Learning inverse kinematics
via cross-point function decomposition

Vicente Ruiz de Angulo and Carme Torras

Institut de Robotica i Informatica Industrial (CSIC-UPC)
Llorens i Artigas 4-6, 08028-Barcelona, Spain.
email{ruiz, torras}Qiri.upc.es,
http://wwu-iri.upc.es

Abstract. The main drawback of using neural networks to approximate
the inverse kinematics (IK) of robot arms is the high number of training
samples (i.e., robot movements) required to attain an acceptable pre-
cision. We propose here a trick, valid for most industrial robots, that
greatly reduces the number of movements needed to learn or relearn the
IK to a given accuracy. This trick consists in expressing the IK as a com-
position of learnable functions, each having half the dimensionality of the
original mapping. A training scheme to learn these component functions
is also proposed. Experimental results obtained by using PSOMs, with
and without the decomposition, show that the time savings granted by
the proposed scheme grow polynomically with the precision required.

1 Introduction

Making robots adaptive not only to environmental conditions, but also to changes
in their own geometry, would widen their range of application. These geomet-
ric changes affect the Inverse Kinematics Mapping (IKM) relating workspace
coordinates (in which tasks are usually specified) to joint coordinates (used to
command the robot). The interest of learning this mapping in the case of flexible
or redundant robots is widely recognized. Moreover, rigid non-redundant robots
would also benefit from such learning, since this would permit their on-line re-
calibration during normal functioning.

Typically, neural network applications have many input variables, some of
which are redundant, and others have a negligible effect on the output variables.
Thus, the underlying mapping can be considered as lying on a low dimensional
manifold. The hard part of the learning task is to guess the structure of the
mapping from the tangle of information, rather than to attain an accurate ap-
proximation, since the mappings are often fairly simple.

Instead, in the learning of the IKM, one has completely independent input
variables, each of them influencing powerfully the result. Under these conditions,
the number of points required to approximate the mapping tends to be exponen-
tial in the number of variables. Moreover, in contrast with other applications, the
mapping has a complex shape and should be approximated with a high accuracy.
Thus, the number of training points required may be huge [3, 2].



Several attempts have been made at reducing the number of required sam-
ples, among them the use of hierarchical networks [4,6], the learning of only
the deviations from the nominal kinematics [5], and the use of a continuous
representation by associating a basis function to each neuron [7].

In this paper, we propose a practical trick that can be used in combination
with all the methods above. It consists in decomposing the learning of the IKM
into several independent tasks. This is done at the expense of sacrificing gen-
erality: the trick works only for robots whose last three joints cross at a point.
This condition is fulfilled by the most popular robot arms, and continues to hold
after any encoder miscalibration and the other most likely deformations of the
robot geometry.

The gain obtained is worth the sacrifice. The dimensionality of each of the
tasks resulting from the decomposition is half that of the original one. Thus, for
a given desired accuracy, if the number of training points required to learn the
IKM directly is O(n?), through the decomposition it reduces to O(n%/?). This
yields an enormous reduction in the number of points required for high-precision
applications.

The paper is structured as follows. In the next section we describe the pro-
posed decomposition of the IKM. Section 3 presents the training scheme needed
to learn the component functions. In Section 4, a parametrized self-organizing
map (PSOM) is used to learn the IKM, both directly and through the decom-
position, permitting to quantify the savings obtained in relation to the precision
required. Finally, some conclusions are drawn in Section 5.

2 Decomposing the Inverse Kinematics Mapping

We will formulate the decomposition for the most common case, a robot arm
with 6 rotational degrees of freedom, although it can be applied also to other
types of robots. As mentioned, our work relies on the assumption that the axes
of the last three joints cross at a point, which holds for most robot arms.

Let 8 = (01,02,03) and v = (v1,v2,v3) be the value of the first three and
the last three joint angles, respectively. We begin by explaining why 6 can be
easily obtained under the above assumption, and then we show how v can be
calculated as a composition of functions dependent on 6.

2.1 Calculus of 6

Let X and {2 be the position and orientation of the end-effector. Our purpose is
to express 6 as a composition of functions dependent on part of the given data
(X, 2), so that the component functions needing to be learned have an input
dimensionality less than or equal to three.

