
P. Jiménez
C. Torras
Institut de Robòtica i Informàtica Industrial
Llorens i Artigas 4-6, E-08028 Barcelona, Spain
pjimenez@iri.upc.es

An Orientation-
Based Pruning Tool to

Abstract

Contact determination in terms of edge-face intersection tests per-
mits handling nonconvex polyhedra directly, without decomposing
them into convex entities, which saves the decomposition time and

jects, modeled as convex polyhedra or polygon soups, and
the goal is to determine when and where interference may
occur. To this end, many techniques to encapsulate possi-

l-
k
-

466

Speed Up Contact
Determination between
Translating Polyhedral
Models

ble collisions within time and space bounds have been deve
oped (Jiménez, Thomas, and Torras 2001; Lin and Gottschal
1998), such as enclosing boxes (Cohen et al. 1995; García
ctorras@iri.upc.es
Alonso et al. 1994), object partitioning for CSG (construc-
tive solid geometry) representations (Cameron 1991), space
partitioning (García-Alonso et al. 1994; Thibault and Naylor
1987), hierarchies of bounding volumes (Gottschalk, Lin, and
Manocha 1996; Hamlin, Kelley, and Tornero 1992; Hubbard
1993; Hudson et al. 1997; Klosowski et al. 1998; Martínez
et al. 1998; van der Bergen 1997), space and time coherence
(Lin and Canny 1991; Ponamgi, Manocha, and Lin 1997),
four-dimensional space-time bounds (Hubbard 1995), and
distance bounding (Gilbert, Johnson, and Keerthi 1988).

This paper deals with an instance of the collision detection
problem that has received less attention, namely, exact con-
tact determination between two translating nonconvex poly-
hedra that are in close proximity and can make contact over
wide, possibly disconnected, portions of their boundaries.
This situation arises in assembly design and planning within
CAD/CAM systems (Thomas and Torras 1992). In a previous
paper, we undertook the combinatorial search needed to gen-
erate optimal k-directional translational assembly sequences
(Jiménez and Torras 2000), and here we address the comple-
mentary problem of contact determination for translational
assembly. In this context, it is crucial to discard features in
the two polyhedra that can never make contact. Back-face
culling (Vanecek 1994) is an effective pruning strategy based
on the direction of motion. Here, we propose a related strategy
based on the relative orientation of the polyhedra.

The paper is structured as follows. For self-containment,
Sections 2 and 3 review the items on which the present work
is based: the edge-face intersection test, which permits a
avoids having to deal with fictitious features but requires checking
all possible pairings. However, by considering only translations and
departing from a noninterfering situation, the number of pairings to
be checked decreases drastically. The set of critical pairings can
be determined efficiently using the spherical face orientation graph
(SFOG), a representation developed by the authors. An algorithm to
exploit the SFOG in convex settings provides controlled evidence of
the pruning potential of this approach: the number of critical pair-
ings grows linearly with the complexity of the polyhedra, instead
of quadratically as the total number of pairings does. Experiments
with a similar algorithm on nonconvex settings confirm the expected
potential of the approach: for workpieces with many concavities
moving in close proximity, the contact determination procedure pre-
sented in this paper performs one order of magnitude faster than
RAPID, at the expense of a much higher preprocessing time.

KEY WORDS—multiple contacts, interference checking,
collision detection, nonconvex polyhedra, sphere of
orientations

1. Introduction

Most collision detection methods have been devised for com-
plex graphic environments, where speed is the main priority.
Such environments typically contain a large collection of ob-
decomposition-free contact determination between noncon-
vex polyhedra (Thomas and Torras 1994), and the applicabil-
ity conditions (Donald 1987), used here to reduce the search

http://ijr.sagepub.com

Jiménez and Torras / An Orientation-Based Pruning Tool 467

for interfering features under arbitrary translational motion.
Section 4 presents the spherical face orientation graph, a suit-
able representation for handling these conditions. This repre-
sentation is exploited in Sections 5 and 6 to speed up contact
determination in convex and nonconvex settings, respectively.
Section 7 presents experimental results, and Section 8 draws
some conclusions.

2. Edge-Face Intersection Test

The boundaries of two polyhedra interfere if and only if at least
one edge of one polyhedron intersects a face of the other one.
Most contact and interference detection procedures require
faces to be convex or triangulated. Others, like the classical
crossings algorithm (Boyse 1979), work on nonconvex faces
but require auxiliary geometric constructs, such as shooting
a ray from the point of intersection and counting the number
of crossings with the boundary edges.

The edge-face intersection test (Thomas and Torras 1994)
works on the vertices of nonconvex faces directly, without
introducing any auxiliary entity. This test is a combination of
the two basic contact predicates (vertex-face and edge-edge),
which correspond to the truth value (the sign) of two types of
functions, computed as 4 × 4 determinants of homogeneous
vertex coordinates. A vertex-face (v-face) f predicate Av,f

is true if Av,f = ‖vivj vkv‖ > 0, where {vi, vj , vk} is an
ordered set of vertices of f , and an edge-edge predicate Bem,en

is true if Bem,en = ‖vivj vkvl‖ > 0, where vi = ∂+em, vj =
∂−em, vk = ∂+en, and vl = ∂−en (∂+ and ∂− are the half-
boundary operators—in this case, they refer to the endpoints
of the edges).

These functions (and their associated predicates) ex-
press incidence relationships between the primitives involved.
Av,f = 0 means that vertex v lies on the plane that supports
f , and the sign of this function, when different from zero, in-
dicates on which of the two half-spaces defined by this plane
v lies. Bem,en = 0 means that the lines supporting the edges
are either touching or parallel; other relative positions and
orientations are expressed through the sign of this function.

For an edge e to intersect a possibly nonconvex face f ,
two conditions must simultaneously hold:

• Each endpoint of the edge must lie in a different half-
space of those defined by the plane supporting the face.

• The line supporting the edge must intersect the face.

