005. This process was repeated for a
number of times with different α’s. Figure 3 shows the results. Since, as a
consequence of the minimization of EP(W), there are no useless weights alive
in the network, the number of surviving hidden units can be determined by
counting the non-null hidden-to-output weights. Due to the similar values
taken by two hidden-to-output weights some times, the counting is not very
clear in Figure 3a, but there are four surviving units when α = .0066, three
between .013 and .026, two between .033 and .046, and one for larger α’s. On
the other hand, again there is an exact correspondence between the absolute
values of the weights of the surviving units in the 6 HU network and those
in the 12 HU network for all α ≥ .0066 (except for α = .053, where one of
the networks gets trapped in a local minimum; see the next section). Note

1124 Vicente Ruiz de Angulo and Carme Torras

Figure 1: (a) Plot of the function .3x3+.3x2− 10
3(x+3)2 in the interval [−1.5, 1.5]. The

results of training a (b) 4 HU network and an (c) 8 HU network are shown. Each
of the blocks in the figure contains all the weights associated with a hidden unit.
Weights are represented by squares—white if their value is positive and black if
their value is negative. The size of the square is proportional to the magnitude
of the weight. The top weight in the block is the weight from the hidden unit
to the output unit. The weights in the bottom row correspond to the weights
incoming to the hidden unit. The function implemented by these networks is
represented in a with a dashed line.

that a network with only 3 HU will not be able to attain the same weight
configuration as the 12 HU network when α = .0066, because there are four
surviving units in the latter network.

Architecture-Independent Approximation of Functions 1125

Figure 2: Plot of the function sin(x1 + x2) in the interval [−π , π]. The small
squares constitute the training set used in the experiment of the next figure,
obtained by sampling the function sin(x1 + x2)+ η, where η is a gaussian noise
with standard deviation 0.5.

In general, given two networks with different number of units, there ex-
ists a value of α, which we call the confluence point, such that for any greater
value, both networks implement identical functions. At the resolution level
of Figure 3, the confluence point is .0066 (the first value greater than zero),
but using much smaller steps results in a more accurate confluence point
estimation of .002. (In section 3.3 we will see an example with a much larger
confluence point.)

Another consequence of using the algorithm with α > 0 is that above
a certain number of iterations, the generalization error does not change
with more training. Thus, overffiting is limited. Although the selection of
the best variance (or regularizer coefficient) for generalization is not the
purpose of this article, we show in Figure 4 the generalization error of
the intensively trained networks used in the preceding figure. It can be
seen that the networks with 6 HUs and 12 HUs generalize equally well
for α > 0, except in the case α = .053, where the former falls in a local
minimum.

In subsequent experiments with a fixed α, it has been observed that the
number of surviving hidden units increases with the number of data items
to cope with the increase in the amount of information available (Ruiz de
Angulo, 1996).

3.2 Local Minima. A question that arises naturally after seeing the re-
sults of the preceding experiments is whether two networks with different

1126 Vicente Ruiz de Angulo and Carme Torras

Figure 3: Representation of the absolute values of weights after training. Those
of the 6 HU network are marked with a cross and those of the 12-HU network
with a circle. Note that the weights lying on the axis of abcissas are null, and
thus correspond to nonsurviving units.

number of neurons, trained with the same training set and α, will always
produce equivalent approximations.

First, let us state that all the claims we make in this article refer to well-
minimized networks. No strong claims can be made about weights resulting
from incomplete optimizations. Thus, no ways to regulate complexity ex-
trinsic to the cost function, such as early stopping, are applied.

Often two networks must be trained for a long time before their similarity
is clearly noticed. It is not unusual (as in the case of minimizing the plain

Architecture-Independent Approximation of Functions 1127

Figure 4: Generalization error of the networks displayed in Figure 3.

E(W)) that learning slows down in nearly flat surfaces of EP(W), sometimes
leading to replicated units, which disappear after enough training.

From time to time, even after long training periods, one gets different
configurations, including cases with different number of remaining hidden
units. Two situations need to be distinguished here, depending on whether
the number of surviving units in the larger network is greater than the
number of available hidden units in the smaller network or not. In the
first situation, there is no opportunity for confluence. In the second, if the
configuration reached by the larger network is a global minimum, it must
also be a global minimum for the smaller network. Consequently, in the
second situation, we have always verified that at least one of the networks
had been trapped in a local minimum.