The position X* of the point at which the last three axes cross can be recov-
ered from X and (2 as follows:

X* =X — AX(0), (1)



where AX(.) is a well-defined function, which for each end-effector orientation
provides the relative position of X with respect to X*.

Note that X* is not moved by varying v, and thus it depends only on 6. We
now like to obtain the inverse function, namely # as a function of X*. This is
straightforward, except in the cases where the forward kinematics mapping is
not one-to-one. If solutions are discrete, this can be handled by keeping track of
the different solution branches. In the case of redundant robots, the situation is
affordable with a learning architecture able to associate X* with a subspace of
6, but one should restrict the workspace to (X, £2) such that for every solution
f available for X*, the compatible {2 are the same.

Either way we get independence of 6 with respect to (2, and we can write

6 =r(X").

Using (1), we obtain:
b= r(X — AX(2)), 2)

where both 7(.) and AX(.) are 3D functions.

2.2 Calculus of v

To simplify the exposition in this section, we will consider by now that (2 is a
rotation matrix.

First we define a fixed configuration of the first three joints, 6y, to be used as
reference. Then, we define a new function (2y(-) such that £2y(6) is the rotation
that transforms the orientation of the end-effector at a configuration (6,v) to
the orientation it would have at (6, v):

20(0) 2(8,v) = 26, v). (3)

Note that 2(.) is independent of v and the only requirements are that the range
for v at every 6 is contained in that at 6y, and that the last links and joints in
v are not flexible.

We shall now define the function ¢o(.) such that ¢g(£2) is the v value which
at 6y yields the orientation f2.

We can apply ¢o(-) to both members of the equality (3), leading to:

$o(120(8) £2(0,v)) = ¢o(£2(6o,v)),
and thus,
$o(20(0) 2) = v. (4)
2.3 The target decomposition

Supposing we are able to learn 7(.), AX(.), ¢o(.) and §29(.), the inverse kine-
matics can be calculated in two phases. First we obtain 6 following equation 2,
and then we calculate v according to equation 4.



We have obtained expressions for § and v as a composition of functions,
each having as domain a part of the input, X or (2. However, ¢g and (2, have
respectively as input and output a rotation matrix, which could be compacted
as Eulerian angles. Thus, by redefining adequately ¢¢ and 2y, we can transform
(4) into:

b0 (Bull2(0) 2)) = v, (5)

Eul[R] being the eulerian expression of rotation matrix R.

Now, not only 7(.) and AX(.), but also ¢o(.) and 29(.) are 3D functions.
Thus, their learning can be expected to require a number of samples orders of
magnitude lower than that needed to learn the whole IKM directly.

3 Learning

The function AX(.) is a special case because of its simplicity, and will be con-
sidered separately from the other three functions. If, through external sensors,
the set-up permits acquiring the position X* at which the last three axes cross,
then this function is not even needed: it suffices to consider (X*, §2) directly as
input. If, on the contrary, X* needs to be derived from (X, {2), then a simple
procedure entailing only three observations and the motion of the last two joints
can be applied.

The remaining functions 7(.), 29(.) and ¢o(.) are inverse functions, in the
sense that we cannot generate the output for a given input. Their learning can
be accomplished by means of the following two algorithms:

Learning of ¢q
Repeat for i =1 to whatever
Select 1)
Move to (A, v"). Observe 29
Learn with Eul[2%] as input and vV as
output

Learning of {2y and 7
Select v’ arbitrarily
Move to (8, v'). Observe 2°)
Repeat for i = 1 to whatever
Select #9)
Move to (67, 1'). Observe (X%, 29)
Learn (2 with 69 as input and Eul[02°(129)7]
as output
Learn 7 with X?) — AX(£2%) as input and #%
as output

A similar strategy permits to perform on-line learning, i.e., learning that is inte-
grated in normal working operation. This requires access to the inverse ¢5 ' (v),



which gives the orientation that the argument v produces when 6 = 6. By using
PSOMs [7], the learning of a function automatically makes available a proper
estimation of its inverse and, therefore, a separate estimator for ¢g 1(1/) is not,
required.

4 Experimental results

We have used the PUMA robot as a testbed to validate our procedure in a con-
trolled setting. The ranges allowed for the six joints [1] are as follows: [-150, —10],
[-215, —100], [-35,80], [-110,170], [—100, 100], [-100, 100]. Note that this de-
fines a very large workspace.