The edge-face test checks these two conditions by evalu-
ating the following composite predicate:

(A∂+e,f ⊕ A∂−e,f) ∧
[⊕

ef ∈∂f

(A∂+ef ,fe
⊕ A∂−ef ,fe

)

∧(A∂−ef ,fe
⊕ Be,ef

)
]

,

where ⊕ is the XOR exclusive OR operator ((a ⊕ b) = (a ∧
b)∨ (a∧ b)) and fe refers to any plane containing edge e. To
identify the right term with the second condition, note that the
number of edges in the boundary of f that pierce one of the
half-planes of fe must be odd for the condition to hold. See
Figure 1 and Thomas and Torras (1994) for further details.
The predicate can be seen as an extension of Canny’s (1987)
disjunctive form to deal with nonconvex faces.

To test for interference between polyhedra, the above pred-
icate has to be applied to the pairings consisting of edges of
one polyhedron and faces of the other one. It suffices to deter-
mine one such pairing for which the predicate holds to report
interference. But this search has a quadratic worst-case com-
plexity: if no interference exists, all edge-face pairings have
to be tested. Therefore, any technique that lowers the number
of edge-face pairings to be considered will be welcome. This
can be done if one assumes that the polyhedra are initially dis-
joint and translating, and that only the first edge-face pairing
that may intersect needs to be reported.

3. Applicability Conditions and Their Use for
Pruning Edge-Face Pairs

Consider two disjoint polyhedra. If any relative motion be-
tween them is allowed, many contacts between the features of
both polyhedra are possible (in particular, when the polyhedra
are convex, every contact is possible). But if only translations
are allowed, only certain contacts can arise. These contacts
are said to be applicable. In the case of convex polyhedra,
necessary and sufficient conditions for vertex-face and edge-
edge applicability have been stated (Donald 1987) (see Fig. 2).
For a given relative orientation between two polyhedra,

• The contact between a vertex v of one polyhedron
and a face f of the other is applicable if and only if
∀vi adjacent to v, 〈vi, f 〉 − 〈v, f 〉 ≥ 0.

• The contact between an edge em of one poly-
hedron and an edge en of another polyhedron
is applicable if and only if ka �= kb, where
ka = sign(〈T1, fp〉) = sign(〈T2, fp〉), and kb =
sign(〈T3, fp〉) = sign(〈T4, fp〉), with fp = em × en

(or the opposite direction, the choice is arbitrary) and
Ti = si · (fi × em), fi adjacent to em, Tj = sj · (fj

× en), fj adjacent to en; si, sj ∈ {+1,−1} such that Tl

is oriented toward the interior of face fl .

If the polyhedra are initially disjoint and translating, the
interference test in the preceding section needs to be applied
only to the edge-face pairings obtained from the applicability
conditions as follows:

• From the vertex-face contact, any edge stemming from
the vertex should be paired with the face.

http://ijr.sagepub.com

468

l

∂-

e

e
∂+

(a)

fe

e
e

fe

e

(b1) (b2)

f

Fig. 1. (a) A∂+e,f ⊕A∂−e,f is true if and only if both endpoints of edge e lie on different sides of the supporting plane of face
f . (b) Testing whether the line le supporting e cuts f is done by (b1) determining the set of boundary edges of f that intersect
the arbitrary plane fe, A∂+ef ,fe

⊕ A∂−ef ,fe
and (b2) counting the number of these edges that intersect the plane to the right

(or to the left) of le. This number is odd (the XOR operator is used for parity testing) if and only if the second condition of the
edge-face intersection test holds.

(a) (b)

v
f

4

31

1

ff

T

T
f

f

2
T4

2

Fig. 2. (a) Applicable vertex-face contact, (b) applicable edge-edge contact.

http://ijr.sagepub.com

Jiménez and Torras / An Orientation-Based Pruning Tool 469

• From the edge-edge contact, any face adjacent to an
edge should be paired with the other edge.

Note that although some repeated pairings may be ob-
tained, both types of applicability need to be considered, be-
cause otherwise some candidate pairings could be missed, as
depicted in Figure 3.

In the convex case, the applicability conditions guarantee
that the contact is possible. If the polyhedra are nonconvex,
applicability expresses a necessary but not sufficient condi-
tion for contact. One has to talk about local applicability in
the nonconvex case, as far as only the adjacent features are
considered in the conditions, but other features of the poly-
hedra may prevent the locally applicable contact from being
realized. Therefore, a distinction has to be made between (lo-
cally) applicable contacts and those that are also realizable.
Figure 4 shows a locally applicable contact that is not realiz-
able. Edge-face pairings arising from such a situation will be
called false candidates.

4. A Suitable Representation for Detecting
Applicable Contacts

4.1. Spherical Face Orientation Graph

As shown in the preceding section, the applicability of con-
tacts between surface features depends on the relative orienta-
tions of these features. Thus, a natural frame for representing
applicability is the unit sphere of orientations. The Gaus-
sian map of a given surface represents the surface normals
as points on the unit sphere (Hilbert and Cohn-Vossen 1987;
Horn 1984). The spherical face orientation graph (SFOG)
extends this concept by representing edges and vertices of
polyhedra and their adjacencies, as described next.

Faces are represented by nodes on this sphere. In fact, the
node represents the orientation of the outward normal of the
plane supporting the face, that is, that pointing outside the
polyhedron.

Edges are represented by arcs. These arcs join nodes that
correspond to faces sharing an edge. Geometric consistency is
attained by placing these arcs on great circles of the sphere. In
this way, the normals of the planes that define these great cir-
cles point in the same directions as the corresponding edges.
Convex edges are represented by means of the minor arc, con-
cave edges with the major arc. The representation, thus, char-
acterizes the type of arc and is coherent with the criterion of
considering the supplementary angle of the internal dihedri-
cal angle between the faces. The arcs will be called convex
or concave depending on the type of edge they represent.

A vertex is represented by the region enclosed within a cy-
cle of convex arcs and nodes, corresponding to adjacent edges
and faces. This region is well defined for convex vertices
(where all the adjacent edges are convex). Nonconvex ver-
tices have one or more nonconvex adjacent edges. For some

nonconvex vertices (pseudoconvex), it is possible to select a
subset of adjacent convex edges that define locally a pyramid
that contains all other adjacent edges (this pyramid is the local
convex hull of the vertex). The convex arcs that correspond
to these edges enclose a so-called convex subregion on the
sphere.