Thus, our claim for architecture-independent approximation still holds,
but must be stated in the context of global minimization of the regularized
function.

The frequency of local minima is not too high. Results such as those in Fig-
ure 1 are common in a first trial. However, we must acknowledge that results
such as those displayed in Figure 3, in which with fixed initial weights equal
configurations are obtained for the entire range of α’s, are uncommon. Ex-
perimental results indicate that it is more likely to fall in local minima when
the number of surviving hidden units required by the global minimum is
close to that of the network and also when this number is much larger.

1128 Vicente Ruiz de Angulo and Carme Torras

A strategy to avoid local minima is to add a random perturbation several
times in the middle and late stages of learning.

3.3 Quasi-Similar Approximations. So far we have seen only one of the
two types of hidden units produced by the algorithm, which hereafter will
be called nonreplicated units: those whose weight pattern appears only once
in the network. But the algorithm often produces weight configurations in
which several units are replicated. In these cases the number of surviving
units is not indicative of the complexity of the network, and, indeed, it is
not unusual that an increase of α produces a minimum with more surviv-
ing units, some of them being replicated. The replication of a hidden unit
depends on the degree of linearity that its output exhibits in the range of
the input training data.

The nonreplicated units are always nonlinear, whereas the replicated
ones may be of either type. As will be shown next, when the replicated
units are nonlinear, the global minimum contains a fixed number of them,
irrespective of the size of the network. On the contrary, the number of linear
replicated units grows with network size, tending to fill the whole network.

Suppose we have a network with a number n > 0 of nonsurviving hid-
den units, and assume that one of the surviving units is almost linear. Since
the second derivatives associated with a hidden unit depend on only the
squares of the hidden-to-output weights and on the square of the hidden
unit activation, splitting a linear hidden unit keeps the same E(W) while
reducing the second derivatives part of EP(W). Thus, returning to our imag-
inary network, by splitting the linear hidden unit into n+ 1 equal units and
replicating its weight pattern for all the nonsurviving units, the minimum
value of EP(W) is obtained with the same E(W). For this reason, we call
these units replicated units of the fill-everything type. As an example, see
Figure 5, where the weights resulting from training a 6 HU and a 12 HU net-
work with 25 samples of the function sin(x1 + x2) up to AVG(W) = .00005,
using α = .02, are shown. One can see that in Figure 5a, there are five func-
tionally identical units, the first and second of which have inverted sign
patterns in relation to the others. In Figure 5b, that same replicated unit
appears 11 times, but the magnitudes of its weights are smaller. Thus, when
the resulting weight configuration contains linear replicated units, enlarg-
ing the number of hidden units causes a rescaling of these replicated hidden
units. Because the hidden units cannot be completely linear, this rescaling
imposes a slight adjustment on the remaining, nonlinear units. Figure 6
shows the weights of the same 6 HU and 12 HU networks used in Figure 5
for a complete range of α’s. Here, for 0 < α < .04, the configuration in both
networks consists of a nonreplicated unit and fill-everything linear units.
When the number of hidden units tends to infinity, the rescaling tends to
be completely linear, and the adjustment of the nonreplicated units tends to
zero. Instead, when there are too few units, the rescaling makes the hidden
units too nonlinear, and thus, a completely different solution is found. Fig-

Architecture-Independent Approximation of Functions 1129

Figure 5: Results of training a 6 HU and a 12 HU network with 25 samples of
the function sin(x1 + x2), using α = .02. The resulting configurations contain
replicated units of the fill-everything type.

ure 7 shows an example with the same settings as in Figure 5, but supplying
more information for the network (30 patterns are used) and requiring more
fidelity to the data (α = .0066). Here, the absolute values of the weights of
the replicated units are larger, and, thus, they do not admit a redistribution
into just five units. Therefore, the 6 HU network converges to an entirely
different configuration.

On the other hand, when the replicated units are significantly nonlinear,
the scenario is much more restricted, because a fixed number of replicated
units is involved in the global minimum. We call these units replicated units
of the fixed number type. For instance, in Figure 6, α = .04 produces a solu-
tion with four replicated units, in both the 12 HU and the 6 HU networks.
Different initializations lead always to the same type of solution with the
12 HU network, but this solution is more difficult to find for the 6 HU net-
work, because it requires almost all its hidden units, and approximately half
of the times produces a solution with three replicated units. The behavior
of the 6 HU network is also favored by another fact: if the replicated units
are not highly nonlinear, one more and one less number of replications can

1130 Vicente Ruiz de Angulo and Carme Torras

Figure 6: Representation of the weights resulting from training 6 HU and 12 HU
networks under the same conditions as in Figure 5, but for a complete range of
α’s. In the top left plot, the number of weights with the same value is indicated
besides the corresponding symbol.

be a solution with an EP(W) value almost indistinguishable from the global
minimum.

