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Abstract. The development of any robotics application relying on visual information always raises
the key question of what image features would be most informative about the motion to be performed.
In this paper, we address this question in the context of visual robot positioning, where a neural
network is used to learn the mapping between image features and robot movements, and global
image descriptors are preferred to local geometric features. Using a statistical measure of variable
interdependence called Mutual Information, subsets of image features most relevant for determining
pose variations along each of the six degrees of freedom (dof’s) of camera motion are selected.
Four families of global features are considered: geometric moments, eigenfeatures, Local Feature
Analysis vectors, and a novel feature called Pose-Image Covariance vectors. The experimental results
described show the quantitative and qualitative benefits of performing this feature selection prior to
training the neural network: Less network inputs are needed, thus considerably shortening training
times; the dof’s that would yield larger errors can be determined beforehand, so that more informative
features can be sought; the order of the features selected for each dof often accepts an intuitive
explanation, which in turn helps to provide insights for devising features tailored to each dof.

Key words: feature selection, global image descriptors, mutual information, robot neurocontrol,
variable interdependence, visual robot positioning.

1. Introduction

Vision-based robot positioning involves mapping a set of image features to robot
movement commands. The mapping between these two continuous domains is
highly nonlinear and, depending on the type of features used, very difficult – if
not impossible – to derive analytically. This is especially the case when global
image descriptors are employed as features. For local geometric features such as
points and lines, explicit analytical relationships may be found relating their image
coordinates with camera pose. Knowledge of their location in the observed scene
may also be exploited to choose features which will be highly correlated (in the
general sense) with movements of the robot-mounted camera. This is not possi-
ble, however, for features computed from overall pixel intensities. Not only must
? Some preliminary results of this work were presented at the IEEE Intl. Conf. on Robotics and

Automation, Leuven, May 1998, pp. 2819-2826. This research has been partially supported by the
research grant CICYT TAP97-1209 of the Spanish Science and Technology Council.
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96 G. WELLS AND C. TORRAS

the feature-to-movement mapping be implicitly estimated by some means, but the
feature correlations also must be numerically assessed.

In a previous work [35], we described a prototype visual positioning system
based on global image descriptors and a neural network which learned the mapping
between the features and the robot movements. By directly mapping descriptors
to robot movements, the difficult and often unreliable steps of feature matching,
camera calibration, and scene modelling were avoided. The choice of descriptors
used, and their correlation with camera displacements, was judged only intuitively,
however. We have therefore performed a systematic study in order to more quanti-
tatively determine the relevance of the image features used for controlling each of
the robot’s degrees of freedom (dof), and their influence on the positioning errors
achieved. The results of this study are the object of this paper.

The aforementioned prototype, developed in collaboration with Thomson CSF
within the project CONNY, is aimed at the visual inspection of objects that cannot
be precisely positioned. The set-up consists of a 6-dof robot arm with a camera
mounted on its end-effector, and the goal is to move the camera so as to make
the observed image coincide with a given reference image for its subsequent in-
spection. The training procedure consists of moving the robot end-effector (with
the attached camera) from the reference position to nearby random positions, and
then applying the back-propagation algorithm to learn the association between
the computed image features and the motion performed. In operation, the robot
is commanded to execute the inverse of the motion that the network has associated
to the given input.

Feature selection can be carried out a priori, through the application of statistical
techniques that essentially seek inputs as variant as possible with the output [11,
20, 26], or a posteriori through the use of the neural network itself, by either cell
pruning or regularization [4]. The latter method would be extremely costly in our
case, since we wish to consider a very large set of possible features and assess their
relevance for predicting each of the 6 dof. This would lead to large networks with
prohibitive training times. Therefore, we have chosen to perform feature evaluation
(and selection) prior to learning, using a statistical dependence measure based on
entropy, which is called the Mutual Information (MI) criterion [22].

The paper is structured as follows. Section 2 provides an overview of previous
work in visual robot positioning, with an emphasis on the image features used. Sec-
tion 3 describes in detail the different families of features we have computed and
Section 4 contains the results obtained with each of them separately. In Section 5,
the MI criterion is introduced and it is applied to the selection of feature subsets.
A discussion of the experimental results obtained is presented in Section 6 and,
finally, in Section 7 some conclusions as well as the envisaged future research are
outlined.
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ASSESSING IMAGE FEATURES FOR VISION-BASED ROBOT POSITIONING 97

2. Visual Robot Positioning

The aim of visual positioning is to achieve a desired robot pose? relative to one
or more objects in the environment, using information extracted from images of
the robot’s workspace. When dealing with robot manipulators the desired pose is
understood to be that of the end-effector, while, in the case of mobile robots, it
refers to the pose of the robot itself. Visual information may be obtained from
one or more cameras, mounted either on the robot or else at some fixed location
in the environment. Moreover, the control scheme may be a static look-and-move
one or else one based on dynamic visual servoing. For extensive reviews on the
existing works in this area, the reader is referred to [5, 10, 13, 35]. In this paper,
we consider only the case of positioning a robot manipulator on the basis of the
information supplied by a single camera mounted on the robot’s end-effector.