Figure 5 shows how the three types of features of a poly-
hedron are represented on the SFOG for a convex vertex, and
Figure 6 illustrates the concepts of convex subregion and local
convex hull for a pseudoconvex vertex.

Correctness of this representation is proven in Jiménez
(1998).

The SFOG is not unambiguous: a polyhedron may not
be reconstructed from this representation, neither in size nor
completely in shape, as shown in Figure 7. Nevertheless,
although this ambiguity may be a drawback for certain appli-
cations, it is not a problem for the purposes pursued here. The
point is that the SFOG representation preserves those geomet-
ric relations that are relevant for the applicability conditions.

4.2. Pairing of Applicable Features Using the SFOG
Representation

By superimposing the SFOG of one polyhedron on the central
symmetric image of the SFOG of another polyhedron (see
Fig. 8), a compact representation is obtained from which the
vertex-face and edge-edge applicability relationships can be
directly determined:

1. Convex vertex-face applicability. A given node falls
into a certain region if and only if the contact between
the vertex represented by the region and the face repre-
sented by the node is applicable (Fig. 9).

2. Nonconvex vertex-face applicability. A given node falls
into a certain convex subregion if and only if the con-
tact between the vertex whose local convex hull is repre-
sented by the convex subregion and the face represented
by the node is locally applicable (Fig. 10).

3. Edge-edge applicability. Two convex arcs of different
SFOGs intersect if and only if the contact between the
corresponding edges is (locally, in the nonconvex case)
applicable (Fig. 11).

All the properties of applicability relations are adequately
reflected in the representation. For example, the existence
of at least one applicable vertex per face is captured by the
fact that each node falls in at least one region, and the lack
of applicable faces for a given vertex shows up in that the
corresponding region would contain no nodes. An important
difference between the SFOGs of convex and nonconvex poly-
hedra has to be stressed: in the convex case, the regions corre-
sponding to the vertices constitute a partition of the spherical
surface, whereas for nonconvex polyhedra, the convex subre-
gions cover the sphere and may overlap. This means that in

http://ijr.sagepub.com

470

f

(a) (b)

e

f
e

e’

Fig. 3. (a) The candidate pairing e-f can only be obtained from the applicable v-f pair as no edge in the boundary of f can
contact the edges stemming from the vertex, (b) the candidate e-f can only come from the applicable e-e′ pair as no endpoint
of either edge can contact the faces adjacent to the other edge.

Fig. 4. A locally applicable but not realizable vertex-face contact.

v
f

g

h
m

n
o

r

n

n

n

a

a
a

v

h

g

fm

n

o

Fig. 5. Representation of polyhedral features on the spherical face orientation graph: a vertex v is represented by region rv ,
its adjacent faces f , g, and h by the nodes nf , ng , and nh, and the adjacent edges m, n, and o by the arcs am, an, and ao.

http://ijr.sagepub.com

Jiménez and Torras / An Orientation-Based Pruning Tool 471

a

b
c

d

e

a

d

e

(f)

(f)

a

b

e

d

c

(a)

(b)

(c)

Fig. 6. (a) A pseudoconvex vertex, (b) its local convex hull, and (c) the corresponding convex subregion.

Fig. 7. Different polyhedra will have the same representation on the spherical face orientation graph if the relative orientations
of the faces and adjacency relationships are preserved.

http://ijr.sagepub.com

472

Fig. 8. Overlay of the spherical face orientation graphs (SFOGs) corresponding to two polyhedra in order to obtain a compact
representation that allows one to determine the applicability relationships. The SFOG of the rectangular prism below (heavy
lines) is combined with the central symmetric image of the SFOG of the tetrahedron above (fine lines).

Fig. 9. An applicable vertex-face contact, where the vertex is
convex.

f
n

nnn1
2

3

f

3
21

Fig. 10. An applicable vertex-face contact, where the vertex
v is pseudoconvex. The node nf corresponding to the face
f is contained in the convex subregion corresponding to the
local convex hull of the vertex.

http://ijr.sagepub.com

Jiménez and Torras / An Orientation-Based Pruning Tool 473

Fig. 11. Two examples of applicable contact between edges.
The corresponding arcs intersect.

v

csr

csr

w

v

w

n f

f

Fig. 12. For nonconvex polyhedra, situations may exist in
which the same face is simultaneously applicable to several
vertices: the corresponding node is contained in the common
area of the overlapping convex subregions of these vertices.

the latter case, a given face may be simultaneously applicable
to various vertices if the node that represents this face lies in-
side the intersection of the corresponding convex subregions.
Figure 12 shows one such situation.

The next step is to develop an algorithm to obtain all the
applicable feature pairs efficiently.

5. The Convex Case

The amount of pruning that can be done becomes particularly
evident in the convex case. Therefore, a simple algorithm
has been developed and implemented for the situations in
which the polyhedra are known to be convex. This algorithm

considers nodes of one SFOG and regions of the other one and
performs the node-in-region inclusion and the arc-crossings
tests.

The data structures used in the algorithm are as follows:

• Input graphs

– The SFOGs

– A cycle graph (in which nodes correspond to ver-
tices of one polyhedron)

• Output vectors

– FACE_APP[<node>] recording the face-vertex
applicability relationships

– EDGE_APP[<arc>] recording the edge-edge ap-
plicability relationships

• Processing lists

– OPEN_NODES

– OPEN_ARCS

A brief description of procedures and functions is needed
for the clear understanding of the algorithm. The procedure
ordered_intersection (node, &EDGE_APP) finds every in-
tersection of arcs stemming from node with the arcs of the
cycle in which node lies and appends these intersections to
EGDE_APP. The arc_intersection(arc, cycle, edge) function
finds the intersection between arc and the arcs of cycle differ-
ent from edge, which is known to have been crossed by arc in
entering cycle. The function Succ_Arcs(node) returns the arcs
that “point out of” node, in the sense that although we are ex-
ploring an undirected graph, certain directions of the arcs are
implicitly imposed as some nodes are explored before others
and we want to avoid exploring a given arc in both directions.
The function succ_node(arc) returns the unexplored extreme
node of arc, and succ_cycle(edge, arc) returns the cycle that
cobounds edge and where arc is “pointing to” (in the sense that
the other cobounding cycle will either contain the node such
that arc ∈ Succ_Arcs(node) or will already have an arc inter-
sected by arc). Finally, the function last(EDGE_APP[arc])
returns the last arc intersected by arc.