Local Parametrized Self-Organizing Maps (PSOM) [7] with a subgrid size of
4 knots per axis have been chosen as an appropriate neural model to experiment
with the decomposition approach.

For the control experiment (labeled ”standard”) we simply generate grids in
the joint space covering the workspace above. Then we move the robot to the
different configurations represented in the grid to obtain the associated positions
and orientations. Thus, each knot in the grid requires one movement.

In the experiment to test our decomposition approach, we generate a grid for
# and move the first three robot joints to traverse each of its knots in order to get
simultaneously points for 7 and (2. In the same way, a grid for v is generated
and movements are carried out accordingly to get ¢g points.

Orientations and rotations are represented with five elements of the corre-
sponding rotation matrix that determine it univocally.

Tables 1 and 2 show the precisions attained with an increasing number of
movements. Units are millimetres for position and radians for orientation. The
precision was evaluated by querying for 400 random position-orientation con-
figurations inside the workspace. The tables only cover numbers of movements
that seem reasonable. It was impossible with our computer memory resources
(allowing grids of up to 262,144 points) to reach precisions under 1 mm and .01
radians with the standard procedure, whereas the decomposition procedure only
needed 686 and 1024 movements to get these precisions, respectively.

A final and important remark is that the time to obtain good precisions was
also orders of magnitude faster with the decomposition approach. This is due to
lower searching times to get the closer knot in the grids and to lower complexity
in the optimizations performed in the PSOMs.

5 Concluding remarks

The purpose of this paper is to propose a method to learn the IK mapping with
a reasonable number of movements when a high accuracy is required.

In addition to learning efficiency, our decomposition procedure has other
advantages over classic learning of IK in some contexts. For example, in [5] we
tackled IK learning for a REIS robot placed in a Space Station mock-up, whose



number of | position | position |orientation|orientation
movementsimean error|stdev. error|mean error|stdev. error
64 591 234 2.145 0.655
729 195 132 0.316 0.253
4096 38 50 0.138 0.163

Table 1. Position (in milimeters) and orientation (in radians) precisions obtained with
different numbers of movements using the standard procedure.

number of | position position |orientation|orientation

movements|/mean error|stdev. error|mean error|stdev. error
54 57.7 27.2 0.420 0.255
128 9.7 6.0 0.158 0.150
250 3.0 2.7 0.068 0.134
432 1.0 0.8 0.020 0.029
686 0.6 1.0 0.015 0.032
1024 0.2 0.2 0.006 0.028

Table 2. Position (in milimeters) and orientation (in radians) precisions obtained
with different numbers of movements using the new decomposition procedure.

mission was to insert and extract cards from a rack. If, due to launching stress
or tear-and-wear, the IK mapping would strongly deviate from the nominal one,
the movements required for relearning could damage the rack (or further damage
the robot). With the procedure here proposed, it is possible to learn to move in
the complete workspace without actually moving everywhere, and only approach
risk zones after learning has been successfully completed.

References

1.

2.

3.

Fu K.S., Gonzéalez R.C. and Lee C.S.G., 1987: Robotics: Control, Sensing, Vision,
and Intelligence, New York: McGraw-Hill.

Krése B.J.A. and van der Smagt P.P., 1993: An Introduction to Neural Networks
(5th edition), Chapter 7: “Robot Control”. University of Amsterdam.

Martinetz T.M., Ritter H.J. and Schulten K.J, 1990: Three-dimensional neural net
for learning visuomotor coordination of a robot arm. IEEE Trans. on Neural Net-
works, 1(1): 131-136.

Ritter H., Martinetz T. and Schulten K.J. , 1992: Neural Computation and Self-
Organizing Maps. New York: Addison Wesley.

Ruiz de Angulo V. and Torras C., 1997: Self-calibration of a space robot. IEEE
Trans. on Neural Networks, 8(4): 951-963.

Walter J.A. and Schulten K.J., 1993: Implementation of self-organizing neural net-
works for visuo-motor control of an industrial arm. IEEFE Trans. on Neural Networks,
4(1).

Walter J. and Ritter H., 1996: Rapid learning with parametrized self-organizing
maps. Neurocomputing, 12: 131-153.