2.1. PREVIOUS WORK

The case just mentioned is usually tackled by defining a set of geometric image
features (typically, points, lines and circles) and then deriving an interaction matrix
relating 2D shifts of these features in the image to 3D movements of the camera [8].
In operation, the features in the captured image have to be matched to those in
the reference image, in order to find the offsets to which the interaction matrix
should be applied. This often requires precise camera calibration [9] and hand-eye
calibration [17]. Recently, efforts have been devoted to extending this approach for
use with uncalibrated cameras [23, 33].

This geometry-based approach has the advantage of lying on very solid mathe-
matical grounds (projective, affine and Euclidean geometry). However, so far, the
processing of complex objects in cluttered scenes at reasonable rates has proven
elusive. This is partly due to the difficulty of reliably detecting simple geometric
features within images obtained in real-world situations. Object shape and tex-
ture, occlusion, noise and lighting conditions have a large effect on feature vis-
ibility. Thus, some authors have begun to explore the use of more global image
characteristics, as described in Section 2.2.

The advantages of applying neural networks to this task are the direct learning
of the interaction matrix, as well as the possibility of avoiding the costly matching
of features in the current and reference images. The former advantage was already
achieved in a system developed by Hashimotoet al. [16], while the latter entails
the extraction of global descriptors from the image which both preserve positioning
information and permit direct comparison, as investigated in the present work.

2.2. IMAGE FEATURES

Practically all visual positioning and visual servoing applications described to date
have relied on the use of local structural features extracted from images, such as

? Pose is an abbreviation of “position and orientation”. The pose of an object in 3D space has six
components, while that in 2D space has three components.
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98 G. WELLS AND C. TORRAS

points, lines, rectangles, regions, etc. The main advantage of using local features is
that they correspond to specific physical features of the observed objects and, once
correctly located and matched, provide very accurate information concerning the
relative pose between the camera and scene. For instance, the image coordinates of
4 non-coplanar points are sufficient to uniquely determine the pose of an arbitrary
object [18]. Example applications using point features may be found in the works
of Giordanaet al. [12], and Hashimotoet al. [15].

Object corners and the centroid coordinates and area of holes in an object were
used as features by Wilsonet al.[36]. Rives and Borrelly [30] used edge features to
track pipes with an underwater robot, and the road-following vehicle of Dickmanns
et al.[7] based on edge tracking is well known. Edge contours were tracked in real-
time by Wunsch and Hirzinger [37] for manipulation of free-floating objects by a
space robot. The projection variations of a circle pattern were used by Kabuka and
Arenas [21] in a robot docking application, and the centroid and diameter of circles
was used by Harrellet al. [14] for fruit tracking with an orange harvesting robot.
Vanishing points (intersection of two nearly parallel lines) and line orientations
were used by Zhanget al. [38] for robot navigation. Chaumetteet al. [3] and
Espiauet al. [8] derived variations of a tracking method for points, circles and
lines.

Visual positioning based on local features requires that they be reliably ex-
tracted and matched under a particular set of working conditions. When effects
such as occlusion, noise, uncertainty, and lighting variations interfere, this cannot
always be ensured in real-world situations. Many recent applications make use of
more global image features to attempt to partially overcome some of these dif-
ficulties. Janget al. [19] and Bienet al. [2] showed how a number of different
global image features could be used within a general visual control framework.
Listed features included geometric moments, image projections on a line, random
transforms, region templates, and Fourier transforms. Results are given only for
simplified tracking tasks using as features the target centroid and area. Optic flow
has been applied by Shiraiet al. [31], Allen et al. [1] and Papanikolopoulos [27].
Sipeet al. [32], Nayaret al. [24] and Deguichi [6] used eigenfeatures for 3-dof
positioning and tracking.

Our previous work demonstrates how global image encodings such as Fourier
descriptors [34] and geometric moments [35] may be applied to complex, real
images to position a 6-dof industrial robot. Although the first results obtained with
this prototype were very encouraging, the precision attained was not yet as desired
for some of the degrees of freedom, and varied considerably among them. These
results motivated the present study.
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ASSESSING IMAGE FEATURES FOR VISION-BASED ROBOT POSITIONING 99

3. Global Image Features for Pose Estimation

3.1. GEOMETRIC MOMENT DESCRIPTORS

Several image descriptors based on geometric moments may be derived which
are useful for robot positioning. While, for pattern recognition applications, mo-
ment invariants are typically used to recognize image features regardless of the
viewing position, for visual servoing it is desired that the moments have avariant
relationship with respect to the camera pose. Here, eight descriptors involving mo-
ments were chosen which characterize several statistical variations in the object’s
projection in the image when the camera pose is varied on any of its 6 axes.