A consequence of all this is that quasi-similar functions can be imple-
mented by different networks, even if α is not in their confluence range.
To measure the degree of similarity between two functions, we define the
functional distance as the mean square distance between the outputs of the
two networks in a grid of 10,000 points regularly distributed in the input
domain. Figure 8 shows the functional distances between architectures with

Architecture-Independent Approximation of Functions 1131

Figure 7: Results of training a 6 HU and a 12 HU network with 30 samples
of the function sin(x1 + x2), using α = .0066. Here, the 6 HU is too small to
accommodate the rescaling of the fill-everything units, and different solutions
are found by the two networks.

different number of hidden units, minimized for several α’s. Since for the
two highest α’s, some of the networks fell in local minima, in these cases
we used the best minimum selected from three different random trials. It
is evident that as α grows, all the architectures tend to produce the same
results. But the most interesting observation from this graph is that for any
α > 0, the distances between architectures decrease very quickly as the
number of hidden units grows, and they are indistinguishable from zero
above 50 units. Notice that the comparisons involve networks that differ
the more in the number of hidden units, the larger are the architectures.
The above observation agrees with the expectation of a tendency to closer
similarity for larger nets. Of course, for each given α, all the architectures
exhibit almost the same generalization error, especially those above 50 HUs.
An interesting fact derived from Figure 8 is that as the sizes of the networks
grow, their confluence occurs at lower α values. Thus, the chances that the
value of α leading to the best generalization falls within the confluence re-
gion increase with the size of the networks. In other words, it seems that
good generalization and confluence can be simultaneously achieved for
large networks.

1132 Vicente Ruiz de Angulo and Carme Torras

Figure 8: Evaluation of the similarity between the functions implemented by
architectures with different numbers of hidden units. A complete range of α’s
is tested.

In conclusion, no matter what the value of α is, large enough networks
make similar approximations. For that reason, we can disregard the network
size selection problem and concentrate on the ideal regularizer coefficient
to reduce the complexity of the network.

4 Discussion

We have presented a very simple neural network algorithm capable of pro-
ducing quasi-similar approximations with different network architectures.
This algorithm can be viewed as a way of minimizing the expectation of
the standard error over a distribution of the weights with a common and
fixed variance. Alternatively, it can be seen as the addition of a regular-

Architecture-Independent Approximation of Functions 1133

ization or penalty term to E(W) to control the degree of adaptivity of the
network.

For a given α, if the minimum in the limit of infinite HUs does not contain
replicated units of the fill-everything type, there exists a threshold number of
units above which the function implemented by any architecture is exactly
the same. Otherwise, if the minimum admits replicated units, then there
exists also a threshold number of HUs above which linear replicated units
begin to appear. Above this point, the networks show a close functional
similarity, which approaches quickly the identity as the number of HUs
grows. If enough hidden units are provided, in either case the function
implemented by a neural network depends only on α, it being independent
of the architecture.

To make sure that this architecture-independence property is not shared
by all weight-elimination procedures, we have run Optimal Brain Damage
(Le Cun et al., 1990) on the same data and the same architectures employed
in Figure 8. We have pruned the weights five at a time and have retrained all
the networks until only the number of weights indicated in the abscisses is
left.4 The results displayed in Figure 9 are clear, in the sense that the function
implemented by the network varies markedly all along the weight removal
process; in other words, it does not stabilize beyond a given number of
weights.

The results in this article can be put under a Bayesian light. Neal (1996)
has advocated convincingly for the use of neural networks with as many
hidden units as can be afforded computationally, regardless of the size of
the training set. In a proper Bayesian approach, it makes more sense to
allow the maximum information to be extracted from the data and let the
prior reduce conveniently the complexity (if the prior is correct). From this
point of view, the first problem is to look for priors over weights such that
the corresponding prior over the function reaches a reasonable limit as the
number of hidden units goes to infinity. In fact, not a prior but a family of
priors suitably scaled according to the number of HUs is defined by Neal
(1996) to obtain such convergence.

