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Object recognition is a subproblem of the more general problem of percep-
tion, and can be defined as follows. Given a scene consisting of one or more
objects, can we identify and localize those objects that are sufficiently visible to
the sensory system? It is generally assumed that a description of each object to
be recognized is available to the computer and can be used to facilitate the task
of identification and localization. These descriptions can either be model-based
or appearance-based, or a combination of both. Model-based object represen-
tation is based on geometric features, whereas appearance-based representation
uses a large set of images for training but does not require any insight on the
geometric structure of the objects. Object recognition is a key component of
many intelligent vision systems, such as those used in hand-eye coordination for
bin picking, inspection, and mobile robotics.

Various types of object recognition problems can be stated based on the
dimensionality of their spatial description: (1) recognition of a 2-D object from
a single 2-D image; (2) recognition of a 3-D object from a single 2-D image; (3)
recognition of a 3-D object from a 3-D image (a range map); (4) recognition of
a 2-D or 3-D object from multiple 2-D images taken from different viewpoints;
etc. About 40 years ago, research in computer vision began with attempts at
solving the problem of how to recognize a general 3-D object using a single 2-D
image. Since humans can perform this task effortlessly, it was believed then
that designing a computer-based system for accomplishing the same would be
easy. However, forty years later today this problem remains largely unsolved.
In contrast, much progress has been made in recognizing 2-D objects in single
2-D images and in recognizing 3-D objects in range maps. Although not as
impressive, considerable progress has also been made in the recognition of 2-D
or 3-D objects using multiple 2-D images, as in binocular or multiple-camera
stereo.

The earliest successful system for the recognition of 2-D objects, such as
gaskets used in industrial products, using single camera images was the VS-
100 Vision Module fielded by SRI [1]. We believe that it was this system that
launched industrial interest in computer vision. Another early industrial vision
system that also became well known and that is of historical importance is
the CONSIGHT system [11]. The HYPER system [4] was used for identifying
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overlapping flat electromechanical components, and used heuristic tree pruning
to speed up the search for a scene-to-model match. Two early systems for the
recognition of 3-D objects from single 2-D images are the ACRONYM system
[8], and the SCERPO system [44], which used perceptual organization ideas
to cope with the lack of depth information from a single image. Some studies
on the errors associated with the recognition of 3-D objects from 2-D images
include [2, 25, 26].

One of the first successful systems that recognized 3-D objects in range maps
was the 3DPO system for object orientation computation using graph matching
[7]. Later contributions include the 3D-POLY system for object recognition in
occluded environments [10], the INGEN system for generic object recognition
[60], the MULTI-HASH system for fast 3-D object recognition [23], and the
BONSAI system for object recognition using constrained search [20]. Other
relevant work on 3-D object recognition from range data includes [17, 19, 27,
38, 57].

Systems that have been demonstrated to recognize 3-D objects using prin-
ciples of binocular stereo and other multi-camera systems with various degrees
of effectiveness include [18, 30, 33, 53]. A variation on the idea of using multi-
ple 2-D images for recognizing a 3-D object consists of projecting the image of
an object into a space of lower dimensionality in order to facilitate the search
for a match in a database of known object models. Examples of such systems
include [39, 59] for the recognition of human faces and the SLAM system [48], a
real-time appearance-based recognition system that identifies three-dimensional
objects. These systems are sensitive to unrestricted illumination conditions and
can only analyze scenes with one object at a time. The search for a robust
solution to overcome these restrictions is currently an active research area.

Traditionally, a model-based recognition system would include the following
sequence of tasks: sensory data acquisition, low level processing of the sensory
input, feature extraction, perceptual organization (e.g., grouping of features),
scene-to-model hypothesis generation, and model matching. However, it is be-
lieved now that the interpretation of a complex scene cannot proceed in a purely
bottom-up manner, instead some of these tasks might cooperate with each other.
For example, successful grouping of features could be guided by general con-
straints associated with the object classes. The recognition of a large database
of objects cannot be efficiently achieved without the ability to represent an ob-
ject in terms of its components, but there is no universally accepted formal
definition of what constitutes a part and no general approach for decomposing
an object into parts.

Sensory Data Acquisition

Light Intensity Images

For 2-D object recognition one snapshot of the scene to be analyzed is usually
sufficient. In this case, the goal is to identify and locate one or more nearly flat
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Figure 1: In 2-D object recognition the scene is usually observed from a view-
point that is perpendicular to the objects. a) scene image, b) output of Sobel
operator for edge detection, c) one pixel wide edges obtained using morpholog-
ical operators.

Figure 2: When the objects in a scene have highly reflecting surfaces, the images
obtained with a color or gray-scale camera may not be acceptable. For these
cases the use of a backlit table is more effective.

objects in an image, often from a viewpoint that is perpendicular to the objects.
An example is shown on Fig. 1 (a). Here, the goal is to identify and accurately
estimate the position and orientation of the keys. Gray level or color digital
images can be used for this purpose and they can be captured with a digital
camera or obtained by digitizing the signal of an analog camera using specialized
hardware. When the objects in the scene have highly reflecting surfaces, the
images obtained with a color or gray-scale camera may not be acceptable. For
these cases the use of a backlit table will produce superior results. See Fig.
2. If high resolution is necessary, a high-density solid-state linear camera can
be used. The objects are placed on a conveyor belt and scanned as the belt
traverses linearly under the camera.

Various approaches are possible for acquiring data for 3-D vision. For ex-
ample, with binocular stereo, two slightly shifted images of the same scene are
taken and, when feasible, object points are located in 3-D space by triangu-
lation. For stereo vision to work robustly, one must solve the correspondence
problem: the matching of pixel pairs in the left and right images that corre-
spond to the same point in 3-D space. See Fig. 3. Several geometric constraints
can be used to alleviate the correspondence problem. One of these constraints
is termed the feature constraint, and refers to the fact that what might be an
edge in the left image will most likely correspond to an edge in the right image

3



Figure 3: Correspondence problem in stereo vision: the points m1 and m2 in
the left and right images correspond to the same point in 3-D space.

also. Generally speaking, the characteristics of the neighboring pixels for the
matching of the left and right image points should be consistent. For Lamber-
tian (completely matte) surfaces, the reflected light is the same in all directions,
and as a result, the intensities at two corresponding points in the left and right
images would be the same. In practice, few surfaces tend to be lambertian.
By the same token, few surfaces tend to be completely glossy. In reality, for
most surfaces the reflected light will vary slowly with the direction of viewing.
Another constraint is the epipolar constraint which states that for any point in
the left image its possible matches in the right image all lie on the epipolar line,
therefore reducing the dimensionality of the search space from two dimensions
to one. One epipolar line being the projection on the right image of the line that
passes through the center of projection and the pixel point on the left image.
Other constraints include uniqueness, continuity, and ordering of points [18].

The use of multi-camera stereo makes fuller use of the epipolar and other
geometric constraints, thus simplifying the correspondence problem. Relative
motion can also be used to determine 3-D location of points. If the objects in
the scene are rigid, and the configuration of the scene does not change while
the camera is moving, the various images obtained can be treated as separated
only in space and fixed in time. This process is referred as baseline stereo. To
simplify the geometry of a baseline stereo system, the motion of the camera is
generally linear and perpendicular to its optical axis.

A robust approach to stereo vision in an industrial setting may use object-
level knowledge in the stereo fusion process [40]. This is, the stereo system
will use object model knowledge to extract from each of the images higher-
level pixel groupings that correspond to discernible features on one or more
surfaces of the object, the will try to solve the correspondence problem using
these features. Because these features tend to be distinctive, the problem of
contention in establishing correspondence is minimized.
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Figure 4: Structured light imaging configurations: a) single slit fan scanning,
b) single slit linear scanning, c) single slit fixed camera linear scanning, and d)
bar code projection.

Structured Light Sensing

A more robust approach for collecting 3-D data is by the use of structured
light sensing in which a scene is illuminated with a single laser light stripe
that scans across the scene. For each position of the light stripe, a camera
registers the scene points illuminated by that stripe. The pixel coordinates of
the illuminated points are subsequently converted into the xyz coordinates of
the corresponding object points. For every row in the camera image, the column
index of the brightest point represents the variation in depth for that particular
scan line. The 3-D coordinates of every illuminated point are computed using
appropriate triangulation formulas. Several configurations exist for structured
light imaging, the most common being obtained by single-slit projections and
by bar-code parallel projections. Furthermore, a single-slit projection system
can be implemented using fan scanning, linear scanning or fixed-camera linear-
scanning. See Fig. 4 [61].

In a single-slit fan-scanning projection system, a laser light is projected on a
computer-controlled mirror and reflected onto the scene at different orientations.
The scene is scanned step by step by the laser light stripe and for each stripe,
the position of the pixel with maximum brightness in each row on the camera
image is obtained. The xyz coordinates of an object point p are computed from
the intersection of the plane defined by the center of the mirror and the laser
light stripe, and the line defined by all the points in the space that corresponds
to the point with coordinates u, v on the image plane. The equation of the
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Figure 5: The set of images acquired in a structured light system can be used
to create a composite light stripe image (a). The computed xyz coordinates for
the illuminated points along each stripe light are combined to produce a range
map (b). Planar, cylindrical, and other second order surfaces (c) are extracted
from the rangemap using low-level segmentation techniques.

plane illuminated by the laser light stripe varies with respect to θ, the mirror
orientation angle.