The general formula for geometric image moments is given by

mij =
∑
x

∑
y

xiyjf (x, y), (1)

wheremij is the moment of orderi+j , x andy are the coordinates of each pixel in
the image, andf (x, y) is the grey-level value of the pixel between 0 and 255. By
giving different values to ordersi andj , several important statistical characteristics
of the image may be encoded. For example,m00 is the total “mass” of the image,
andm02 andm20 are the moments of “inertia” around thex andy axes, respectively.

Two important descriptors are thex andy coordinates of the image centroid,
which is clearly variant with camera translation parallel to the image plane:

x̄ = m10/m00, ȳ = m01/m00. (2)

To represent the rotation of the object in the image plane, the angle of rotation of
the principal axis of inertia may be used. This quantity may be derived from the
eigenvectors of the inertia matrix[

m̄20 −m̄11

−m̄11 m̄02

]
, (3)

wherem̄11, m̄20 andm̄02 are central moments, defined with respect to the centroid
of Equation (2) as:

m̄ij =
∑
x

∑
y

(x − x̄)i(y − ȳ)j f (x, y). (4)

The scaling of the object, due primarily to camera translation along the optical
axis, may be quantified by the radii of the major and minor inertia axes. These are
derived from the eigenvalues,λ1 andλ2, of matrix (3):

r1 =
√
λ1

m00
, r2 =

√
λ2

m00
. (5)

The zero-order momentm00 may also be used as a descriptor sensitive to scaling.
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100 G. WELLS AND C. TORRAS

The orientation of the major principal axis,θ , is derived (see [29]) from the
values of the second moments and the angle of the principal axis nearest to thex

axis,φ, given by

φ = 1

2
tan−1

(
2m̄11

m̄20− m̄02

)
. (6)

The coefficients of skewness for image projections onto thex and y axes are
computed from the third- and second-order moments:

Skx = m̄30

m̄
3/2
20

, Sky = m̄03

m̄
3/2
02

. (7)

3.2. EIGENFEATURES

In the field of computer vision, Principal Component Analysis (PCA) is best known
as a method for image compression, feature detection, and pattern recognition.
Recently, however, several authors have demonstrated its usefulness for pose esti-
mation [24, 32, 6].

Given a set of multidimensional data samples, the aim of PCA is to determine a
reduced orthonormal basis whose axes are oriented in the directions of maximum
variance of the data in each dimension, and then project the data onto this new
basis. These “principal” axes are the eigenvectors of the data’s covariance matrix.
By decorrelating the data components in this way, redundancy between them is
reduced, and the data is effectively compressed into a more compact representation.
Individual data points can then be accurately approximated in just a small subspace
of the components with the highest variance. The projected data components are
often called eigenfeatures, KL (Karhunen–Loève) features, or PCA features.

To project a set ofM brightness images onto aK-dimensional eigenspace, the
N-pixel images, of the form

x = [x1x2 . . . xN ]T (8)

are first normalized so that their overall brightness is unity:x̂ = x/‖x‖. The average
image,x̄ = 1

M

∑M
i=1 x̂i , is subtracted from each image, and the resulting vectors are

placed columnwise in an image set matrix:

X = [x̂1 − x̄ x̂2− x̄ . . . x̂M − x̄]. (9)

The covariance matrix of the image set is then obtained as

C = XX T . (10)

A setE = [e1e2 . . .eN ] of N eigenvectors ofC and theirN corresponding eigen-
valuesλi may be computed such that

Cei = λiei . (11)
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ASSESSING IMAGE FEATURES FOR VISION-BASED ROBOT POSITIONING 101

These eigenvectors represent the directions of maximum brightness variance of the
images in the set.

The projectionyi of an arbitrary imagêxi onto the subspaceEK spanned by the
K < N eigenvectors corresponding to theK largest eigenvalues ofC is given by

yi = ETK(x̂i − x̄). (12)

In this way, theN-dimensional image is reduced to a set ofK eigenfeatures corre-
sponding to the elements ofyi.

3.3. POSE-IMAGE COVARIANCE VECTORS

In order to more directly relate feature variations with the displacements of each
pose component, a set of vectors similar to eigenspace may be defined based on the
correlation of image brightness variations not with themselves, but directly with the
pose displacements of the camera.

For the image set matrixX of (9), and a matrixP = [1p11p2 . . .1pM ]T of
associated 6-dimensional pose displacement vectors1pi = [pi − preference]T , we
define a setM of 6 Pose-Image Covariance (PCI) vectors as

M = XPT. (13)

The projectionyi of an arbitrary imagexi onto the PCI vectors is given by

yi = M T (x̂i − x̄). (14)

3.4. LOCAL FEATURE ANALYSIS VECTORS

Local Feature Analysis (LFA) [28] is a recent technique designed to obtain com-
pact, topographic representations of images based on statistically derived local
features and their positions. Although LFA was originally developed as a method
for compactly representing image ensembles of object classes, such as human
faces, based on reduced sets of static features in the images, we have explored
its usefulness for representing sets of images whose appearance varies with pose.