The usual type of priors, the gaussian one, converges to gaussian proc-
esses—a family of distributions over functions that can be handled more
efficiently by a direct implementation. In addition, they produce networks
where the contribution of individual HUs is negligible and consequently
are unable to represent “hidden features” of the data. Another problem is
that implementing Bayesian inference with methods based on the posterior
may break down as the number of HUs becomes large. Instead, Monte Carlo
methods are able to do the job, but being slow, they may fail to reach the true
posterior in a reasonable time for a number of HUs close enough to the limit.

4 Note that an initial pruning has been necessary to make the number of weights of all
networks a multiple of five before beginning to prune the weights five at a time.

1134 Vicente Ruiz de Angulo and Carme Torras

Figure 9: Evaluation of the similarity between the functions implemented by
pruned networks (following Optimal Brain Damage) derived from initial archi-
tectures containing different numbers of hidden units. The different symbols
correspond to the same pairs of networks as in Figure 8, and the scale is also the
same as in that figure.

The algorithm presented in this article is based on a regularization term,

α
∑

j,i

(
∂F
∂wji

)2
, that can be considered a prior on the weights for which, as

we have seen, the posterior maximum reaches a limit as the size of the
networks goes to infinity. This limit is reached abruptly if there are only
nonreplicated and fix-number replicated units and more smoothly if there
are fill-everything replicated units. In the former case, the limit is easily
reached and identified; in the latter case, a good approximation can also be
identified when adding a new neuron produces a rescaling of the replicated
units. In addition, in the infinite limit, the contribution of some individual

Architecture-Independent Approximation of Functions 1135

units (nonreplicated and fixed-number replicated) is relevant, and that of
the remaining units can be grouped in a linear unit. This means that the set
of surviving units can represent hidden features, a fact that can be useful to
link several outputs of the function or for knowledge transference between
tasks.

It would be interesting to analyze the features that confer these properties
on our prior, so that other priors with these or similar properties can be
devised. One of such features is surely the fact that our prior treats the
weights in groups associated with the hidden units, not independently.

References

An, G. (1996). The effects of adding noise during back-propagation training on
generalization performance. Neural Computation, 8, 643–674.

Hanson, S. J. (1990). A stochastic version of the delta rule. Physica D, 42, 265–272.
Hinton, G. E., & van Camp, D. (1993a). Keeping neural networks simple. In

Proceedings of the International Conference on Artificial Neural Networks (pp. 11–
18). Amsterdam.

Hinton, G. E., & van Camp, D. (1993b). Keeping neural networks simple by
minimizing the description length of the weights. In Proceedings of the Sixth
ACM Conf. Comp. Learning Theory (pp. 5–13). Santa Cruz.

Lang, K. J., Waibel, A. H., & Hinton, G. E. (1990). A time-delay neural network
architecture for isolated word recognition. Neural Networks, 3, 23–43.

Le Cun, Y., Denker, J. S., & Solla, S. A. (1990). Optimal brain damage. In D. Touret-
zky (Ed.), Advances in neural information processing systems, 2. San Mateo, CA:
Morgan Kaufmann.

Murray, A. F., & Edwards, P. J. (1993). Synaptic weight noise during multilayer
perceptron training: Fault tolerance and training improvements. IEEE Trans.
on Neural Networks, 4, 722–725.

Murray, A. F., & Edwards, P. J. (1994). Enhanced multilayer perceptron per-
formance and fault tolerance resulting from synaptic weight noise during
training. IEEE Trans. on Neural Networks, 5, 792–802.

Neal, R. M. (1996). Bayesian learning for neural networks. New York: Springer-
Verlag.

Ruiz de Angulo, V. (1996). Interferencia catastrófica en redes neuronales: Soluciones
y relación con otros problemas del conexionismo. Unpublished doctoral disserta-
tion, Basque Country University.

Ruiz de Angulo, V., & Torras, C. (1994). Random weights and regulariza-
tion. In Proceedings of the International Conference on Artificial Neural Networks
(pp. 1456–1459). Sorrento.

Ruiz de Angulo, V., & Torras, C. (1998). Averaging over networks: Properties, eval-
uation and minimization. (Tech. Rep. No. IRI-DT 9811). Barcelona: Universitat
Politècnica de Catalunya.

Received May 11, 1999; accepted July 27, 2000.