In a linear scanning system, the mirror does not rotate. Instead, the laser
light stripe projector and the camera are attached to a platform that moves at
small intervals along a straight line perpendicular to the plane defined by the
mirror and the laser light stripe. The coordinates of the illuminated points in the
scene are computed in the same way as in the fan scanning projection system.
The sensor, consisting of the projector and the camera, is usually located above
the scene to be scanned, but it can also be attached to the gripper of a robotic
arm. Linear scanning is ideal for integrating the range mapping process with
manipulation. In a fixed camera linear scanning projection system the camera
is kept stationary while the slit projector is moved along an axis perpendicular
to the plane illuminated by the laser light stripe.

The computed xyz coordinates for the illuminated points along each light
stripe are combined to produce a range map. See Fig. 5 (b). Structured light
scene reconstruction exhibits a few drawbacks. It is desirable for the laser light
stripe to be the only illumination source for the scene. For this reason, struc-
tured light projection systems cannot be used outdoors. Another disadvantage
is the time it takes to scan a scene for acquiring its range map. Bar code parallel
projection can be used to alleviate this issue.

In a bar code projection system, instead of illuminating the scene with a
single laser light stripe, the scene is illuminated with a number of bar code
patterns like the ones shown in Fig. 6. Each stripe in the highest resolution
bar-code pattern is equivalent to a single laser light stripe in a single-slit fixed-
camera linear-scanning projection system. The individual stripes corresponding
to an equivalent single-slit scan are obtained by a simple decoding algorithm,
which consists of examining for a point in the scene the on-off sequence of
illuminations obtained for all the projected grid patterns, and then placing
there a stripe corresponding to the resulting binary code word.

For N stripes in a single slit system, log2N patterns are sufficient for the
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Figure 6: In a bar code projection system the scene is illuminated with a number
of bar-code patterns.

bar code projection system, thus reducing the acquisition time by a logarithmic
factor. The main disadvantage of the bar code projection system is that when
highly reflective surfaces are present in the scene, the camera may register these
reflections, leading to errors in stripe decoding.

More novel structured-light sensors include the use of parabolic or elliptical
mirrors. These sensors allow for dynamic reconfiguration of the triangulation
geometry, and permit the acquisition of depth maps of a scene with varying
levels of occlusion and depth resolution [12]. Color information can also be
incorporated in a structured light imaging system [23]. Color information is
obtained by alternately illuminating a scene with a laser stripe and a white-
light stripe; the latter sampled at exactly those points that were illuminated by
the laser stripe. While the laser stripe yields the xyz coordinates, the white-
light stripe provides the color content at those points. Of course, one must use
a color camera for such systems. Using such a system, one can recognize objects
not only based on their shapes, but also discriminate among similarly shaped
objects on the basis of their color properties.

It is also possible to use line-of-sight laser sensors without cameras for ac-
quiring 3-D information. A laser beam is transmitted toward the scene, and part
of the light is reflected back to the sensor a fraction of a second later. The sensor
calculates the distance to the object point in the scene using the time of flight
of the pulsed light. A rotating mirror deflects the light beam in such a way that
the entire scene can be scanned in a raster fashion. The distance to an object
point can also be computed by comparing the phase of a low-frequency power
modulation of the outgoing and returning laser beams. A major advantage of
such sensors is that they do not suffer from the occlusion problems that can
sometimes reduce the effectiveness of structured-light sensors. For a structured-
light sensor to work, an object point must be visible to both the illuminating
source and the camera. On the other hand, for a line-of-sight sensor to work,
it is sufficient for the object point to be visible to just the illuminating source,
since no camera is involved. See Fig. 7.
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Figure 7: A line-of-sight laser range finder consists of a laser beam transmitted
toward the scene, and part of the light being reflected to the sensor. The sensor
computes the distance to the object point in the scene using the time of flight
of the pulsed light.

Low Level Processing

Low-level Processing of 2-D Intensity Images

The processing of 2-D intensity images for recognition of, say, flat objects usually
begins with the detection of edges. An edge can be defined as a discontinuity
of the intensity levels. Associated with every pixel at coordinates u, v in the
image, there is an associated intensity value I. For gray-scale images, I is a
scalar, whereas for color images, I will consist of three-color components. The
detection of discontinuities in image intensity can be achieved mathematically
by computing derivatives of the image intensity function I(u, v).

The gradient of an image at each point is represented by the largest rate
of intensity change at that point, and the direction of the gradient is along the
direction of steepest change. Given an image I(u, v) the gradient is given by

∇I(u, v) = û
∂I

∂u
+ v̂

∂I

∂v

and its magnitude can be computed by the norm

‖∇I(u, v)‖ =

√(
∂I

∂u

)2

+
(

∂I

∂v

)2

For digital implementations, the magnitude calculated by using the norm

‖∇I(u, v)‖ = max
[

∂I

∂u
,
∂I

∂v

]
gives more uniform results with respect to the direction of the edge. The former
is known as the L2 norm, whereas the latter is called the L∞ form.
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Figure 8: Several differentiation masks can be used to approximate the deriva-
tives of an image.

The direction of the gradient at the image point with coordinates (u, v) is
given by

tan−1

(
∂I

∂v

/∂I

∂u

)
and the direction of the edge at that point is perpendicular to that of the
gradient. When this edge detection technique is utilized the image data must
first be smoothed; otherwise the presence of noise will produce undesirable edges.
In order to find the derivatives of the image in the u and v directions, several
operators can be used. See Fig. 8. The two-dimensional intensity function
I has to be convolved with these operators, each of them possessing different
characteristics regarding the sensitivity of edge detection to the direction of an
edge. The output of a Sobel operator for the image in Fig. 1 (a) is shown in
Fig. 1 (b).

Edge detection can also be carried out by matching the image intensity val-
ues with edge patterns at different orientations. The orientation that gives the
best match is taken as the edge orientation. The magnitude of the best match
is a measure of the edge strength. The Nevatia-Babu edge masks represent this
approach to edge detection, and we show in Fig. 9 how these edge masks are
formed. Consider an edge at an angle θ to the vertical. The line segment AB
divides the cell STUV into two equal parts. So for all θ, the weight assigned
to this cell is zero. Assuming that each cell side is of unit length, then for cell
PQRS the area of the shaded part is given by

1
2

(
3
2
− 1

2 tan θ

)2

tan θ

The area to the other side of AB for the same cell is given by

1 − 1
2

(
3
2
− 1

2 tan θ

)2

tan θ
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Figure 9: The Nevatia-Babu edge masks are formed by computing the area to
the sides of a dividing line segment oriented at the desired angle.

and the value on the operator for cell PQRS is

1 −
(

3
2
− 1

2 tan θ

)2

tan θ

The values for the rest of the cells on the mask can be written as functions of θ
in a similar fashion. The image is then convolved with each of the orientation
masks. The result is a set of images depicting the edges corresponding to each
of the θ values.

Another class of edge detectors uses second-derivative operations; the best
known of these is the Laplacian of the Gaussian (LoG) edge detector [45]. In this
method, the image intensity function I is smoothed with a Gaussian function

Ismooth(u, v) =

∞∫
−∞

∞∫
−∞

1√
2πσ2

e−
α2+β2

2σ2 I(u − α, v − β) dα dβ

and the edges are detected from the zero crossings of the second derivative

∇
(

I(u, v) ∗ 1√
2πσ2

e−
u2+v2

2σ2

)

where ∇ =
(

∂2

∂u2 + ∂2

∂v2

)
is the direction-independent Laplacian operator.

Iedges(u, v) =
(

∂2

∂u2
+

∂2

∂v2

) ∞∫
−∞

∞∫
−∞

I(α, β)
1√

2πσ2
e−

(u−α)2+(v−β)2

2σ2 dα dβ

Iedges(u, v) =

∞∫
−∞

∞∫
−∞

I(α, β)
{(

∂2

∂u2
+

∂2

∂v2

)
1√

2πσ2
e−

(u−α)2+(v−β)2

2σ2

}
︸ ︷︷ ︸

h(u,v)

dα dβ
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h(u, v) = −
(

2 − u2 + v2

2πσ4

)
e−

u2+v2

2σ2

The LoG method for edge detection gives one-pixel wide closed contours.
But it can also produce spurious zero crossings caused by points of inflection
in the first derivative, and produces biased contours in the vicinity of locations
where actual edges form acute angles.

Another widely used method for edge detection is the Canny edge detector.
It belongs to a family of optimally designed operators based on the detection of
extrema in the output of the convolution of the image with an impulse response
(the operator). Other edge detectors in this family include the Deriche detector
and the Spaceck detector [18].

