Neural computing increases robot adaptivity

Carme Torras

Institut de Robotica i Informatica Industrial (CSIC-UPQC)
Parc Tecnologic de Barcelona - Edifici U

Llorens i Artigas 4-6, 08028-Barcelona. Spain.
ctorrasQiri.upc.es, http://www-iri.upc.es/people/torras

Abstract.

The limited adaptivity of current robots is preventing their widespread applica-
tion. Since the biological world offers a full range of adaptive mechanisms working
at different scales, researchers have turned to it for inspiration. Among the several
disciplines trying to reproduce these mechanisms artificially, this paper concentrates
on the field of Neural Networks and its contributions to attain sensorimotor adaptiv-
ity in robots. Essentially this type of adaptivity requires tuning nonlinear mappings
on the basis of input-output information. After briefly reviewing the fundamen-
tals of neural computing, the paper describes several experimental robotic systems
relying on the following adaptive mappings: inverse kinematics, inverse dynamics,
visuomotor and force-control mappings. Finally, the main trends in the evolution
of neural computing are highlighted, followed by some remarks drawn from the
surveyed robotic applications.

Keywords: Adaptivity, sensorimotor mappings, neural networks, robot control.

1. Introduction

Why are robots still confined to factory floors and research depart-
ments? Will they ever step out and be part of our everyday lives?
Aside from ethical considerations and marketing strategies, there are
technological reasons that explain why the use of robots is not as
widespread as some envisaged they would be by now. At the risk of
oversimplification, let me state that the Achilles heel of current robots
is their lack of adaptivity, at all levels. This capability is dispensable
in well-engineered environments, and thus we have very performant
robots in manufacturing lines, but it is a sine qua non when tasks are
to be carried out in non-predefined worlds.

In this sense, the biological world —where adaptivity is crucial for
survival- constitutes a very good source of inspiration for robotics
researchers, since it provides existence proofs of many adaptive mech-
anisms that do function. However, caution must be taken, because the
best natural solution may not be the best artificial one (Simon, 1969).
Wheels, wings and calculators have often been mentioned as examples
of artificial solutions considerably different from their natural counter-
parts, and more performant according to certain criteria. The resources

iﬁ © 2002 Kluwer Academic Publishers. Printed in the Netherlands.

article.tex; 25/09/2002; 12:26; p.1

2 Carme Torras

available to engineering design depart a lot from those in nature, and
not just when it comes to materials, but also in the number of instances
and spendable time.

With this note of caution in mind, i.e., accepting that biological
plausibility in itself adds no special value from an engineering view-
point, it is safe to look into natural adaptivity to get seed ideas that
can be instantiated in a different way by artificial means.

2. Natural and artificial adaptivity

What exactly do we mean by adaptivity? What does it encompass?
What is its range? By adaptivity we mean the capability of self-modifi-
cation that some agents have, which allows them to maintain a level
of performance when facing environmental changes, or to improve it
when confronted repeatedly with the same situation. The term ‘agent’
above stands for a single cell, an organ, an individual or even a whole
society, because, in the biological world, adaptivity occurs at several
levels, each having a possible counterpart in the design of autonomous
robots (Steels, 1995; Higuchi et al., 1997; Ziemke and Sharkey, 1998).

At the cell level, several chemical and electrical mechanisms of plas-
ticity have been discovered, some of which have been modelled and
analysed within the Neural Modelling field, and later applied to adjust
the parameters of robot sensors and actuators. See the chapters on
‘neural plasticity’ in (Arbib, 1995).

When referring to individuals, adaptation is usually called learning
and it takes two rather different forms depending on whether it occurs
at the sensorimotor or cognitive levels. Sensorimotor adaptation con-
sists in building relevant associations between stimuli and responses,
while cognitive learning entails constructing symbolic representations
to guide decision-making. Two disciplines have tried to mimick these
two capacities. Neural Networks, closer to Biology, has proven adequate
to handle the massively-parallel tasks of perception and control of ac-
tion, while Artificial Intelligence, steeming from Computer Science and
Cognitive Psychology, has developed the necessary data structures and
procedures to tackle symbolic learning (Torras, 1993; Torras, 2001).
Results in both disciplines have been applied to Robotics, the former
to attain adaptive robot sensorimotor mappings (Omidvar and van der
Smagt, 1997), while the latter have led to so called learning robots (van
de Velde, 1993; Dorigo, 1996; Mitchell et al., 1996; Morik et al., 1999).