The LFA representation is derived directly from the eigenvectors of PCA. Any
number 16 K 6 N of eigenvectors may be used, the reconstruction error of
an image reconstructed with LFA features being exactly equal to that of PCA
reconstruction with the same number of eigenmodes. Multiplying theK eigen-
vectorsei in EK by the whitening factor 1/

√
λi normalizes the variance of data

components projected onto eigenspace to unity. This ensures that data projections
onto the resulting vectors,

êi = 1√
λi

ei , (15)
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102 G. WELLS AND C. TORRAS

are minimally correlated, while maintaining the same degree of decorrelation of
the eigenvectors themselves. The LFA space is then defined as

K = EK ÊTK, (16)

whereÊK is the matrix of normalized eigenvectors. The LFA matrixK has dimen-
sionsN × N . Each column ofK is a uniqueN-element receptive field centered
at the pixel location in the image corresponding to its column index inK , and
represents the normalized covariance of that pixel with all other pixels in the image.
These vectors act as feature detectors matched to the feature that is expected near
their respective centers.

The projectionyi of an arbitrary imagexi onto the LFA subspace,

yi = K T (x̂i − x̄), (17)

is therefore an image of the same size, each pixel of which reflects the activation
of the receptive field centered at that location in the image. However, since the
receptive fields in a local region are correlated, representing a feature redundantly,
only the one which best represents each feature need be retained. A small subset of
LFA vectors centered at chosen features of interest is therefore sufficient to charac-
terize a particular image. The set of scalar-valued features is obtained by projecting
the images onto the individual columns ofK corresponding to the chosen feature
locations.

For pose estimation, it is desirable to find features that are maximally covariant
with displacements of pose. In a similar manner as used to derive the PCI vectors,
the covariance of the pose vectors with the LFA projections may therefore be used
to select a subset of feature locations.

A matrix M of six covariance vectors of the pose matrixP with the projections
Y of the image setX of (9) onto the LFA space may then be defined as

M = YPT . (18)

The locations of the maxima in these six vectors may be used to select the corre-
sponding LFA receptive fields for each pose component, as described in the next
section.?

4. Pose Estimation Using Neural Networks

Vision-based positioning of a robotic manipulator may be implemented using a
control scheme like the one shown in Figure 1. In our neural network-based ap-
proach, the control law takes the form of a neural network which, when input the
feature offsets between the currently observed image and a prespecified desired, or
“reference” image, outputs the movement command required to return the robot to
? Another alternative could be to use the image projections on the covariance vectorsM directly

as features, similar to the PCI vectors, although this possibility was not explored here.
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ASSESSING IMAGE FEATURES FOR VISION-BASED ROBOT POSITIONING 103

Figure 1. Visual positioning control scheme.

Figure 2. The GT Productique 6-dof robot with wrist-mounted camera, used to acquire the
image set.

the reference position. While, in a previous article [35], we presented the results of
positioning trials using trained networks, here we concentrate on the effectiveness
of the network training for the different feature sets studied.

Feedforward neural networks were used to learn the direct mapping between
feature variations and pose displacements when a robot-mounted camera was
moved away from the reference position. A black-and-white CCD camera mounted
on the wrist of a 6-dof GT Productique industrial robot (see Figure 2) was used
to acquire a set of 1000 training images of a scene, consisting of an automobile
cylinder head on a white table. Images were taken at random poses within a range
of −25 to 25 mm translation and−15 to 15 degrees rotation with respect to the
reference position for the three coordinate axes, wherex, y, z are the horizontal,
vertical, and optical axes, respectively. The reference position was chosen so as to
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104 G. WELLS AND C. TORRAS

Figure 3. The reference image and intensity slices for three grey-level intervals.

have the camera centered perpendicularly above the object’s surface, at a distance
of approximately 550 mm. The center of rotation was a point centered 550 mm in
front of the camera on the optical axis (near the object’s surface), which helped
maintain the object within the field of view. A translational component is therefore
derived from the rotation around the two horizontal axes, makint the actual maxi-
mum ranges ofTx andTy equal to±[25+550 sin(15)] = ±167 mm. The 6-element
pose displacement vector was stored with each image as the desired outputs for the
neural networks.

The Levenberg–Marquardt algorithm was used to train backpropagation net-
works implemented using the Matlab Neural Networks Toolbox commercial soft-
ware package. All networks had 30 hidden nodes and the number of input nodes
equal to the length of the feature vector used in each case. A separate network was
trained for each degree of freedom, each network having a single output for one of
the 6 pose components. A set of 250 training examples was reserved as a test set.
All networks were trained until no further reduction in the RMS error for the test
set could be achieved.