The algorithm starts at a given point, which can be consid-
ered without loss of generality as a “north pole,” and travels
over the sphere toward the “south” in a spiral-like fashion.
Thus, it can be considered a greedy or breadth-first algorithm
(Pearl 1984).

SFOG Search Algorithm (Convex Polyhedra)
Choose North-pole;
Find North-region ⊃ North-pole;
FACE_APP[North-pole]:= North-region;
North-pole→ OPEN_NODES;
while (OPEN_NODES �= ∅) or (OPEN_ARCS �= ∅)

http://ijr.sagepub.com

474

while (OPEN_NODES �= ∅)
node← OPEN_NODES;
ordered_intersection(node, &EDGE_APP);
for every a ∈ Succ_Arcs(node)

if EDGE_APP[a] = ∅ then
if FACE_APP[succ_node(a)]= ∅ then

FACE_APP[succ_node(a)]:=
FACE_APP[node];

succ_node(a)→ OPEN_NODES;
endif

else
a→ OPEN_ARCS;

endif
endfor

endwhile
while (OPEN_ARCS �= ∅)

arc← OPEN_ARCS;
edge := last(EDGE_APP[arc]);
cycle := succ_cycle(edge, arc);
s := arc_intersection(arc, cycle, edge);
if s=∅ then

if FACE_APP[succ_node(arc)] = ∅ then
FACE_APP[succ_node(arc)] := cycle;
succ_node(arc)→ OPEN_NODES;

endif
else

EDGE_APP[arc]← s;
arc→ OPEN_ARCS;

endif
endwhile

endwhile

Complexity of this algorithm is linear in the output. A
worst case can be found in which the size of this output is
quadratic due to edge-edge applicability relationships (when
the number of edges bounding a face of polyhedron P is
O(nP) and the number of edges applicable to each of them
is O(nQ)), but it is attached to a very specific geometry in
which a large number of vertices are coplanar. If vertices
are in general position, the number of edges applicable to the
boundary of a face is bounded by a constant and the output
complexity becomes linear in the input.

The algorithm was implemented and applied to pairs of
polyhedra with a given relative orientation. Experimental re-
sults displaying the computational savings obtained by run-
ning this algorithm previously to the contact determination
test are reported in Section 7.1.

6. Nonconvex Polyhedra: A Conservative
Pruning

For the case of nonconvex polyhedra, convex subregions have
to be identified and arc crossings of two kinds (between con-
vex arcs of the same SFOG and between convex arcs of dif-

ferent SFOGs) have to be distinguished. The algorithm has
to perform three main tasks: detect arc crossings, detect re-
gions overlap, and detect node-in-region inclusions. At the
base lies the arc-crossings detection procedure. It consists of
applying a modified version of segment intersection detec-
tion algorithms through plane sweeping, such as those that
will be reviewed in Section 6.1. These algorithms have to be
adapted for treating arcs on the sphere instead of segments
in the plane: the sweep with a vertical line is replaced by a
sweep with a meridian. As in the case of line segments, the
arcs are monotone in the direction of the sweeping, and every
two arcs intersect at most once. The partial ordering that the
sweep induces on the arcs is used to keep track of the regions
that are being swept, and this in turn allows one to perform the
other two tasks of region overlap and node-in-region inclu-
sion detection. In fact, these two steps are merged together,
as far as the aim of the region overlap detection step is to al-
low one to know in which regions a given node lies, that is,
which vertices are simultaneously applicable with respect to
the same face.

The need to eliminate nonconvex arcs, since they are never
applicable, implies that we must deal with the most gen-
eral setting of the red-blue segment intersection and node-
in-region inclusion detection problems: not only monochro-
matic (i.e., belonging to the same SFOG) arc intersections
will appear but also disconnected nodes, arcs, and regions. A
simple example, depicted in Figure 13, shows how a region
representing a vertex may be entirely disconnected from the
neighboring features when nonconvex arcs are discarded.

6.1. Line Sweep Algorithms for Red-Blue Segment
Intersection Detection

Consider a set of line segments in the plane. A common strat-
egy for detecting all the intersections between them consists
of applying the so-called plane sweep technique (also known
as the line sweep or sweep line technique), as generically
described in Preparata and Shamos (1985). A sweep line,
assumed without loss of generality to be vertical, is swept
through the whole plane. At a given instant, the sweep line
is intersecting some segments of the considered set. All the
segment intersections to the left of the sweep line have already
been computed and will not be affected by subsequent inter-
sections to the right. The sweep line introduces in a natural
way an adjacency relationship between the segments it inter-
sects. This allows one to consider for intersection only the
adjacent segment pairs (contrary to the brute-force approach,
which considers all possible pairings). These adjacency re-
lationships change each time a segment endpoint is encoun-
tered or two segments intersect. Therefore, the continuous
sweep process can be discretized by means of the event point
schedule (i.e., the sequence of abscissas that correspond to the
segments’ endpoints as well as the intersection points) and the
structure that maintains the sweep line status will allow for

http://ijr.sagepub.com

Jiménez and Torras / An Orientation-Based Pruning Tool 475

vv

(a) (b)

Fig. 13. The nodes and arcs (shown with dashed lines) of the
region that represents v are disconnected from the remaining
part of the spherical face orientation graph if the nonconvex
arcs are eliminated. The nodes that correspond to faces of the
polyhedron are shown as small ellipses. (a) Front view, (b)
rear view.

queries concerning adjacency relationships (i.e., segment in-
tersection candidates).