In this method, a model of the kind of edges to be detected is defined first.
Consider for the sake of simplicity the 1-D case,

e(x) = AU(x) + η(x)

where U(x) is the unit step function and η(x) is white Gaussian noise. Then,
several criteria that must be satisfied by the operator are derived, such as ro-
bustness to noise, good localization, and uniqueness of response.

The output of our operator on an ideal edge would be

Iedge(x) = e(x) ∗ h(x)

Iedge(x) = A

x∫
−∞

h(x) dα +

∞∫
−∞

η(x − α)h(x) dα

and the idea is to maximize Iedge at x = 0, satisfying the following criteria: the
robustness-to-noise criterion

Σ(h) =

0∫
−∞

h(x) dx√
0∫

−∞
h2(x) dx

the good-localization criterion

Λ(h) =
|h′(0)|√

0∫
−∞

h′2(α) dα

and the uniqueness-of-response criterion

xmax = 2π

√√√√√√√√
0∫

−∞
h′2(x) dx

0∫
−∞

h′′2(x) dx
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(For a detailed derivation of these criteria expressions see [18]). Using calculus
of variations we can simultaneously find the extrema of Σ(h), Λ(h), and xmax

by solving the constrained optimization problem

min

0∫
−∞

h2(x) dx

subject to

0∫
−∞

h(x) dx = c1 ,

0∫
−∞

h′2(x) dx = c2 ,

0∫
−∞

h′′2(x) dx = c3 .

In Canny’s derivation, these criteria are satisfied with the extra constraint
that xmax = kW , which states that the average maximum distance between two
local maxima has to be some fraction of the spatial extent of the operator. By
the method of Lagrange multipliers, we can make δC(h)/δh = 0, where

C(h) =

0∫
−W

(
h2(x) + λ1h(x) + λ2h

′2(x) + λ3h
′′2(x)

)
dx .

That leads to the Euler-Lagrange equation

2h(x) + λ1 − 2λ2h
′′(x) + 2λ3h

(4)(x) = 0

The solution to this differential equation gives the optimal one-dimensional op-
erator

h(x) = e−αx(a1sinωx + a2cosωx) + eαx(a3sinωx + a4cosωx) − λ1

2

with conditions on α and ω: α2 − ω2 = λ1/λ2 and 4α2ω2 = (4λ3 − λ2
2)/4λ2

3.

Closed expressions can be computed for a1, a2, a3, and a4 as functions of α,
ω, c3, and λ1, resulting in h(x) parameterized in terms of α, ω, c3, and λ1. The
problem of finding the optimal operator has been reduced from an optimization
problem in an infinite-dimensional space (the space of admissible functions h)
to a nonlinear optimization problem with variables α, ω, c3, and λ1. These
values are obtained using constrained numerical optimization methods. The
optimal operator h(x) computed in this manner resembles the first derivative of
a Gaussian h(x) = −(x/σ2)e(−x2/2σ2).

Another popular edge detector that we will not discuss in detail is the
Heitger detector [28]. It uses oriented energy maps, yielding good continuity of
features near junctions and precise estimation of gradient orientation.

Most edge detection operators produce edges that are not connected. Be-
fore any higher-level scene interpretation modules can be brought to bear on an
image, it is often necessary to repair broken edges if such breakages were caused

12



by noise and other artifacts. Edge repair can sometimes be carried out by ex-
panding and shrinking the detected edges in such a way that any connection
made during expansion is not lost during the shrinking operation. In a binary
image, two pixels are connected if there is a path of neighboring pixels linking
them [6, 55]. They are 4-connected if the path can be followed by traversing
along the u and v directions only. An 8-connected path is obtained by travers-
ing along the u and v directions as well as in diagonal directions. All pixels
connected to a given pixel p in a set S of 1’s form a connected component of
S. If S has only one component then S is simply connected, otherwise it is
multiply connected. The border S′ of a set S is made up of those pixels of S
for which at least one neighbor is in its complement S̄. The i-th iteration of an
expansion is given by S(i) = S(i−1) ∪ S̄′(i−1), and the i-th shrinking iteration is
given by S(i) = S(i−1) ∼ S′(i−1) = S̄(i−1) ∪ S′(i−1) = S(i−1) ∩ S̄′(i−1).

Other operations that may be performed on binary images include border
following, thinning, and labeling [55]. Border following can be implemented
using crack or chain coding schemes. This is, following the border of the elements
in S using 4-connectivity or 8-connectivity. Thinning is similar to shrinking with
the exception that the endpoints of the elements in S should not be deleted from
the image. In Fig. 1 (c) for example, the edges detected using Sobel operators
are thinned to form one-pixel wide edges. Labeling consists on assigning an
entry in a database to every separately connected component of S.

A powerful and frequently used approach for grouping together the edge
elements that form straight lines in an image is based on the concept of Hough
transformation [29] that, in its more common implementation, maps a straight
line in an image into a single point in (d, θ) space, d and θ being the two
invariant parameters in the polar coordinate representation of a line. The (d, θ)
space is also known as the Hough space. A generalization of this approach can
also be used for grouping together the detected fragments of smooth curves
[5]. For Hough transform based extraction of straight lines, the distance of
each edge pixel from the origin is computed by using r =

√
u2 + v2, and the

orientation by φ = tan−1(v/u). See Fig. 10. The edge orientation angle θ is
obtained from the output of a Sobel or LoG operator, and the perpendicular
distance from the image origin to the edge with point (u, v) and orientation
θ is d = r sin(θ − φ). Once d and θ are computed, the corresponding cell in
the Hough space is incremented. After processing the entire image, the lines
corresponding to the cells with the highest number of hits are redrawn on top of
the original image. Then, a raster scan is performed on the entire image to find
the points near this line. This idea can be extended to extract curves from the
output of an edge detector. Instead of using the parametric equation of a line
d = r sin(θ−φ), the generalized parametric equation for the desired curve must
be used to define the Hough space, i.e., for circles (u − u0)2 + (v − v0)2 = c2

defines a 3-D voting array with perpendicular directions u0, v0, and c. If the
output of the edge detector is not a binary image, the update values for the
cells on the Hough space may be weighted with the intensity of the pixel being
analyzed.

Another approach to boundary localization includes the use of active con-
tours, namely snakes [37]. The classical snakes approach is based on deforming
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Figure 10: The Hough transform maps straight lines in the image space into
single points in the (d, θ) space. It can be used to group together unconnected
straight line segments produced by an edge operator.

an initial contour curve towards the boundary of the object to be detected. The
deformation is obtained by minimizing an energy function designed such that
a local minimum is obtained at the boundary of the object. This energy func-
tion usually involves two terms, one controlling the smoothness and continuity
of the contour curve and the other attracting it to the object boundary. The
idea of active contours can also be extended to 3-D object recognition by using
3-D deformable surfaces [9]. In this case, instead of tracking the boundary of
an object in a 2-D image, the surface representation of the object is computed
using 3-D information, such as that obtained from a structured-light sensor.

The idea behind edge detection, or any other low-level process, is to prepare
the image so that specific image components can be clustered. The clustering
of image components into higher level organizations such as contours, each from
a single object, is known as grouping or perceptual organization [34, 43]. A
grouping process can improve the search for an object in a recognition system
by collecting together features that are more likely to come from the object
rather than from a random collection of features. Most model-based recognition
systems exploit such simple grouping techniques.

Low Level Processing for Structured Light Projection Sys-
tems

The three-dimensional point coordinates obtained from a structured light system
are generally stored in a matrix whose columns correspond to the light stripes
used to illuminate a scene and whose rows correspond to horizontal scan lines of
the camera used to capture stripe images. For the light stripe indexed i and a
camera scan line indexed j, one ends up with three numbers, xi,j , yi,j , and zi,j ,
that represent the world coordinates of the illuminated point and if desired,
three additional numbers, Ri,j , Gi,j , and Bi,j that represent the RGB color
coordinates of the white light reflected by the object point. One, of course, is
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not limited to using the RGB color space, since it is trivial to transform the color
coordinates into any other desired representation. Computed for all i and j, the
numbers xi,j , yi,j , and zi,j constitute a range map of the scene. An example of
a range map obtained using structured-light imaging is shown in Fig. 5 (b). In
what follows, we will use the vector �pi,j to denote

�pi,j = [xi,j , yi,j , zi,j ]
T

After a range map is recorded, the next step is the extraction of analytically
continuous surfaces from the scene. In other words, we want to be able to group
together object points into planar, cylindrical, conical, and other surfaces that
can be described by relatively simple analytical forms. A necessary first step
to such grouping is the computation of the local surface normals from a range
map. Theoretically at least, the local surface normal at a point �pi,j in a range
map can be computed from

n̂ =
∂�p
∂i × ∂�p

∂j∣∣∣∂�p
∂i × ∂�p

∂j

∣∣∣
but unfortunately this approach does not work in practice because of the noise
enhancing properties of the derivatives. What works very effectively is an ap-
proach that is based on assuming that an object surface is locally planar in
the vicinity of each measurement. This local surface can be given the following
algebraic description:

�pi,j · n̂ = d

at point (i, j) in the range map. Consider now a small squared window Wi,j ,
usually 5 × 5 or 7 × 7, around a point (i, j). The error between a planar patch
fitted to the measured range map values within this window is given by

ε =
∑

k,l∈Wi,j

(
�pT

k,ln̂ − d
)2

This error can be reexpressed in the following form

ε = n̂T


 ∑

k,l∈Wi,j

�pk,l�pT
k,l




︸ ︷︷ ︸
Q

n̂ − 2d


 ∑

k,l∈Wi,j

�pT
k,l




︸ ︷︷ ︸
�qT

n̂ + N2d2

We evidently must choose the value for the normal that minimizes the error.
This optimum value for n̂ is computed by setting to zero the partial derivatives
of the following Lagrangian

l(n̂, d, λ) = ε + λ
(
1 − n̂T n̂

)
Setting to zero the partial derivatives of this expression, we get

∂l

∂n̂
= 2Qn̂− 2d�q − 2λn̂ = 0
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(a) (b)

Figure 11: Needle diagrams showing surface normals for a range map, a) without
using adaptive windowing, b) using adaptive windowing.