Geometric moment descriptors were computed for three versions of each im-
age filtered by “intensity slicing”, consisting of thresholding the images within
three different minimum and maximum intensity ranges (0–50, 50–100, 100–150).
The resulting images contained features roughly localized around holes and other
structural regions of the object, and segmented from the bright background, as
seen in the example of Figure 3. The input feature vector for the neural network
was composed of the moment descriptors computed for all three filtered versions
of each image (denoted by the superscripts 50, 100, 150), totalling 24 features:
f = (x̄ ȳ θ r1 r2 m00 Sx Sy)

50,100,150.
For the network trained with PCA features, the image projections onto the first

24 eigenvectors of the image set were the inputs. Several of the eigenvectors are
shown in Figure 4. The SLAM software library [25] was used to compute the
eigenvectors and image projections.

The 6 PCI vectors for the image set are shown in Figure 5. Note that each one
(except perhapsTz) has an apparent visible symmetry related to its corresponding
pose component, and that the vector pairs for translational and rotational move-
ments on oppositex andy axes have a similar symmetry. Unlike for GM and PCA
features, the networks trained with PCI features had only 6 inputs.
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ASSESSING IMAGE FEATURES FOR VISION-BASED ROBOT POSITIONING 105

Figure 4. Some eigenvectors of the image set.

Figure 5. The six PCI vectors of the image set.

A subset of LFA vectors was chosen for each pose component by selecting those
vectors centered in the regions of highest covariance with the pose component.
The Pose-LFA Covariance (PCLFA) vectors were first computed as in (18). The
resulting vectors for the image set used are shown in Figure 6. Since covariance
has maximum values at−1 and 1, the vectors were normalized to this range, and
their absolute values computed. The centers of the brightest image regions were
then located by filtering the image with a center-weighted subwindow mask and
choosing those subwindows with the maximum overall intensity. The weights of
the mask were computed as the inverse pixel distance of each component pixel of
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106 G. WELLS AND C. TORRAS

Figure 6. The six Pose-LFA Covariance vectors of the image set. The LFA projections were
computed using 85 eigenvectors.

Figure 7. The Pose-LFA Covariance vectors filtered with a 12× 12-pixel center-weighted
mask. The twelve 12× 12-pixel subwindows with maximum intensity in each image have
their centers marked with crosses. These locations were used as indices for selecting twelve
LFA vectors for each pose component.

the subwindow to the subwindow centroid. A 12× 12 mask was chosen based on
visual inspection of the average size of the bright regions in the PCLFA images.
The centroid locations of the 12 brightest subwindows in each PCLFA image were
chosen as LFA vector indices for the corresponding pose component. The filtered
PCLFA images and chosen LFA vector locations are shown in Figure 7. The first
LFA vector chosen for each pose component is shown in Figure 8.
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ASSESSING IMAGE FEATURES FOR VISION-BASED ROBOT POSITIONING 107

Figure 8. The first LFA vector selected for each pose component.

Table I. Final RMS test-set errors for neural networks trained
with GM, PCA, PCI, and LFA features using 35 and 85
eigenvectors.

Features Rz Rx Ry Tz Tx Ty

GM 0.03 0.05 0.07 0.14 0.07 0.05

PCA 0.10 0.20 0.22 0.41 0.29 0.29

PCI 0.09 0.11 0.18 0.32 0.25 0.14

LFA (35 ev) 0.15 0.25 0.19 0.39 0.29 0.24

LFA (85 ev) 0.21 0.39 0.24 0.44 0.32 0.29

Two different experiments were performed with LFA vectors. In the first, the
LFA vectors were computed using the 35 eigenvectors previously used to obtain
the PCA features. In the second, 85 eigenvectors were used to see if any possi-
ble improvement might result. Networks were trained for each of the two sets of
resulting LFA vectors.

The final RMS test-set errors for the networks trained with the 4 feature types
are shown in Table I. The values correspond to the lowest errors achieved for 3
training trials of each network. The best results, for all 6 coordinate axes, were
clearly obtained for GM features. Error values are somewhat lower for PCI features
than for PCA features. The worst results were obtained for LFA vectors. Surpris-
ingly, error values were even higher when the LFA vectors were computed based
on 85 eigenvectors than when only 35 were used.
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108 G. WELLS AND C. TORRAS

5. Feature Selection Using Mutual Information

The aim, when training a neural network, is to map a subsetf of a collection
F = {f1, f2, . . . , fm} of prospective input variables (features) to a sety = {y1, y2,

. . . , yn} of output variables. This is only possible, however, to the extent that some
statistical dependence exists betweeny and f. The more informative the input
variables are about the outputs, the lower the network’s final training error will
be, assuming that training is efficient in all other respects. Choosing the subset
of inputs which is maximally informative about the outputs can therefore help to
optimize learning with the available input variables and, with a minimum number
of features, reduce training times.