The best solution, from the point of view of efficiency,
is to make use of algorithms specially devised for the
case in which monochromatic intersections exist but do
not have to be computed. Agarwal and Sharir (1990)
described an algorithm that reports all red-blue intersec-
tions between line segments in time O((nr

√
nb + nb

√
nr +

kr−b) log(nr +nb)). This complexity was improved in Agar-
wal (1990) to overall O(n4/3 log(ω+2)/3 n + kr−b) time and
using O(n4/3/ log(2ω+1)/3 n) space, where ω is a constant <

3.33 and n = nr+nb, by applying a divide-and-conquer strat-
egy. This algorithm is deterministic; using random-sampling
techniques, an expected time of O(n4/3 log n + kr−b) was
obtained (Agarwal 1990).

Using recently developed data structures that allow one to
maintain a partial order on the line segments, an expected time
of O((n + kr−b)α(n) log3 n) can be obtained for the case in
which the sets of red and blue segments are connected (Basch,
Guibas, and Ramkumar 1996). If red and blue segments are
grouped into cr and cb connected components, the time be-
comes O((cbnr + crnb + kr−b) log3 nα(n)). The main idea
of this approach consists of considering the red and blue arcs
intersecting the sweep line at a given instant grouped into
blocks, so that only the bottom segment has to be tested for
intersection against the top segment of the contiguous block.
The crucial issue is to guarantee that at every instant, the ex-

tremes of each block are correctly updated. This means that
besides the events attached to the endpoints of each segment
and the purple intersections, some monochromatic intersec-
tions have to be scheduled. The wise use of data structures
that combine the features of binary trees and heaps permits re-
stricting these monochromatic intersections to a small subset
of the whole. Further details on this algorithm and its use for
detecting the applicable edge-edge pairings can be found in
Jiménez (1998), who provided the means of determining effi-
ciently the node-in-region inclusions during the same sweep
on the sphere using the same grouping of arcs into blocks
along the sweep line.

This solution appears to be very attractive from the point
of view of complexity, and the algorithm is not very difficult
to implement. Nonetheless, the use and maintenance of the
involved sophisticated data structures is highly time consum-
ing, which renders this algorithm less efficient than a naive
strategy (described in the following section) when applied to
objects of moderate complexities (as those used in our test
bed). It is worth mentioning, however, that the savings in
arc intersection tests increases faster than the burden of data
structure management, implying that there exists a threshold
scene complexity beyond which the sophisticated algorithm
would always outperform the naive one (Jiménez 1998).

6.2. Naive Sweep Algorithm for Red-Blue Intersection
Detection on the Sphere

It is straightforward to adapt the plane sweep principle to
the sphere: the vertical sweep line is replaced by a sweep
meridian and the sweep begins at an arbitrary point (as we
cannot speak of a “leftmost” point) and proceeds eastward
(as the plane sweep from left to right). As in the planar case
of line segment intersection detection, two arcs will intersect
at most at one point, and monotonicity is ensured: one arc
cannot intersect the sweep meridian at more than one point
simultaneously.

Each time the sweep meridian arrives at the western end-
point of an arc a[i], this arc is tested for intersection with all
the active arcs (i.e., arcs currently intersected by the sweep
meridian) of opposite color Lc[i] and included in the list of
active arcs Lc[i] (c[i] denotes the color of a[i]). As soon as
the eastern endpoint of an arc is reached, that arc is deleted
from the active list. In this way, every purple intersection will
be detected exactly once. A pseudocode transcription of this
simple algorithm is presented:

Naive SFOG Search Algorithm (Nonconvex Polyhedra)

Preprocessing: Order the 2n endpoints e[i] by increasing
meridian value. Let a[i] be the arc with endpoint e[i] and
c[i] its color.
for (i = 1..2n) do

if (e[i] is a western endpoint) then
for (all a′ ∈ Lc[i]) do

http://ijr.sagepub.com

476

if (a[i] ∩ a′) then
report purple intersection

endif
endfor
insert(a[i], Lc[i])

else
delete(a[i], Lc[i])

endif
endfor

As mentioned before, the “first” endpoint is an arbitrary
choice and, at this first instant, no lists of active arcs exist.
Therefore, a second sweep will have to be performed to take
into account all the purple intersections with arcs that are still
active after the last endpoint. Figure 14 depicts the purple in-
tersections that can be detected along the first sweep and those
that cannot be determined if no second sweep is performed.

As for node-in-region inclusions, they are computed during
the same sweeping operation: each region defines an interval
on the sweep line, and it has to be determined which inter-
vals of the opposite color include the current endpoint. Each
interval is defined by the upper and lower arcs bounding the
region at every instant. Regions begin and end at given (not
necessarily all) endpoints. The regions a, say, red node be-
longs to are computed by determining the blue arcs that cut
the sweep line above this node and then finding out whether
the regions underneath these arcs are also bounded by arcs
that cut the sweep line below that node.

7. Experimental Results

Consider the three algorithms:

Algorithm A follows the brute-force approach of testing all
possible edge-face pairings.

Algorithm B consists of the specific SFOG search procedure
for convex polyhedra (Section 5) followed by interfer-
ence tests for the resulting edge-face pairings.

Algorithm C consists of the naive SFOG search procedure
for nonconvex polyhedra (Section 6) followed by inter-
ference tests for the resulting edge-face pairings.

For comparison purposes, these three algorithms were im-
plemented and experiments carried out over two sets of non-
intersecting pairs of polyhedra, convex and nonconvex. The
data structure that stores the polyhedra is basically a geometric
description of faces (coordinates of their vertices and support-
ing planes), and the topological information is contained in
an adjacency matrix. This structure captures implicitly the in-
formation about the edges, which leads to certain inefficiency
when this information has to be made explicit. Mainly, this
means that every edge is counted twice when the whole poly-
hedron is examined, which could be avoided using another
structure such as the doubly connected edge list (Preparata

and Shamos 1985). Nonetheless, the results are suitable for
comparison purposes, as the same data structure constitutes
the input in all three cases.

7.1. Convex Polyhedra

Despite the fact that general polyhedra (i.e., both convex and
nonconvex) are the target of our pruning strategy, we first re-
strict our test bed to convex solids. This permits testing the al-
gorithm in Section 5 and assessing the pruning potential of the
strategy in a controlled setting. Convex polyhedra allow one
to design situations that cover the range from a high degree
of pruning (such as in polyhedra that approximate spheres)
to almost none (such as in prisms of a high degree) without
the distortions due to false candidates. The convex polyhe-
dra used in the experiments range from the tetrahedron to a
polyhedral approximation of the sphere with 128 triangular
faces, and include other regular and semiregular polyhedra,
pyramids, prisms, and so on.