Finally, at the species level, adaptation is attained through evo-
lution. Genetic algorithms (Goldberg, 1989; Koza, 1992) and evolu-
tionary computation (Béck et al., 1997; Beyer and Schwefel, 2002)

article.tex; 25/09/2002; 12:26; p.2

Neural computing increases robot adaptivity 3

Table I. Levels of adaptation and related disciplines

ADAPTATION TYPE OF “ARTIFICIAL”
LEVEL ADAPTIVITY DISCIPLINE

Cell Plasticity Neural Modelling
Sensorimotor Associative learning Neural Networks
Cognitive Symbolic learning Artificial Intelligence
Species Evolution Evolutionary Algorithms

are starting to be used to tailor robot genotypes to given tasks and
environments (Husbands and Meyer, 1998).

Table 1 summarizes the different adaptation levels and the involved
disciplines.

In this paper we concentrate on adaptivity at the individual sen-
sorimotor level, i.e. both the robot morphology and its components
are assumed to be fixed and what may change with experience is the
functional relationship between sensors and actuators.

3. Natural inspiration for artificial neural adaptivity

The approaches to adaptivity pursued within the Neural Networks field
have their roots in the learning paradigms developed in the domain of
Behavioural Psychology (refer to Figure 1). This is the reason why the
rules to attain neural adaptivity are usually called learning rules. The
role of the animal in the behavioural learning experiments is played here
by the neuron. It is worth noting that, although inspiration comes from
the biological world, the artificial techniques are here applied not only
to a different physical substrate, but also at a different level (neuron
instead of animal).

The most basic learning paradigm is classical conditioning, as
introduced by Pavlov (1927), which consists of repeatedly presenting
to an animal (e.g. a dog) an initially meaningless stimulus (e.g. the
sound of a bell) together with an unconditioned stimulus (e.g. food)
that triggers a reflex response (e.g. salivation). As a result of such
paired presentations, the animal builds up an association so that, when
presented with the conditioned stimulus (e.g. the sound of a bell) alone,
it produces the same response as before (e.g. salivation). This type of
learning is completely open-loop, in the sense that it entails no feed-
back. The neural learning rules mimicking this type of conditioning are
called correlational rules.

article.tex; 25/09/2002; 12:26; p.3

4 Carme Torras

TYPE OF LEARNING DEGREE OF FEEDBACK DIAGRAM KEYWORDS NEURAL RULES
CLASSICAL us Paviov
N R)
none -- Unsuperwwd CORRELATIONAL
CONDITIONING
cs Open-loop
cs
L
: Skinner
INSTRUMENTAL o ; |
qualitative 3 3 Trid-and-error REINFORCEMENT
CONDITIONING } ~ Optimal control
+ Supervised
INPUT-OUTPUT — @ ERROR.
quantitative | r Reference-model
TEACHING ; : control MINIMIZATION

Closed-loop
————— Teacher -

Figure 1. Learning paradigms inspiring neural adaptivity. In the diagrams, US
stands for unconditioned stimulus, CS for conditioned stimulus and R for response.

Instrumental conditioning was introduced by Skinner (1938) and
requires that the animal under experimentation performs an arbitrary
action (e.g. pressing a lever, walking around) in the presence of an
initially meaningless stimulus (e.g. a flickering light). If the action
is “appropriate” to the given stimular situation, the animal receives
a reward (e.g. food). Otherwise, it receives nothing or punishment,
depending on the particular experimental design being applied. Thus,
this learning paradigm strongly relies on providing the animal with
a reinforcement signal dependent on the action performed. This can
be conceptualized as a qualitative feedback. The neural learning rules
implementing this type of conditioning at the neuron level are known
as reinforcement-based rules.