A useful statistical measure, from Information Theory, for quantifying the de-
pendence between variables is themutual information. For a single input variable
f and an outputy, which are both assumed to be random variables, the mutual
information (MI) is given by

I (f, y) =
∑
f

∑
y

P (f, y) log2
P(f, y)

P (f )P (y)
, (19)

where the summations are computed over the suitably discretized values off

andy. Although probability density estimates, and consequently MI values, are
dependent on the number of chosen discretization intervals, in our work the order
of selected features was found to be the same for any number between 5 and 20, so
10 intervals were used.

By measuring the “peakedness” of the joint probability between the variablesf

and y, the mutual information captures arbitrary (linear and nonlinear) depen-
dencies between them. It is equivalent to the Kullback–Leibler distance, or cross
entropy, between the joint distribution and the product of the marginal distribu-
tions, and measures the degree to which knowledge provided by the feature vector
decreases the uncertainty about the output.

Clearly, the MI of a subset of input variables with an output variable is not equal
to the sum of the individual MI values of its component inputs, since the output may
be dependent on some function of two or more inputs, but apparently independent
of any single input separately. Consequently, the maximally informative subset of
inputs may only be found by computing the MI of all possible subsets of inputs
with outputs. However, for a given numbern of candidate features, the number of
possible subsets is 2n and, therefore, computationally expensive to consider when
n is large. An alternative is to build a suboptimal set based on the MI values of
individual variables using some sort of heuristic.

Since the features themselves may be dependent on each other, selecting fea-
tures based only on their individual MI with the outputs can lead to input sets
with redundant features which add little to the MI of the set as a whole. The goal
is to find a subset of inputs whose MI is maximum with respect to the outputs,
but minimal with respect to each other. The chosen heuristic should aim to fulfill
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ASSESSING IMAGE FEATURES FOR VISION-BASED ROBOT POSITIONING 109

Figure 9. Output variableRz plotted against input featureθ150 (labelled as feature 59),
showing a clear dependence between these two variables.

these criteria as best as possible. One such method [39] consists of choosing, at
each selection step, the candidate featurefi with the smallest Euclidean distance
from the point of maximumI (fi, y) and minimum

∑
k I (fi, fk) in the 2D space

formed by these two variables, where
∑

k I (fi, fk) is the sum of the MI values
of the candidate featurefi with the already selected featuresfk in the set. This is
illustrated for one selection step in Figures 9 and 10.

The MI selection procedure was applied to a set of 65 features previously com-
puted for the image set, containing 24 GM, 35 PCA, and 6 PCI features. In view of
the high error values obtained on all axes for networks trained with LFA features
alone, and the still unexplained worsening of results when the LFA representation
was computed using more eigenmodes, it was chosen not to include this class of
features in the set. For the set used, the first 24 features selected for each pose
component, in order of decreasing MI, are listed in Table II.

Minimum feature subsets were found for each pose component by building
subsets of features with MI values above minimum threshold values, which were
varied between 0 and 1. As the threshold increased, the number of features in the
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110 G. WELLS AND C. TORRAS

Figure 10. A 3D representation of the weights assigned to each feature during the MI selection
process.I (fi, y) is plotted against

∑
k(fi, fk) in thex–y plane, and weights are represented

by thez axis. Contour lines mark curves of constant weight values, computed as the distance
to the “ideal” point wherex is zero andy is maximum. Here, three featuresfk have already
been selected, and the candidate featurefi with the highest weight is circled, in this caseθ150

(labelled as feature 59).

subsets decreased. The RMS test-set error values for networks trained with each
subset were plotted against the MI threshold values, as shown in Figure 11, and the
subset with the lowest error value was selected. An important observation from this
graph is that MI values are much lower overall for the 3 translational components
than for the 3 rotational components, resulting in higher RMS errors even for larger
feature sets.

The feature sets with the lowest RMS errors are summarized in Table III.
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Table II. The first 24 MI-selected features from the set of 65
GM, PCA and PCI features, in order of decreasing MI.

Rz Rx Ry Tz Tx Ty

θ50 r100
2 r50

1 e21 e7 ȳ50

PCIRz ȳ150 r150
1 r100

1 S100
x θ50

θ150 S100
y m150

00 S150
y e34 e30

S50
y m150

00 x̄100 r50
2 e17 e18

e1 S150
x e5 e31 m50

00 e10

e6 m100
00 S50

x S150
x e13 e21

θ100 ȳ100 m100
00 e29 S150

x PCIRx

S150
y PCITz r150

2 m50
00 e10 e15

e8 θ50 x̄50 S100
x m150

00 e11

e31 r150
2 e11 e32 e22 e31

ey e0 e2 e18 ȳ100 S100
y

e20 e21 e21 r150
2 r100

1 e26

e29 S100
x x̄150 m100

00 e15 e29

e11 e19 e4 e28 S100
y e20

S100
y S150

y e8 x̄150 e19 PCITz

e21 PCIRx r100
1 e9 x̄150 m50

00

e33 r50
2 S100

y e26 e29 e17

e32 e29 S50
y e13 e14 e22

e26 m50
00 e3 ȳ100 e11 S150

x

r150
2 S50

y e10 S50
y e28 ȳ150

e28 e18 S150
x e16 e8 e34

e16 x̄100 PCIRy S50
x e31 e7

S150
x e30 S100

x e30 S150
y e28

e25 e7 ȳ50 S100
y e5 r100

2

Table III. RMS test-set error for minimum feature subsets com-
puted with MI for GM, PCA and PCI features. The number of
features in each subset is indicated below the error values.