Experiments show that it is worthwhile to perform pruning
when the polyhedra become complex and that the threshold
lies at a relatively low level. Results are displayed in Figures
15, 16, and 17 (note that a logarithmic scale is used). In Fig-
ure 15, the number of candidate edge-face pairs before and
after pruning are displayed for different relative orientations
of the polyhedra. Although this number grows quadratically
(linearly in the logarithmic scale) if all possible pairings have
to be considered, the savings derived from pruning reduce
this growth to a linear one. Execution times in Figure 16 cor-
respond to a SG O2 workstation, 180 Mhz, 192 MB RAM,
SPEC int95 4.8, SPEC fp95 5.4. As can be seen, savings in
computational time attain various orders of magnitude. Com-
putation of the applicable feature pairings and pruning needs
to be done only once, whereas the polyhedra maintain their
relative orientations. Even if the time to perform these com-
putations is included, the total time is less than that needed
by algorithm A as the polyhedra become more complex, as
shown in Figure 17.

7.2. Nonconvex Polyhedra

Algorithms A and C were tested on a set of nonconvex polyhe-
dra ranging from a pentahedron (with only one concave edge,
i.e., a pyramid with a V-shaped base) to an hour-glass-shaped
polyhedron (160 edges, including 32 concave ones). The re-
sults are displayed below. Figure 18 shows a drastic reduction
in the number of edge-face intersection tests to perform for the
considered objects. Figure 19 displays the execution times of
algorithms A and C, the latter without and with the prepro-
cessing step. We have to insist that this preprocessing has to
be done only once. Once again, a logarithmic scale is used in
both figures.

Next, we carried out some experiments to assess the
scalability of the approach and to compare its performance

http://ijr.sagepub.com

Jiménez and Torras / An Orientation-Based Pruning Tool 477

a

m

b

n

o

c

o

b
n

a

c

nt n1n1

First sweep Second sweep

1

2

3

4 5

6

7

8

9

10

m

Fig. 14. Plane analog of the spherical sweep. Red and blue arcs are depicted as dotted and solid segments. Some of them (a,
b, c, m, n, o) begin before or at the last event point nt and end after the first one n1. These segments are activated during the
first sweep from e[1] to e[2n], where some purple intersections can already be detected (marked with a small square), and
their intersections with the segments that had ended before they were generated (marked with an empty circle) can only be
detected during a second sweep. Numbers indicate the order in which the intersections are computed.

0 50 100 150 200 250 300 350 400

10
2

10
3

10
4

10
5

Edge-face tests to perform without and with pruning

Total number of edges

N
um

be
r

of
 e

dg
e-

fa
ce

 te
st

s
to

 p
er

fo
rm

Fig. 15. Comparison between the total number of edge-face tests to perform without applicability pruning, that is, algorithm
A (*), and with a previous pruning step, that is, algorithm B (�).

http://ijr.sagepub.com

478

0 50 100 150 200 250 300 350 400

10
3

10
4

10
5

Time needed to test that there is no intersection

Total number of edges

T
im

e
(m

ic
ro

se
c)

Fig. 16. Comparison of execution times of algorithm A (*) and the interference part of algorithm B (�).

0 50 100 150 200 250 300 350 400

10
4

10
5

Time needed to test that there is no intersection

Total number of edges

T
im

e
(m

ic
ro

se
c)

Fig. 17. Comparison of execution times of algorithm A (*) and algorithm B including preprocessing time (∇). Note that with
preprocessing added, B outperforms A even for low complexities. The different results for each pair of polyhedra correspond
to different relative orientations.

http://ijr.sagepub.com

Jiménez and Torras / An Orientation-Based Pruning Tool 479

0 50 100 150 200 250 300 350 400

10
2

10
3

10
4

Edge-face tests to perform without and with pruning (nonconvex polyhedra)

Total number of edges

N
um

be
r

of
 e

dg
e-

fa
ce

 te
st

s
to

 p
er

fo
rm

Fig. 18. Comparison between the total number of edge-face tests to perform without applicability pruning, that is, algorithm
A (*), and with a previous pruning step, that is, algorithm C (�), in settings that include only nonconvex polyhedra.

0 50 100 150 200 250 300 350 400

10
2

10
3

10
4

10
5

Time needed to test that there is no intersection (including preprocessing)

Total number of edges

T
im

e
(m

ic
ro

se
c)

Fig. 19. Comparison of the execution times of algorithm A (*) and algorithm C (�) with a previous pruning step (�) in settings
that include only nonconvex polyhedra.

http://ijr.sagepub.com

480

against that of a well-known collision detection package
(RAPID, v2.01, publicly available at http://www.cs.unc.edu/˜
geom/OBB/OBB.html). As a test bed, we used pairs of cubes
having an increasing number of square prismatic holes arranged
on square grids, as shown in Figure 20.

The two cubes are located and oriented such that the al-
gorithms are forced to perform a high number of elemental
intersection tests (e.g., for the case in which both cubes have
12×12 holes, RAPID reports 22,947 contacts out of 576,267
box tests whereas algorithm C performs 171,400 edge-face
intersection tests).

Figure 21 shows the increasing power of applicability prun-
ing as the complexity of the setting grows. Again, we observe
a linear growth of the number of edge-face tests to perform
versus the quadratic growth of the total number of edge-face
pairings.