∂l

∂d
= −2�qT n̂ + 2N2d = 0

∂l

∂λ
= 1 − n̂T n̂ = 0

Substituting the second of these equations in the first, we end up with the
following

Qn̂ − �q�qT n̂
N2

− λn̂ = 0

or, equivalently,
Rn̂ = λn̂

where R is given by

R = Q− �q�qT

N2

The solution to Rn̂ = λn̂ is obviously an eigenvector of the 3× 3 matrix R
and we choose that solution which corresponds to the smallest eigenvalue, for
the simple reason that it can be shown trivially by substitution that the error ε
becomes equal to the eigenvalue when we use the corresponding eigenvector of
R for the surface normal. Shown in Fig. 11 (a) is the needle diagram of a range
map showing the surface normals computed for an object. The orientation of
each needle is a projection of the local surface normal on a display plane.

Used without any further modification, the above approach will still fail
to give acceptable results if the window Wi,j straddles the boundary between
two smooth surfaces or includes a jump edge. Such distortions can be virtually
eliminated by adaptive placement of the windows in the vicinity of edges. For
every point �pi,j the window Wi,j is composed of the neighboring points �pk,l,
with i−N/2 ≤ k ≤ i−N/2, and j−N/2 ≤ l ≤ j−N/2. As mentioned earlier, at
each of these points we should have a normal n̂k,l, and a fitting error εk,l. The
idea behind adaptive windowing is a reassignment of the computed normals to
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each point pi,j, the reassigned normal being chosen from among the neighboring
normals on the basis of the smallest product wi,j,k,lεk,l. The weight wi,j,k,l can
be selected as the inverse of the city block distance between the points �pi,j and
�pk,l.

wi,j,k,l =
1

c + |i − k| + |j − l|

The constant c is chosen such that the distance weighting will be the dom-
inant factor in wi,j,k,lεk,l. Fig. 11 (b) shows the needle diagram of the same
range map with adaptive placement of the Wi,j windows.

After the local surface normals are computed in the manner presented above,
one must segment the range map in such a way that each segment represents
a smooth surface. Such surfaces are bounded by crease edges where surface
normal discontinuities occur, or by jump edges where neighboring points in the
range image correspond to distant points in the scene. Smooth surface segments
are recursively generated by starting at any point in a range map and growing
outwards while meeting the following two criteria for the neighboring points �pi,j

and �pk,l.
‖�pi,j − �pk,l‖ > Jump Edge Threshold

cos−1
(
n̂T

i,jn̂k,l

)
‖�pi,j − �pk,l‖ > Curvature Threshold

The two thresholds are determined empirically for a given class of objects.

The next step in low-level processing consists of classifying each smooth
segment of a range map on the basis of its analytic properties. For most indus-
trial objects, this classification is into planar, conical, or cylindrical; a category
called “other” can also be included if desired. This classification is easily done
by computing the extended Gaussian image (EGI) of a surface. The EGI of an
object surface is obtained by mapping the surface normal at every point onto
a sphere of unit radius on the basis of identity of surface normals. In other
words, a point �pi,j is mapped to that point of the unit sphere where the out-
ward normal is the same as the one computed at �pi,j . The unit sphere is also
known as the Gaussian sphere. As shown in Fig. 12, the EGI image of a planar
surface is a small patch whose orientation on the Gaussian sphere corresponds
to the normal to the plane. For a conical surface, its EGI is a minor circle with
its axis being parallel to the axis of the conical surface; and for a cylindrical
surface, its EGI is a great circle whose axis is again parallel to the axis of the
cylinder. The distance from the center of the sphere to the plane containing the
circle in each case is d = sin(θ), whereas the radius of the circle is r = cos(θ),
θ being the cone angle. Therefore, in order to declare a surface type as planar,
conical or cylindrical, a plane must be fitted to the EGI points. The equation
for the best fitting plane is n̂T â = d. This problem is identical to that of fitting
a planar patch to the neighboring points on a range image point, and reduces
to computing the eigenvector corresponding to the smallest eigenvalue of the
matrix

R =
N∑

i=1

n̂in̂T
i −

∑N
i=1 n̂i

∑N
i=1 n̂T

i

N2
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Figure 12: The extended Gaussian image is used to identify the shapes of the
segments extracted from a range map. The orientations of the normals at dif-
ferent points in a segment obey different analytic properties for different surface
types.

in the equation Râ = λâ, where N is the number of points on the segmented
surface, n̂i are the previously computed normals at each point, and the com-
puted eigenvector â is the axis orientation of the detected surface. The distance
d = âT

∑N
i=1 n̂i/N is used to characterize the surface type. For a plane d ≈ 1,

for a cone 0 < d < 1, and for a cylinder d ≈ 0. Fig. 5 (c) shows a segmented
range map. In this example, segments 10, 11, 26, 27, and 43 were characterized
as conical surfaces, whereas the rest of the segments detected were classified as
planar surfaces.

Object Representation

Object Representation for Appearance-Based Recognition

The data structures used to represent object models and the data acquired
from an image or a range sensor depend on the method used for recognition.
In appearance-based recognition, an instance of an object and its pose is com-
puted without first determining the correspondence between individual features
of the model and the data. A vector of global parameters is computed from the
sensory data, and it is compared to similar vectors previously obtained during
a training session, looking for the best matching model. If the primary goal
is object identification, the vectors computed during the training session cor-
respond to different objects. On the other hand, if the main concern is object
pose computation, then each vector computed during the training session cor-
responds to different views of the same object, provided the object has already
been identified.

There exist several ways to construct these global parameter vectors. They
can be defined based on simple geometric attributes such as area, perimeter,
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elongation, or moments of inertia. Moreover, the global parameter vectors can
be computed based on spatial frequency descriptions such as the discrete cosine
transform, Fourier descriptors, wavelets, or eigenimages. When object iden-
tification is of primary concern, the attributes selected must be invariant to
changes in the object’s pose. Conversely, when the task requires for object pose
computation, the parameters used should diverge for different views of the same
object.

The selection of image attributes for image parameterization in object recog-
nition is also termed parametric appearance matching [49]. For 3-D object
recognition, the appearance of an object depends on its shape, reflectance prop-
erties, pose in the scene, and illumination conditions. When the illumination
conditions are the same for different scenes, the shape and reflectance for a rigid
object can be considered as intrinsic properties. An appearance-based object
recognition system must learn the objects for identification. To learn an ob-
ject, the system is presented with multiple views of the same object at different
orientations. The result is a large set of images for the same object with high
correlation among them. To ease the search for the corresponding object class
for a given image, the large set of training images is usually compressed into a
low-dimensional representation of object appearance.

One method for image compression known as principal components analysis
is based on the Karhunen-Loéve transform. In this method, all images are
projected to an orthogonal space, and then, they are reconstructed by using
only their principal components. Consider every image to be a random vector
x with dimensionality N = uv, where u and v are the image width and height
in pixels respectively. All the images for the same object are expected to be
highly correlated, and to lie in a cluster in this N -dimensional space. In order
to reduce the dimensionality of the space all the training images are projected
onto a smaller space minimizing the mean squared error between the images
and their projections. The center of the cluster of n images for the same object
with varying pose is the point

x̂ =
1
n

n∑
i=1

xi

and the unbiased sample covariance matrix is given by

Σ =
1

n − 1

n∑
i=1

(xi − x̂) (xi − x̂)T

The projection of each image onto a space of dimensionality M < N can be
computed by

yi =




φT
1

φT
2
...