Rz Rx Ry Tz Tx Ty

RMS error 0.03 0.05 0.08 0.19 0.16 0.09

N features 5 10 16 24 24 7
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Figure 11. RMS test error vs. MI threshold. On top of each circle the number of features with
an MI value greater than the corresponding threshold is recorded. The RMS error obtained
by training a neural network with only those features is then plotted. Note that the MI scale
for the translational axes is half that of the rotational axes, indicating that features are less
informative overall for the translational dof’s.

cetto
Rectangle



ASSESSING IMAGE FEATURES FOR VISION-BASED ROBOT POSITIONING 113

6. Discussion

The results presented in the last two sections may be analyzed in several ways. Let
us first discuss the quantitative benefits resulting from the application of the MI
criterion.

By comparing Tables I and III, one can immediately see that the effect of the
MI selection varies considerably depending on the degree-of-freedom (dof) con-
sidered. Thus, in the case ofRz andRx, the best precision is attained with only 5
and 10 features, respectively, instead of the 24 used when the same precision was
attained with geometric moments alone. This best precision could not be reached
with any other single feature type. The benefits are also noticeable in the case of
Ty andRy , for which a very good precision is attained with only 7 and 16 features,
respectively. Finally, in the case ofTz andTx , the MI selection cannot outperform
the use of geometric moments alone,? although it outperforms the other two types
of features.

The reason for this large disparity in the effect of MI selection becomes evident
when looking at Figure 11. The MI of the features considered varies largely with
each dof. This variation is even larger than one could perceive at first glance, since
a different scale has been used in the abcissas for rotations and translations. For all
rotational dof’s, at least 10 features have an MI greater than 0.4, and at least 5 of
them also surpass the 0.6 threshold. None of the translational dof’s lead to similar
MI values, althoughTy falls close behind, whileTz is undoubtably the worst. This
is, in fact, another interesting outcome of the MI assessment: the features we are
using do not provide enough information onTz variation, which indicates that other
features should be sought (possibly with the help of the MI criterion) in order to
diminish the error for this dof.

Many interesting qualitative observations about the results may be also be made
by studying in detail the features selected for each dof (see Table II). For exam-
ple, the orientation angles of the first principal axis for the images of Figure 3
(θ50, θ100, θ150) would seem to have a clear relationship withRz and, therefore,
it is not surprising that they are among the seven features most highly ranked.
The skewness coefficients of the projection on they axis for the same images
(S50
y , S

100
y , S150

y ) also seem intuitively relevant and, consistently, they are within
the 15 most highly ranked. Note also that the image ordering for these two types of
features is maintained. The PCI vector for this dof is ranked second, which seems
very natural, and more so when one looks at its image-like representation (see Fig-
ure 5). Note that, with the possible exception ofPCITz , each PCI vector resembles
a particular eigenvector (e.g.PCIRz ande1, PCIRx and the inverse ofe0, PCIRy
ande4, PCITx ande3, PCITy ande0). What is more difficult to interpret is the role
played by the eigenfeatures. In principle, those with the least concentric symmetry

? This is counterintuitive, but not contradictory, since the MI is not computed for all possible
feature subsets (which is computationally unfeasible), but instead features are selected one by one
on the basis of their individual MI values corrected by a redundancy term.
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should be selected and, up to what can be seen in Figure 4 (e1, in particular), this
is consistent with the performed selection.

In the case ofRx, the length of the second principal axis would seem to be a
good indicator of this dof and, effectively,r100

2 , r150
2 , andr50

2 are within the first
17 features selected, withr100

2 in the 1st place. The three skew coefficientsS100
y ,

S150
y , andS50

y are intuitively within the first 20 features selected. The relationship
of the y coordinate of the centroid withRx variations is also visibly evident in
the image set, which makes the presence ofȳ150 and ȳ100 in the first 7 features
selected seem logical. The corresponding PCI vector,PCIRx , is the 16th feature
selected but, curiously,PCITz is ranked much higher at number 8. The reason
for this becomes clear when the weight assignments are plotted as in Figure 10:
AlthoughPCIRx has the highest MI value withRx of all the remaining features
(0.8), it also has the highest sum value of its MI with the already selected features
(0.7).PCITz is therefore selected first, because its information/redundancy balance
is more favorable (0.4 and 0.4, respectively).