The experimental results displayed in Figure 22 show that
for such kinds of settings, our algorithm is one order of magni-
tude faster than RAPID in carrying out contact determination.
For example, in the case of two cubes with 12×12 holes each
(e.g., having 3480 edges), algorithm C detects all contacts in
620 ms whereas RAPID needs 3051 ms. The gain in speed is
attained at the expense of a much higher preprocessing time
(Fig. 23). In the latter figure, times that are accounted for are
searching the SFOG representation for determining all pairs
of applicable features and extracting all possibly intersecting

Fig. 20. The type of workpiece used to compare the
performances of algorithm C and RAPID. The faces
of the polyhedron (displayed here for the case of
6 × 6 holes) were triangulated with an implementa-
tion of Seidel’s algorithm (the code was obtained at
http://www.cs.unc.edu/˜dm/CODE/GEM/chapter.html). Re-
member that triangulation is a necessary previous step for
RAPID but not for our algorithm.

edge-face pairings for algorithm C, whereas for RAPID the
measured time corresponds to Seidel’s triangulation plus the
building up of the hierarchical data structures.

It should be noted that the purpose of the comparison with
RAPID is just to show the potential of our approach. Thus,
we have chosen the most favorable setting for our algorithm,
namely, two objects with many concavities, placed in a way
that many simultaneous contacts occur. Both algorithms are in
some way complementary in the sense that pruning is based on
volumetric aspects in RAPID whereas the algorithm presented
here exploits orientation information. Thus, both approaches
are not mutually exclusive, and possibilities exist for their
integration.

8. Conclusion

An orientation-based pruning strategy for reducing the com-
putational effort in contact determination between general
polyhedra was described. This strategy is based on applicabil-
ity conditions and consists basically of reducing the number
of edge-face pairs to be considered for intersection by taking
into account that only a subset of all contacts between the
features of two polyhedra is actually possible, if the relative
orientation of the polyhedra does not change. It has to be
stressed that in our approach, nonconvex polyhedra can be di-
rectly tested for interference without decomposing them into
convex entities. Therefore, applicability pruning is a pre-
processing step, like the usual practice of decomposing the
polyhedra into convex entities, but it does not increase the
complexity of the setting by introducing fictitious features, as
the convex decomposition does.

Experiments carried out in settings with convex and non-
convex polyhedra show important savings in computational
effort: contact determination based on the edge-face intersec-
tion test performs 10 to 100 times faster if a previous selection
of candidate pairs based on the applicability conditions is per-
formed. Although highly dependent on the specific geometry
of the involved polyhedra, it can also be stated that these sav-
ings increase proportional to the complexity of the setting.

Our approach used alone, without a bounding volume hi-
erarchy or any other encapsulation method, can outperform
interference detection packages such as RAPID only under
very restrictive conditions, namely, when polyhedral models
with many concavities translate in close proximity, leading to
the occurrence of many simultaneous contacts. This is a typ-
ical situation arising in assembly design and planning within
CAD/CAM systems.

Moreover, both the edge-face intersection test and the pro-
posed orientation-based pruning can be seen as general tools,
which can be combined with other space and time bounding
strategies and integrated in a given collision detection scheme.

Two issues deserve further attention. First, because many
computer graphics applications depend on surface normals,
several data structures have been proposed for encapsulating

http://ijr.sagepub.com

Jiménez and Torras / An Orientation-Based Pruning Tool 481

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6 Edge-face tests to perform without and with pruning (cube with rectangular holes)

Total number of edges

N
um

be
r

of
 e

dg
e-

fa
ce

 te
st

s
to

 p
er

fo
rm

Fig. 21. Number of edge-face intersection tests to perform by algorithm C (�) against the total number of edge-face pairings
(*) for the setting in which two cubes have an increasing number of holes.

0 500 1000 1500 2000 2500 3000 3500

10
1

10
2

10
3

Run times of intersection tests in algorithm C and RAPID

Total number of edges

T
im

e
(m

s)

Fig. 22. Comparison of the execution times of the interference detection phase in algorithm C (�) and RAPID (◦).

http://ijr.sagepub.com

482

0 500 1000 1500 2000 2500 3000 3500

10
2

10
3

10
4

10
5

Preprocessing times of algorithm C and RAPID

Total number of edges

T
im

e
(m

ic
ro

se
c)

Fig. 23. Comparison of preprocessing times of algorithm C (�) and RAPID (◦). Preprocessing is various orders of magnitude
slower for the former. However, it has to be performed only once in settings where objects are only allowed to translate.

surface orientations. Most of them were developed to tackle
interactions between a point and a polyhedral model, but re-
cently one such structure, namely the spatialized normal cone
hierarchy, was applied in the computation of local distances
in polyhedral settings (Johnson and Cohen 2001). We see
this as the orientation-based counterpart effort to that of es-
tablishing hierarchies of bounding volumes, and therefore we
would like to explore the possibility of integrating such type
of hierarchy into our approach.

The other issue is that the applicability conditions are ori-
entation dependent, which means that along trajectories that
entail a change in the relative orientation of the polyhedra,
new edge-face candidates arise while others become no longer
valid. Therefore, one must be able to determine the intervals
of isoapplicability, that is, the ranges of relative orientations—
along the trajectory—for which the same applicability con-
ditions hold. In a trajectory parameterization approach, this
means determining the values of the parameter where these
changes occur, whereas in a multiple interference detection
approach, a discretization of time based on isoapplicability
will have to be considered (besides the standard discretiza-
tion based on distance and relative velocities). The SFOG
representation can be used to this end: the intervals of isoap-
plicability are delimited by the rotation events each time a
node of one SFOG crosses an arc of the other one. These
questions are addressed in Jiménez (1998), but devising an
efficient method for computing all the rotation events for ar-

bitrary changes in the relative orientation of the polyhedra is
still an open issue.

Acknowledgments

This paper provides a revised and extended account of results
presented at the IEEE International Conference on Robotics
and Automation (Jiménez and Torras 1996, 1999). This
research was partially supported by the Spanish Science
and Technology Commission (TAP99-1086-C03-01) and the
Catalan Research Commission. We would like to thank two
anonymous reviewers for their helpful comments.

References

Agarwal, P. 1990. Partitioning arrangements of lines: ii. Ap-
plications. Discrete Computational Geometry Siam Jour-
nal of Computing 5:533–573.
Agarwal, P., and Sharir, M. 1990. Red-blue intersection
detection algorithm, with applications to motion plan-
ning and collision detection. Siam Journal of Computing
19:297–321.