φT
M


 (xi − x̂)

where the vectors φ1, φ2, . . . , φM form an M -dimensional basis for the new
space with origin in x̂. The basis vectors φi are orthonormal. This is, they are

19



Figure 13: A 2-D example of the Karhunen-Loéve transform. The projections
yi’s into the reduced space spanned by φ1 minimize the error between the data
points xi’s and their projections.

linearly independent, of unit length, and completely span 
M . The optimum
choice for the φi’s are those that satisfy Σφi = λiφi, that is, the eigenvectors of
Σ that correspond to the M largest eigenvalues of Σ. Fig. 13 shows a 2-D ex-
ample of the Karhunen-Loéve transform for reducing space dimensionality. The
eigenvector φ1 is the principal component of the data set, and the projections
yi’s on φ1 minimize the error between the data points xi’s and their projections.

Though a large number of eigenvectors may be required for an accurate
reconstruction of an image, only a few are generally sufficient to capture the
significant appearance characteristics of an object. The space spanned by φ1,
φ2, . . . , φM is also commonly referred as the eigenspace. If two images are
projected into the eigenspace, the distance between the corresponding points in
the eigenspace is a good measure of the correlation between the images.

When the goal is to discern among different objects, images of all objects
are used together to construct the eigenspace during the training phase. Sev-
eral images of each object with varying pose and illumination conditions are
projected to the eigenspace to obtain a set of points. The set of points for each
object is expected to be clustered together representing that object class. Then,
an image of the object to be recognized is also projected to the eigenspace, and
is classified as belonging to the closest cluster class it maps to. To estimate
the orientation of an object once it has been identified, the same scene image
is mapped to an eigenspace made of only the training samples for that object.
A manifold is constructed by interpolating these training points using a curve
that is parameterized by pose, scale or illumination. The closest point in the
manifold obtained provides an estimate of the pose and illumination conditions
of the object [49].

In a noncorrespondence based recognition system, object representation is
appearance-based. That is, instead of identifying local object features in the
sensed data, global parameters are computed from the whole image. For this
reason, most appearance-based recognition systems developed to date require
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(a) (b) (c)

Figure 14: The geometrical representation of a typical 3-D object consists of
features such as surfaces, edges and vertices, and for each feature, a set of
attribute value pairs.

that the variations in scene illumination be small, and that the objects not be
occluded. Although the non-occlusion and illumination constraints can be met
for a wide range of vision applications, the more general case is still a difficult
problem. An example application for the recognition of faces, where occlusions
are accounted for with the use of Hidden Markov Models is presented in [46].
The advantage of the appearance-based method is that it is not necessary to
define a representation or a model for a particular class of objects, since the
class is implicitly defined by the selection of the training set. On the other hand,
model-based recognition systems can be designed to deal with situations where
cluttered scenes and changes in illumination are present. The latest approaches
to the solution of the object recognition problem consider the integration of
both model-based methods and appearance-based analysis.

Object Representation for Model-Based Recognition

Three central issues arise when trying to achieve object recognition using a
model-based approach: (1) the features used to describe an object should be
such that they can be extracted from an image; (2) it should be possible to
aggregate the features into object models appropriate for recognizing all objects
in a given class; and (3) the correspondence or matching between image features
and model features should permit recognition of objects in a complex scene
[11]. Consider for example the case of 3-D object recognition from 3-D data
when objects are in bins of the sort shown in Fig. 5. Each of these objects
can be given a geometrical representation whose fundamental constituents are
surfaces, edges, and vertices. Such a representation could drive a model-based
computer vision system because, as described earlier, it is possible to extract
such geometric features from range maps. Of course, such geometrical features
themselves would need a representation, the common one being via what are
known as attribute-value pairs.

Consider for example the object shown in Fig. 14 (a) whose wire-frame
representation is shown in Fig. 14 (b, c). The surface F of this object can be
represented by the following set of attribute-value pairs:

21



shape: planar
area : 4516.1 mm2

color: white
normal axis orientation: (0, 0, 1)
adjacent surfaces: {E, G, J, K}
angles with adjacent surfaces: {−90◦, 90◦, 90◦, 90◦}

Similarly, the edge l feature in Fig. 14 (b) can be represented by

shape: line
length : (4) 88.9 mm
type: convex
delimiting vertices: {3, 10}
delimiting surfaces: {B, E}
orientation: (0.643,−0.766, 0)

and the vertex feature 10 by

location: (165.1mm, 101.6mm, 57.15mm)
adjacent vertices : {3, 9, 11}
outgoing edges {l, r, s}
surrounding surfaces: {B, E, K}

In general, for geometry-based model descriptions, a feature can be any
simple geometric entity such as a vertex, an edge or a surface. In these model
representations, surfaces whose algebraic descriptions are up to the second order
are easy to represent. For example, in Fig. 14 (b), the surface C is a truncated
conical surface that would be represented by the following data structure:

shape: conical
area : 6964.0 mm2

color: white
normal axis orientation: (−0.494,−0.588, 0.640)
top radius: 19.05 mm
base radius: 31.75 mm
height: 50.8 mm
adjacent surfaces: {B, D}

Once we have settled on what features to use to describe an object, we need
to address the second issue raised at the beginning of this section, viz., how
to aggregate the features into object models. We evidently need to embed the
features in some structure that would also capture the spatial relations between
the features. The most fundamental data structure that computer science makes
available to us for representing relational information is an attribute graph. The
nodes of such a graph could represent each of the features we have discussed and
the edges represent adjacency or any other relationship between the features.

For example, Fig. 15 shows a simple attribute graph for the 3-D object from
Fig. 14. In this object model representation the nodes in the graph correspond
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Figure 15: The nodes represent the object features, in this case the object
surfaces; and the arcs indicate the adjacency between surfaces. The number on
each arc is related in the following manner to the length of the physical edge
joining the two surfaces in the object model: (1) 12.7 mm, (2) 38.1 mm, (3)
50.8 mm, (4) 88.9 mm, (5) 99.2 mm, (6) 114.3 mm, (7) 119.7 mm, and (8) 199.5
mm.

to the object surfaces, and the edges indicate the adjacency attribute. The
number associated with an edge in the graph is related to the length of the edge
connecting the two surfaces in the object model.

To construct an object model, we need to learn the attribute-value pairs for
each feature in the object. In an industrial setting, these values would often
be available in the CAD files coming from the design department; but if such
information is not at one’s disposal, a user-guided learning system that extracts
these values from training samples can be used. In the MULTI-HASH system
[23] for example, an interactive learning process is used to compute the attribute
values from training samples. The user presents to the system each object that
the system is expected to recognize in many different poses (this can be done
easily by placing objects in a sand box), and, with the help of a pointing device,
establishes correspondences between the features on a model object and the
features extracted from sensed data. In this manner, the system automatically
determines what attribute values to use for describing the different features on
a model object. An advantage of such learning systems is that they take into
account the measurement noise that is always present in the data. The learning
session used to construct a model base of the objects to be recognized usually
takes place off-line.

Measurement of Attribute Values from Scene Data

As was mentioned before, the first step in actual model-based object recognition
is the segmentation of sensory data and then the extraction of attribute values
for each of the segments. Subsequently, one can try to establish a correspondence
between the segmented features thus obtained and the features in an object
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model.

Attributes that are measured using sensory data should, under ideal cir-
cumstances, be invariant to rotation, translation, scale, ambient illumination,
background clutter, etc. If a range sensor is used, the very nature of the data
generated guarantees many of these invariances, provided a sufficient number
of data points are collected for a given feature. With such a sensor, the area
of a planar surface would be the same, as long as the surface is entirely visible
and discounting the effect of highly oblique angles between the surface normal
and the line of sight to the sensor. By the same token, the radius of curvature
estimated for a cylindrical surface would be the same regardless of the viewpoint
angle from the sensor to the surface. But, at the same time, one has to bear in
mind the fact that even with 3-D sensors, occlusion may cause large variations
in attribute values as the viewpoint angle between the sensor and the surface
is changed. In [23], the susceptibility of some attribute values to occlusion is
taken care of in the design of matching criteria between model attribute values
and scene attribute values. For example, for an attribute value such as the area
of a surface, we can only demand that the area extracted from a surface in the
scene be less than the area of the corresponding surface in the object model.

Lack of invariance in attribute values poses a bigger problem for recogniz-
ing 3-D objects in 2-D images. Basically, all geometrical attributes, such as
perimeter, area, etc., are scale, translation, rotation, and ambient-illumination
dependent in 2-D images, not to mention the fact that it is extremely difficult
to carry out an automatic segmentation of the images to establish a relationship
between the features in an object model and the segments extracted from the
image.

These problems are fortunately not as daunting for recognizing 2-D planar
objects in 2-D images. Some of the attributes that can be measured after
segmentation in 2-D images include the perimeter and the moments of area
of a segment. The perimeter of a segment can be computed by following the
crack code or the chain code of the segment boundary representation, and the
moments of area of a segment can be defined as summations over all the pixels
in a segment along the u and v directions. The pq moment for a segment Ω in
an image is given by

mpq =
∑
u∈Ω

∑
v∈Ω

upvqI(u, v)

where I(u, v) is the normalized gray-level intensity in the image and can be set
to 1 for binary images. The zeroth moment m00 gives the area of a segment.
The center of a segment can be computed by [ū, v̄]T = [m10/m00, m01/m00]T .
Moreover, the central moment µpq given by

µpq =
∑
u∈Ω

∑
v∈Ω

(u − ū)p(v − v̄)qI(u, v)

is invariant to translations, and ηpq = µpq/µγ
00, where γ = (p+ q)/2+1, is scale

invariant.