Note that the natural progression in the degree of feedback supplied
suggests the use of a quantitative error signal to guide learning. This
is represented in the third row of Figure 1 under the name of input-
output teaching. Here, after presenting an input to the system and
observing the emitted response, a teacher supplies the desired output
whose difference with the emitted one provides the error signal which is
fed back to the system. This is an entirely closed-loop learning process
that requires perfect knowledge of the input-output pairs to be asso-
ciated. The most widely used neural learning rules follow this scheme
and we call them error-minimisation rules.

article.tex; 25/09/2002; 12:26; p.4

Neural computing increases robot adaptivity 5

The mathematical formulation of the three types of learning rules
above will be presented in Section 5. To set up the appropriate context,
we provide a brief introduction to neural computing in the next section.

4. Fundamentals of neural computing

The basic elements of neural network models are the neuron, the ar-
chitecture into which many neurons are arranged and interconnected,
and an adaptation rule for modifying the connection strengths. These
elements are presented below; for a more in depth treatment, the reader
is referred to (Hertz et al., 1993).

4.1. ARTIFICIAL NEURONS

The typical artificial neuron used in most neural network models is
shown in Figure 2, where the correspondence of the different elements
with their biological counterparts has been made explicit.

Elements of Artificial Neuron

Input activations Connection Total input Activation (output) of Neuron j
weights
X
1 Sy
X2 e
gl WZJ
X:
X
-1
o Wn-1
Xn
> Wnj
Axons Synapses Dendrites Soma Axon

(from other neurons)
Biological counterparts

Figure 2. The neuron model.

Like biological neurons, artificial neurons are simple processing units
which may receive many inputs from other neurons, but produce a
single output. A neuron’s output is the weighted sum of all incom-
ing activations from connected neurons, modified by a certain transfer
function f:

wj(t +0t) = fIY_wij(t)zi(t) + 6] (1)
=1

article.tex; 25/09/2002; 12:26; p.5

6 Carme Torras

where 6, is a bias or threshold term, which serves as a sort of zero
adjustment for the overall input stimulus to the neuron, and w;; is the
synaptic weight of the connection from neuron 7 to neuron j. Excita-
tory and inhibitory connections are represented simply as positive or
negative connection weights, respectively.

Four of the most common transfer functions used are shown in
Figure 3.

y
,,,,,,,,,,,,, i

0 X

or
y

1
0 X

Threshold logic Semi-linear Continuous threshold Radial basis

Figure 3. Most common neuron activation functions.

Threshold logic functions were used to implement binary neurons
in early perceptron networks (Minsky and Papert, 1969). Although it
was demonstrated by McCulloch and Pitts (1943) that networks of such
neurons had the computational power of a Turing machine, they proved
to be quite limited in their learning capabilities.

Semi-linear functions permit real-valued computation, but are still
not differentiable at their transition points, which limits the type of
learning rules that may be implemented on them.

The introduction of differentiable transfer functions, such as the
sigmoid or the hyperbolic tangent, together with the backpropagation
rule (see Section 5) was a major breakthrough in the neural network
field. The sigmoid has the following equation:

1

where 4; is the total input to neuron j, and « is a constant that
determines the width of the sigmoid’s central transition region.

article.tex; 25/09/2002; 12:26; p.6

Neural computing increases robot adaptivity 7

Radial basis functions depart from the threshold behaviour in that
they are not monotonously increasing, but attain high values in a
bounded input domain. The Gaussian function is the most widely used
example: 4

- 5" (wi—c))?
vy = flig) = e 71T (3)
where ¢ is the center of neuron j’s transfer function for input i, and
oj is the width of neuron j’s transfer function.

While threshold logic and semi-linear transfer functions are adequate
for discrete tasks, such as pattern association and classification, contin-
uous threshold and radial basis functions are also useful for applications
involving continuous mappings, such as those encountered in system
identification and control.