Similar observations may be made regardingRy. The length of the first principal
axis is selected, withr50

1 andr150
1 in 1st and 2nd place, andr100

1 as number 16. The
corresponding PCI vector,PCIRy , is number 22, and the three skew coefficients
S50
x , S150

x , andS100
x are within the first 23 selected features, withS50

x in 6th place.
The x coordinate of the centroid is visibly related withRy in the image set, and
x̄100, x̄50, andx̄150 are within the first 13 features selected.

Understandably,̄y50 is the first feature selected forTy , which has an MI value
of 1.1. The MI values of all the remaining features are 0.5 or less, and, unlike
the first feature, show a negligible relationship with the output when plotted as in
Figure 9. When their weight assigments are graphed as in Figure 10, they appear
tightly clustered together, which explains the unexpected selection of features such
as θ50 andPCITz , and the absence of other expected ones such asPCITy . The
information content of all except the first feature is simply too low to permit any
meaningful discrimination between them, indicating that other feature types must
be sought for this dof.

The high test errors obtained forTx reflect the unintuitive set of features selected
for this dof. While thex-coordinate of the centroid would be expected in the set,
x̄50 and x̄100 are missing. Onlȳx150 is selected as number 16, but the seemingly
less related featurēy100 is ranked higher, in 11th place. The 1st feature selected
is e7, which has a vague visible relationship with movements onTx. As seen in
Figure 11, the explanation lies in the fact that the MI values of all features withTx
are below 0.5, indicating that they provide practically no information concerning
this dof.

Lastly is Tz, with the worst test-set performance. Although the highly ranked
featuresr100

1 , r50
2 , m50

00, r
150
2 , andm100

00 would appear to be particularly sensitive
to the changes of scale resulting from movements onTz, they, like all the other
features, have MI values so low (0.3 or lower) as to indicate they are virtually
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unrelated, thus precluding any further analysis of the selected feature set. Different
feature types are clearly needed for this dof.

Overall, there is a clear tendency of geometric-moment descriptors to appear
among the most relevant features, especially in those cases in which a satisfactory
precision is reached, which is consistent with the lower test-error values obtained
for these features alone. The selection in many cases of apparently unrelated fea-
tures may be explained by the fact that, in absolute terms, the MI values for all
except the few most highly ranked features for the best-learned dof’s are simply
very low. An MI value of 0.1, for example, is typical of totally unrelated variables.

Aside from feature relevancy alone, there are two clear sources of the low preci-
sion values obtained forTx andTz. Since the observed object (the cylinder head) in
the image set used is longer on thex axis than on they axis, portions of the object
fall outside the field of view on the left and right sides of the image for the majority
of the poses. This effect reduces the sensitivity of the computed image features to
displacements inTx . In the case ofTz, the relatively low sensitivity of the image
variations to movements along the optical axis are evident upon visual inspection
of the image set, to the point of being mostly overshadowed by the changes of
scale caused by movements on the other dof’s. Improving the precision for these
two pose components in future work will require finding features which overcome
these limitations.

7. Conclusions

In this paper we have used the Mutual Information criterion to evaluate the sensi-
tivity of several types of global image features to camera translations and rotations.
Contrary to the goal of object recognition applications, where invariant features are
sought, here we look for image features that are as variant as possible with camera
pose.

We have presented the novel application of two new types of global features for
pose estimation: LFA features based on Local Feature Analysis, and a new pose-
image covariance feature called PCI. We also give results of using eigenfeatures for
6-dof positioning for the first time, as well as several geometric-moments descrip-
tors of a higher order than those used in our previous works. In particular, geometric
moment descriptors (including the newly introduced skew coefficients) and the new
PCI vectors were ranked as highly informative of the rotational movements by the
MI criterion.

Using the MI selection procedure as a preprocessing step before training a
neural network, we have shown how mixed sets of all four feature types may
be assembled which provide the maximal information for pose estimation with a
minimal number of features. In this way, we have achieved a considerable reduction
in the number of features needed to obtain a given learning precision for the three
rotational degrees of freedom, which has reduced neural-network training times by
reducing the number of inputs.
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Besides providing a way to automate the feature selection process, MI permits
foreseeing which degrees of freedom will yield larger errors, thus allowing one
to look for more informative features before actually training the neural network.
As for the three translational degrees of freedom, MI analysis has provided a
quantitative explanation of why their precision values obtained so far have been
consistently low. The significantly low MI of these dof’s with all the features
considered indicates that other features must be devised which are more highly
correlated with translational movements.

Although the study has been carried out in the context of visual positioning of a
robot arm, this same methodology clearly may be applied to other visually-guided
robotic arrangements, such as mobile robots and underwater robots, as a tool for
selecting features as well as to guide in the design of new ones.

Our future work will center on the search for more informative features for
estimating the translational dof’s, and a sensitivity analysis of both the camera and
the trained neural networks in order to quantitatively account for other possible
sources of positioning error.
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