Other attributes that can be computed on features extracted from 2-D im-
ages are the segment bounding rectangle, the rectangularity Fr, the circularity
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Fc, and the radii R:

Fr =
AΩ

ABR

Fc =
P 2

Ω

4πAΩ

R =
max
u,v∈Ω

√
(u − ū)2 + (v − v̄)2

min
u,v∈Ω

√
(u − ū)2 + (v − v̄)2

where AΩ is the area of the segment, ABR is the area of the bounding rectangle,
and PΩ the perimeter of the segment. An entry with the minimum and maxi-
mum u and v coordinates of the bounding rectangle can be included in the list
of attributes for any given segment. The center of the bounding rectangle is a
useful descriptor of segment position.

Inclusion relationships can also provide significant information for identify-
ing a particular feature within an object model. When the features are planar
segments in 2-D images, each segment descriptor will have a “parent” field
that points to the surrounding segment. Additional links could be assigned for
“child” and “sibling” segments. Ultimately, the background segment will be at
the root node for all segments in an inclusion description tree. As long as the
number of segments in a scene is not too large, these inclusion relationships can
be obtained by searching through this tree. The number of “holes” present in a
segment is termed the genus, and is equivalent to the number of “children” for
a given segment in the inclusion description tree.

Model Hypothesis Generation and Model Match-

ing

Appearance-Based Matching

As mentioned before, for appearance-based object recognition [15, 16, 48, 49],
the object models will correspond to topological structures in a multidimensional
attribute space. Several training images of the same object with small viewpoint
variations will usually map to different points in the attribute space forming a
manifold parameterized by pose. Different objects will correspond to different
manifolds. The image obtained from the scene to be analyzed must be projected
into the attribute space. The closer the projection of this image is to any of
the manifolds, the greater the probability that the scene object is the model
object corresponding to the manifold. Bear in mind from our discussion of
appearance-based object model representation, that the attribute space used for
model matching is obtained by reducing the dimensionality of the image space
using one of many possible techniques, such as principal components analysis,
discriminant analysis, multidimensional scaling, etc.

When estimating the distance between a scene data entry and the manifolds
in the attribute space, the closest entry in the attribute space is called the nearest
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neighbor, and several measures can be used to compute the distance between
nearest neighbors. The simplest of these distance measures is the Euclidean
distance

d =
√

(x − y)T (x − y)

where x is the data point corresponding to the image of the unknown object
as projected into the attribute space, and y is one of the training samples also
projected into the attribute space. When the cluster of samples for the object
class to be tested is assumed to have a normal distribution with covariance
matrix Σ, a more appropriate measure of image similarity is the Mahalanobis
distance

d =
√

(x − y)T Σ−1 (x − y)

The problem of model matching using appearance-based methods consists of
finding the training image that minimizes the distance to the image containing
the unknown object. If this distance is within a certain threshold, we can
say that the unknown object belongs to the same class as the training data
point. The advantage of using appearance-based methods over geometry-based
techniques is that it is not necessary to define a geometric representation for a
particular class of objects, since the class is implicitly defined by the selection
of the training samples. On the other hand, we may need a large number of
training samples.

Model-Based Matching

In matching scene features to model features using model based techniques,
the following steps are usually taken: image processing, feature extraction, hy-
potheses generation, hypotheses verification, and pose refinement. In the previ-
ous sections we have discussed various image processing and feature extraction
techniques. Now we will focus our attention on how to generate scene-to-model
match hypotheses, and on how to verify these hypotheses by comparing scene
features to model features.

While local features yield more robust matching in the presence of occlu-
sion and varying illumination conditions than the parameter vectors used for
appearance-based recognition, they are also less distinctive for discriminating
between similar objects. There may be many scene features that could match
an individual model feature, or one scene feature that is present in multiple
object models. In order to find the correct correspondence one needs more in-
formation, and this is typically obtained by considering relational properties of
features to create local feature sets. A local feature set will now correspond
to a unique set of features from an object model. By grouping features into
local feature sets we reduce the uncertainty of a set of features to a particular
object model, thus facilitating the matching process. Each feature by itself will
often be too simple and incapable of providing sufficiently discriminating infor-
mation for identification. But when several features are combined into a local
feature set, they will provide sufficient information to generate hypotheses for
scene-to-model matching.
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(a) (b)

Figure 16: a) Local feature set consisting of the vertex 12, and the set of surfaces
{F, G, K} that surround it, b) the number on each arc is related to the length
of the physical edge joining each pair of surfaces: (2) 38.1 mm, (3) 50.8 mm,
and (4) 88.9 mm.

When 3-D objects contain vertices formed by the intersection of planar faces,
such vertices together with these planar faces can be used for local feature sets.
Other possibilities for local feature sets include three non-collinear vertices, a
straight edge and a non-collinear vertex, or three non-coplanar surfaces. Fig.
16 shows a local feature set for the object displayed in Fig. 14. The local
feature set being in this case the vertex 12 and the set of surfaces {F, G, K}
that surround it. The only restriction for a local feature set is that it must
contain the minimal grouping of features necessary to uniquely obtain the pose
transform that relates an object in the scene to an object model.

A local feature set in a model is considered to match a scene feature set if
each of the corresponding attribute values for every feature match. Different
criteria are used for comparing attribute values depending on whether they
are qualitative or quantitative. Attributes that are qualitative are considered
to match if their labels are identical, whereas quantitative attributes match if
their values fall within a range of each other.

Once a local feature set is extracted from the scene, we need to compare
it to our model base and try to establish a correspondence or match. When
the number of features that constitute a local feature set and the number of
objects in the database are both small, then a straightforward approach to model
matching consists of sequentially examining each model in turn, and accepting
as possible solutions only those models for which there exist a correspondence of
scene and model features. The number of scene-to-model comparisons needed
to classify an object grows exponentially with the number of features in the
model description. For this reason, sequential examination of the model base for
feature matching is not computationally efficient for problems involving large
libraries of objects or large number of features per object. Instead, cleverer
model matching algorithms must be devised. Most approaches to model-based
recognition and localization cast the scene-to-model correspondence part of the
problem as a search problem, the search being for a consistent match between
a set of model features and the Local Feature Set extracted from the scene.
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Recognition by Alignment

The comparison of scene with model feature sets will usually generate a set of
hypotheses. Each of these hypotheses will constitute a possible solution to the
spatial correspondence problem, providing as a result a transformation matrix
that relates the pose of the object in the scene to the object model. Each
hypothesis may relate a scene local feature set to different local feature sets in
one or more object models. To further disambiguate among the possible scene-
to-model correspondences, the rest of the features in the object model must be
mapped back to the scene with the corresponding transformation. If enough
nearby features are found to match between the scene and the model, then
we could declare that there exists a scene-to-model match. The corresponding
transformation matrix will provide the information regarding the position and
orientation of the matched object in the scene.

The method of breaking the recognition process in the two stages of hypoth-
esis generation and verification is also known as recognition by alignment [32].
The alignment method can help overcome some of the most relevant factors
that make object recognition of 3-D objects in 2-D images so difficult. Namely,
viewpoint invariance, error on attribute measurement, and partial occlusions.

To handle the fact that any view of the object to be recognized could appear
in the image or images taken from the scene, hypotheses are generated for
matches between all possible scene local feature sets and model local feature
sets. Once a match has been hypothesized, the verification stage allows for
small errors in the measurement of the attributes. It is only required that the
attributes of the verification features match their counterparts in the model
within certain thresholds, usually established empirically. Occlusion, on the
other hand, is handled by generating hypotheses using features from the model
and the scene that are robust to partial occlusions, such as corner points or
pieces of line segments. Even when the object is not entirely visible, if an entire
local feature set can be located, along with the necessary verification features,
a match hypothesis could be evaluated as true.

However, two major problems are present when using matching by align-
ment. First, the features used for building a scene local feature set could easily
belong to different objects, to shadows, or the background. Although these sets
of features most likely will not find a match in the model, the complexity of the
search for a scene-to-model correspondence will be affected by the performance
of the grouping technique used in the construction of a local feature set. The
second problem arises from the fact that the error in locating the image features
will propagate and magnify the error in the computation of the pose transform
for a local feature set. As a result, the predicted pose of the object may not
even approximate that of the scene.