Basch, J., Guibas, L. J., and Ramkumar, G. D. 1996. Re-
porting red-blue intersections between connected sets of
line segments. 4th European Symposium on Algorithms,
pp. 302–319.

http://ijr.sagepub.com

Jiménez and Torras / An Orientation-Based Pruning Tool 483

Boyse, J. W. 1979. Interference detection among solids and
surfaces. Communications of the ACM 22(1):3–9.

Cameron, S. A. 1991. Efficient bounds in constructive solid
geometry. IEEE Computer Graphics and Applications
11:68–74.

Jiménez, P., and Torras, C. 1999. Benefits of applicability
constraints in decomposition-free interference detection
between nonconvex polyhedral models. Proceedings of
the IEEE International Conference on Robotics and Au-
tomation, Vol. 3, Detroit, MI, pp. 1856–1862.
Canny, J. 1987. The Complexity of Robot Motion Planning.
Cambridge, MA: MIT Press.

Cohen, J. D., Lin, M. C., Manocha, D., and Ponamgi,
M. K. 1995. I-collide: An interactive and exact colli-
sion detection system for large-scale environments. Pro-
ceedings of the ACM International 3D Graphics Con-
ference, Vol. 1, pp. 189–196. Available: http://www.cs.
unc.edu/˜geom/LCOLLIDE.html.

Donald, B. R. 1987. A search algorithm for motion plan-
ning with six degrees of freedom. Artificial Intelligence
31:295–353.

García-Alonso et al. 1994.
Gilbert, E. G., Johnson, D. W., and Keerthi, S. 1988. A fast

procedure for computing the distance between complex ob-
jects in three dimensional space. IEEE Journal of Robotics
and Automation 4:193–203.

Gottschalk, S., Lin, M. C., and Manocha, D. 1996. Obb-
tree: A hierarchical structure for rapid interference de-
tection. Proceedings of ACM Siggraph’96. Available:
http://www.cs.unc.edu/˜geom/OBB/OBBT.html

Hamlin, G. J., Kelley, R. B., and Tornero, J. 1992. Effi-
cient distance calculation using the spherically-extended
polytope (s-tope) model. Proceedings of the IEEE Con-
ference on Robotics and Automation, Vol. 3, Nice, France,
pp. 2502–2507.

Hilbert, D., and Cohn-Vossen, S. 1987. Geometry and the
Imagination. New York: Chelsea.

Horn, B. K. 1984. Extended Gaussian images. Proceedings
of the IEEE 72:1671–1686.

Hubbard, P. M. 1993. Interactive collision detection. Pro-
ceedings of the IEEE Symposium on Research Frontiers in
Virtual Reality, Vol. 1, pp. 24–31.

Hubbard, P. M. 1995. Collision detection for interactive
graphics applications. IEEE Transactions on Visualiza-
tion and Computer Graphics 1:218–230.

Hudson, T. C., Lin, M. C., Cohen, J. D., Gottschalk, S.,
and Manocha, D. 1997. V-collide: Accelerated colli-
sion detection for vrml. Proceedings of VRML. Available:
http://www.cs.unc.edu/˜geom/V_COLLIDE.html

Jiménez, P. 1998. Static and dynamic interference detec-
tion between nonconvex polyhedra. Ph.D. thesis, Univer-
sitat Politècnica de Catalunya. Available: http://www-
iri.upc.es/people/jimenez/phdthesis.html

Jiménez, P., Thomas, F., and Torras, C. 2001. Collision de-
tection: A survey. Computers and Graphics 25:269–285.

Jiménez, P., and Torras, C. 1996. Speeding up interface de-
tection between polyhedra. Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, Vol. 2,
Minneapolis, MN, pp. 1485–1492.
Jiménez, P., and Torras, C. 2000. An efficient algorithm for
searching implicit and/or graphs with circles. Artificial
Intelligence 124(1):1–30.

Johnson, D., and Cohen, E. 2001. Spatialized normal cone
hierarchies. Proceedings of the 2001 ACM Symposium on
Interactive 3D Graphics, Vol. 2, Research Triangle Park,
NC, pp. 129–134.

Klosowski, J., Held, M., Mitchell, J., Sowizral, H., and Zikan,
K. 1998. Efficient collision detection using bounding vol-
ume hierarchies of k-dops. IEEE Transactions on Visual-
ization and Computer Graphics 4(1):21–36.

Lin, M. C., and Canny, J. F. 1991. A fast algorithm for in-
cremental distance calculation. Proceedings of the IEEE
International Conference on Robotics and Automation,
Vol. 2, Sacramento, CA, pp. 1008–1014.

Lin, M. C., and Gottschalk, S. 1998. Collision detection be-
tween geometric models: A survey. IMA Conference on
Mathematics of Surfaces, Vol. 1, San Diego, CA, pp. 602–
608.

Martínez et al. 1998.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies

for Computer Problem Solving. Reading, MA: Addison-
Wesley.

Ponamgi, M. K., Manocha, D., and Lin, M. C. 1997. Incre-
mental algorithms for collision detection between polygo-
nal models. IEEE Transactions on Visualization and Com-
puter Graphics 3(1):51–64.

Preparata, F. F., and Shamos, M. I. 1985. Computational
Geometry: An Introduction. Texts and Monographs in
Computer Science. New York: Springer-Verlag.

Thibault, W. C., and Naylor, B. F. 1987. Set operations
on polyhedra using binary space partitioning trees. ACM
Computer Graphics 21(4):153–162.

Thomas, F., and Torras, C. 1992. Inferring feasible assemblies
from spatial constraints. IEEE Transactions on Robotics
and Automation 8:228–239.

Thomas, F., and Torras, C. 1994. Interference detection
between non-convex polyhedra revisited with a practical
aim. Proceedings of the IEEE International Conference on
Robotics and Automation, Vol. 1, San Diego, CA, pp. 587–
594.

van der Bergen, G. 1997. Efficient collision detection of
complex deformable models using aabb trees. Journal of
Graphic Tools 2(4):1–13.

Vanecek, G. 1994. Back-face culling applied to collision de-
tection of polyhedra. Journal of Visualization and Com-
puter Animation 5(1):55–63.

http://ijr.sagepub.com