We have argued that the number of features needed for object identification
is bounded by the minimal grouping of features necessary to uniquely obtain
the pose transform relating an object in the scene to an object model. Other
researchers have proposed other bounds on the number of features needed for
identification. In [26] for example, this number is said to be determined as a
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function of the probability that an erroneous match will occur. In this case,
the number of matching features will depend on the number of model features,
the number of scene features, the types of features used, and bounds on the
positional and orientational error in the data. The probability that a random
arrangement of scene features will be considered as an object decreases when the
number of features required to agree with the model increases, and a threshold
f0 on the fraction of model features required for recognition is obtained with
the expression

f0 ≥ log 1
δ

m log
(
1 + 1

msc̄

)
where m is the total number of model features, s is the total number of scene
features, δ is defined as the probability that there will be mf0 or more events
occurring at random and c̄ depends on the particular type of feature being
matched and the bounds on the sensor error. For the case of 2-D line segments
in 2-D images c̄ has the form

c̄ =
2εaεpᾱL̄

πD2
+

εaε2p
πD2

where εa and εp are bounds on the angular and positional error for a data
feature (line segments in this case), L̄ is the average edge length in the model,
ᾱ the average amount of occlusion of an edge in the scene, and D the linear
extent of the image. The above formula can be simplified in the case where the
features are vertices instead of edges, and has also been extended for edges in
3-dimensional space.

Graph Matching and Discrete Relaxation

Once a local feature set has been extracted from the scene, it must be compared
against sets of features from the object model. A sequential search for a set of
features in the object model that produces an acceptable match hypothesis may
be very time consuming if the object model contains a large number of features
or the number of object classes is large. To avoid sequential search during scene-
to-model correspondence we can resort to various graph theoretic methods.

Using relational attributes, a set of features can be expressed as a graph
G = (V, E). The set V of nodes in the graph contains the features, and the
edges in the set E represent the relations among features. The set of edges
E is a subset of the Cartesian product V × V , and each of these edges can
be labeled according to the type of relational attribute: adjacency, parallelism,
perpendicularity, and so on.

Producing a scene-to-model match hypothesis is equivalent to finding out
that a subgraph of the graph representing the object model is isomorphic to
the graph extracted from the scene. That is, there exists a one-to-one corre-
spondence between the nodes in the two graphs preserving the graph structure.
Given a model graph GM = (V M , EM ) and a scene graph GS = (V S , ES), an
isomorphism is a one-to-one function f of V S onto V M such that, for all edges
eS

ij = {vS
i , vS

j } in ES , eM
ij = {f(vS

i ), f(vS
j )} = {vM

i , vM
j } is in EM . If the scene
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contains partial occlusions of the object to be recognized, then the graph GS

may contain fewer nodes than GM , |V S | ≤ |V M |. The problem changes to that
of subgraph isomorphism, i.e., to find the largest subgraph of GM isomorphic to
GS . In practice, it is only necessary to find the isomorphism in the object model
graph for the subgraph corresponding to a local feature set extracted from the
scene.

Subgraph isomorphisms can be detected by finding the maximal clique in
a graph. A clique of size m of a graph is a completely connected subgraph of
m nodes in the graph. Given the graphs of an object model GM and a local
feature set extracted from the scene GS , we can construct an association graph
GA as follows. Each node vA in GA is the pair (vM

i , vS
j ) such that the features

vM
i and vS

j have the same attributes. An edge eA
12 exists in GA between the

nodes vA
1 = (vM

i1
, vS

j1
) and vA

2 = (vM
i2

, vS
j2

) if and only if the edges eM
i1i2

in GM

are the same as the edges eS
j1j2

in GS . This expresses the fact that the matches
(vM

i1
, vS

j1
) and (vM

i2
, vS

j2
) are compatible.

Consider for example, the attribute graph presented in Fig. 15, and the local
feature set from Fig. 16. Assume that the only attribute that we can extract
from the scene for each surface is the number of adjacent surfaces. And assume,
for this simple example, that we cannot differentiate between two surfaces if
their number of adjacent surfaces is the same. The only attributes we can
extract for an edge are its length, and its delimiting surfaces. Following these
restrictions, surfaces A, E, F , G, H , and I are all similar with 4 surrounding
surfaces each; surface D has 1; surface C has 2; surface B has 5; and surfaces
J and K have 7 surrounding surfaces each. Edges a, c, q, and s have length
1; edges e and u have length 2; edges d and t have length 3; edges h, i, l, m,
n, o, and p have length 4; edges b and r have length 5; edges f , g, v, and w
have length 6; edge k has length 7; and edge j has length 8. The nodes of the
association graph GA in Fig. 17 consist of all the possible combinations between
the model features and the surfaces in the local feature set extracted from the
scene. The edges in the association graph indicate the possibility of the pair
of model features (vM

i1 , vM
j2 ) to match with the pair of scene features (vS

i1 , v
S
j2).

Observe that for two matches to be compatible, the length of the delimiting
edges in both cases must match too. For example, in the association graph the
vertices (F −F ) and (G−G) are connected because the delimiting edge for the
model features vM

F and vM
G has length 4, as well as the delimiting edge for the

scene features vS
F and vS

G. On the other hand, even though there are edges eM
AJ

and eM
FK in the attribute graph, these delimiting edges have different lengths,

inhibiting the possibility of a match between the model features vM
A and vM

J

and the scene features vS
F and vS

K .

Feasible hypotheses for the model matching problem are obtained by find-
ing the largest completely connected subgraph in GA, i.e., the largest possible
number of correct matches of features between the object model and the scene
feature set. The most important drawback of the clique-finding problem, and
consequently of the subgraph isomorphism problem is that it is NP-complete,
this is, its complexity grows exponentially in the number of nodes of the associ-
ation graph. It has been shown however, that the graph isomorphism problem
is solvable in polynomial time for graphs satisfying a fixed degree bound [22].
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Figure 17: Graph matching by maximal cliques. The model and scene graphs are
combined on an association graph, which shows the compatibility of individual
feature matches. The maximal clique {(vM

F , vS
F ), (vM

G , vS
G), (vM

K , vS
K)} indicates

the best match between the scene local feature set and the object model.

In our example the maximal clique is the one formed by the set of nodes
{(vM

F , vS
F ), (vM

G , vS
G), (vM

K , vS
K)}. Another maximal clique is given by the set

{(vM
F , vS

F ), (vM
G , vS

G), (vM
J , vS

K)}, and further verification steps may need to be
carried out to discriminate between the two possibilities. This is referred to as
hypothesis verification, and can be done after an initial computation of the pose
of the hypothesized object in the scene is obtained, by searching for additional
features in the scene that match features outside the local feature set in the
hypothesized object rotated and translated in accordance with the hypothesized
pose.

Another method for graph matching that is solvable in polynomial time is
bipartite matching. Bipartite matching is the problem of dividing a graph in two
different groups, and to assign each node from one of the groupings to a node
in the other grouping. If these two groupings correspond to the scene features
and the model features in one graph GSM , and if we draw arcs between the
nodes in the two groups on the basis of their similarities, as in Fig. 18, a scene-
to-model match hypothesis can be represented by the maximal bipartite graph
that can be extracted from GSM . Every scene feature vS

i may bear similarities
with many model features. However, for recognition to be correct, we want
every scene feature to match to a distinct model feature, that is, the matching
between scene and model features must be injective.

We need to prune the graph GSM by eliminating the injective-mapping
violating arcs until we find a bipartite match. A sequential search for these
unacceptable links between scene and model nodes can become combinatorially
extensive, but can be replaced by parallel techniques to make the computation
feasible. One way of doing this is by discrete relaxation [38]. In general, relax-
ation in the computer vision context refers to a manner of iterative processing
over a cellular structure in which decisions for each cell are made purely locally
but subject to contents in the neighboring cells. Since the connection of a node
to its neighboring nodes is fundamental to a graph, relaxation extends very
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Figure 18: Bipartite Matching. The left column represents a local feature set
and the right column a set of model features. If a line joins a scene node with a
model node, that means the two nodes have similar attributes. An acceptable
hypothesis match between scene features and model features must be injective.

naturally to computations over graphs. We must first create a graph by con-
necting each scene feature node to all possible model feature nodes on the basis
of some similarity criterion (i.e., similar attribute values). These connections
are then pruned by enforcing relational constraints, as observed in the scene,
between different pairs of nodes in the graph. If the iterative application of this
constraint enforcement leads to a unique arc between each node in the scene
graph and the corresponding node in the model graph, we have accomplished
scene interpretation via discrete relaxation. After relaxation, the assignment
of scene to model features in GSM is unique for a sufficiently large number of
model features allowing us to compute a possible pose transform.

Scene-to-model correspondence using bipartite matching and discrete re-
laxation is particularly useful when the number of object classes in the model
library is large, and when the objects involved possess a large number of fea-
tures. Both these factors lead to large search spaces for object identification and
pose computation and may render the problem too hard to solve using other
model-based methods.

The Feature Sphere Approach

Another approach to solving scene-to-model correspondence is through the use
of feature spheres in combination with the search tree of Fig. 19. The first h
levels of the tree describe the different ways for h model features to match h
scene features. The second part of the tree represents the verification stage that
is implemented with the help of a feature sphere representation of the object.
A path from the root to a leaf is a recognition sequence. An example of a three-
dimensional object recognition system that uses this approach is the 3D-POLY
system [10]. Using this technique, we can identify an object and compute its
pose.
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Figure 19: A data driven search tree is divided in two parts at level h. The first
part represents the hypothesis generation stage while the second part represents
the verification stage.

As depicted in Fig. 19, a hypothesis can be formed with h features in the
hypothesis generation feature set, and the remaining n−h features in the scene
can then be used for verification. In principle, if a hypothesis is correct, i.e., the
scene object is indeed an instance of the candidate model after transformation.
The remaining n − h features in the scene should match their counterparts on
the model using the same transformation. The process of matching scene to
model features can not be performed in the opposite direction since not all
model features will be present on any scene in the case of occlusions.

If any of the remaining n − h features in the scene cannot be matched to a
model feature, that implies that the current hypothesis is invalid, because either
the selected model object is not the right one, or the computed transformation
is not accurate. Therefore, when a scene feature does not match any model fea-
ture under the candidate transformation, the matching algorithm must generate
another transformation hypothesis. For this hypothesis generation scheme, the
search is exhaustive over the model features in the sense that at every node
shown on the hypothesis generation part in Fig. 19, a scene feature must be
compared with all the features of the candidate object model. Therefore, at
each node, the complexity is proportional to the number of features in the ob-
ject model. The complexity for hypothesis generation is exponential on the
number of features per hypothesis generation feature set. For rigid polyhedral
objects, this number is typically 3, although its precise value depends upon
how carefully the hypothesis generation feature sets are constructed. On the
other hand, using the feature sphere data structure for object representation
[10], the complexity of verification is made proportional to the total number of
features on the model. The overall complexity of the recognition process is thus
made a low-order polynomial in the number of features on the model, this be-
ing a substantial improvement over the exponential complexity of a brute force
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search.

A system that extends this idea for model matching to the use of hash tables
for fast hypothesis generation is the MULTI-HASH system [23]. The advantage
of this system over other model-based approaches resides in the learning stage,
in which a multiple attribute hash table for fast hypothesis generation is built.
By automatically constructing a hash-table for object classification, the system
is able to synthesize, under supervised training, the most discriminant features
that separate one class of objects from another. During training in the MULTI-
HASH system, the human operator specifies the correspondences between model
feature sets and scene feature sets, as well as the object class. The system
uses this information to construct models of uncertainty for the values of the
attributes of object features. Using these uncertainty models, a decision tree is
generated, which is transformed into a hash-table for fast model matching.

Spatial Correspondence using Range Data

If range data is used for 3-D object recognition, then the transformation matrix
between the scene and model feature sets can be computed by solving a set of
equations of the form [

�pi
m

1

]
=
[

R t
0 1

] [
�pi

s

1

]

when there is a one to one correspondence between the model point �pi
m and

the scene point �pi
s. The rotation submatrix R describes the orientation of the

object in the scene, and the vector t represents the translation of the object
from a reference coordinate frame in the model space to its position in the
scene. A good estimate of the transformation matrix can be computed if a
sufficient number of scene points can be related to their model counterparts.

In the approach used in [10] and [38] for pose computation, a solution for
the rotation matrix R is computed by minimizing the sum of the squared er-
ror between the rotated scene directional vectors and the corresponding model
directional vectors. A directional vector vi

s is the vector that describes the ori-
entation in the scene of feature i. Similarly vi

m describes the orientation of the
corresponding feature in the model space. The solution to this minimization
problem gives an estimate on the orientation of the scene object with respect
to the model object. The minimization problem can be expressed as

∂

∂R

N∑
i=1

‖Rvi
s − vi

m‖2
= 0

To solve this minimization problem we resort to the use of quaternions [19].
A quaternion is a 4-tuple that describes the rotation around a unit vector â
through an angle θ:

Q =
[

cos
(

θ
2

)
âsin

(
θ
2

) ]
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Now, an ordinary directional vector vi would be represented in the quater-

nion form as
(
0,viT

)T

, and its rotation by Q would result in the quaternion(
0,
(
Rvi

)T)T

. By substituting quaternions for the various quantities in our
minimization problem, it can be shown to be identical to

∂

∂R

(
QAQT

)
= 0

where A is given by

A =
N∑

i=1

BiBT
i

Bi =




0 −ci
x −ci

y −ci
z

ci
x 0 bi

z −bi
y

ci
y −bi

z 0 bi
x

ci
z bi

y −bi
x 0




and
bi = vi

s + vi
m

ci = vi
s − vi

m

The quaternion Q that minimizes the argument of the derivative operator in
our new differential equation is the smallest eigenvector of the matrix A. If we
denote this smallest eigenvector by the 4-tuple (α1, α2, α3, α4)T , then it follows
that the rotational angle θ associated with the rotational transform is given by

θ = 2cos−1(α1)

and the axis of rotation would be given by

â =
(α2, α3, α4)T

sin
(

θ
2

)
Then, it can be shown that the elements of the rotation submatrix R are

related to the orientation parameters â and θ by

R =


 a2

x + (1 − a2
x)cθ axay(1 − cθ) − azsθ axaz(1 − cθ) + aysθ

axay(1 − cθ) + azsθ a2
y + (1 − a2

y)cθ ayaz(1 − cθ) − axsθ

axaz(1 − cθ) − aysθ ayaz(1 − cθ) + axsθ a2
z + (1 − a2

z)cθ




where sθ = sin(θ), and cθ = cos(θ).

Once the rotation submatrix R is computed, we can use again the matched
set of scene and model points for the hypothesized match to compute the trans-
lation vector t

t =
N∑

i=1

�pi
m − R

N∑
i=1

�pi
s
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Generalized Hough Transform

Another standard method for reducing the search for the pose of a hypothesized
scene object is to use a voting scheme, such as the generalized Hough transform
[5]. This method is an extension of the same voting scheme that we discussed
for grouping together edge elements to extract lines or curves in an image. The
Hough transform method can be generalized for model matching if the voting
space is comprised by the viewpoint parameters. In the two-dimensional case,
for example, the Hough space can be three- or four-dimensional: one dimension
for the angle of rotation, two for the translation of the object along the u
and v axes, and (if desired) another dimension for representing the scale at
which an object appears on the scene. For 3-D object recognition the Hough
space becomes six- or seven-dimensional (three dimensions for rotation, three
for translation, and one for scaling).

The generalized Hough transform implementation for the classification of
2-D rigid objects from 2-D images consists of the following five steps:

1. Define an object template in terms of a discrete set of points from the set
of features in the object model. Choose a reference point as the template
center, and compute the angle α and distance r of the reference point
relative to the points chosen on the template definition. Finally group
these values into bins with the same gradient direction. This is, for each
point in the template, compute the orientation of the boundary at that
point and store the r and α values on a table indexed by gradient value.

2. Define the Hough space in terms of the position, orientation, and scale of
the expected objects in the image relative to the template. If for example
we know the scale of the objects in the image is fixed, we need not include
the scale dimension in the Hough space.

3. Run an edge operator, such as Sobel or Prewitt, over the image to extract
edge strength and direction at each pixel.

4. For every edge point (ui, vi) with edge orientation θi equal to the orienta-
tion of an edge in the template, look in the previously computed table for
the possible relative locations (r, α) of the reference point. Compute the
predicted template reference point

uc = ui + sr cos(α + φ) , vc = vi + sr sin(α + φ)

where s and φ are the discrete values of the scale and orientation being
considered.

5. For each point from the scene features, we now have the coordinates
(uc, vc), φ, and possibly s of a cell in the Hough space. Increment this cell
by one count. The cell with the largest number of votes will provide the
correct position, orientation, and scale of the object recognized from the
scene.

The main advantage of the generalized Hough transform method is that
it is somewhat insensitive to noise and occlusions. On the other hand, as in
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most model-based methods a good geometric description of the objects to be
recognized is necessary. Another drawback of this method is that the number
of matches to be considered grows exponentially with the number of points in
the object template. To overcome this problem, variants of the generalized
Hough transform method have been purposed such as geometric hashing [54].
But the most important drawback of this approach is that in order to have
reasonable accuracy for the computed pose one must sample the Hough space
quite finely, and that leads to the testing of enormous possibilities. The method
is then equivalent to correlating the object model with the scene model over
all possible poses and finding the best correlation. One can argue that this is
the same drawback as the one seen for the appearance-based methods discussed
earlier.

Summary

Object recognition entails identifying instances of known objects in sensory data
by searching for a match between features in a scene and features on a model.
The key elements that make object recognition feasible are the use of diverse
sensory input forms such as stereo imagery or range data, appropriate low level
processing of the sensory input, clever object representations, and good algo-
rithms for scene-to-model hypothesis generation and model matching.

Whether data acquisition takes place using video images or range sensors, an
object recognition system must pre-process the sensory data for the extraction
of relevant features in the scene. Once a feature vector is obtained, the problem
now is that of correspondence. Provided a training session has taken place, a
search for a match between model features and scene features is performed. A
consistent match and the corresponding transformation give a solution to the
problem of object recognition.
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