The artificial neuron depicted so far has a static behaviour, since
its output is a function of only the current inputs. This type of neuron
is typically used for tasks consisting of essentially static input/output
mappings. By making a neuron’s activation dependent on its previous
activation state, information with temporal (dynamic) content may be
appropriately processed (Griné et al., 2000). Dynamic neurons are use-
ful for applications in which sequential or time-varying input patterns
are encountered, such as speech processing and signal filtering. One
method for implementing dynamic activation in neurons is to allow
them to sum their activation value over a given time interval. Another
is to use recurrent (feedback) connections, by including the neuron’s
own output as one of its inputs.

Most artificial neural networks to date are based on the simple neu-
ron model depicted above, although more elaborate models which mim-
ick biological reality more closely (Torras, 1985) have recently arousen
interest in connection with a new model of computation consisting of
networks of spiking neurons (Gerstner, 1999).

4.2. NETWORK ARCHITECTURES

Topological structure is an important characteristic of neural network
models, since their functional behaviour depends crucially on it. Con-
sequently, networks are often classified according to their topological
features (see Figure 4).

The two main elements which determine a network’s architecture are
the layers of neurons it contains and the connectivity between neurons
in the same and different layers.

Two major classes of networks are feedforward and recurrent net-
works. Networks with forward connections pass information forward to
successive layers, but not back to preceding ones. The most classical
model of feedforward network is the multi-layer perceptron (MLP),

article.tex; 25/09/2002; 12:26; p.7

8 Carme Torras

Single layer
Number of layers

Multiple layers

Layers
Number of neurons
per layer
Partially connected
Neural Network Degree of connectivity {
Topology Fully connected
Forward
Backward (recurrent)
Connectivity Connection path

Lateral

Self

Excitatory
Type of connection

Inhibitory
Figure 4. Characterization of neural network topology.

which connects inputs and outputs through one or more so called
“hidden” layers. It has been shown that MLP are universal approx-
imators when the hidden units have monotonically increasing differen-
tiable transfer functions (Cybenko, 1989; Funahashi, 1989; Hornik et
al., 1989) or Gaussian-shaped transfer functions (Girosi and Poggio,
1990).

If a network has backward connections as well, it is termed a re-
current network. Neurons can also have recurrent connections with
themselves (self connections). The Hopfield network (Hopfield, 1982;
Hopfield and Tank, 1985) and the Boltzmann machine (Aarts and
Korst, 1988) are examples of single-layer fully-connected recurrent net-
works. Other networks have lateral connections between neurons of the
same layer. One important class of networks with both excitatory and
inhibitory connections are competitive-learning networks.

Several of these network models will be described later in relation
to their adaptation capabilities (Section 5) or their use in a robotic
setting (Section 7).

4.3. PROCESSING LEVELS

Neural networks process information at two different time scales. On
the one hand, there is the short-term propagation of activity through

article.tex; 25/09/2002; 12:26; p.8

Neural computing increases robot adaptivity 9

the network according to equation (1). This has computational interest
only in the case of recurrent networks, some of which perform as op-
timization machines (Aarts and Korst, 1988; Peterson and Sédeberg,
1989; Bofill et al., 1995; Bofill and Torras, 2001).

On the other hand, as in the nervous system, the effectiveness or
strength w;; of the connections between neurons varies along time, this
being what endows neural networks with adaptive capabilities. This
long-term level of processing is the focus of this paper, since it lies at
the base of robot sensorimotor adaptation, and it will presented in the
following section.

5. Neural adaptivity

Adaptivity in neural networks refers to the process of iteratively mod-
ifying the connection weights in order to attain a desired input-output
behaviour. The procedures used to produce these weight changes are
called “learning rules”, many of which borrow their names and func-
tionality from Behavioral Psychology, as explained in Section 3. There,
we have distinguished between three types of rules: correlational, rein-
forcement and error-minimisation rules (refer to Figure 1), according
to the amount of feedback they require.

5.1. CORRELATIONAL RULES

These rules adjust a connection weight according to the correlation
between the activations of the two neurons connected. They can all
be considered variants of the classical Hebbian learning rule (Hebb,
1949), whose expression in terms of the generic neuron model (1) is:

W4 (t =+ 1) = Wjj (t) + cx; (t):Ej (t), (4)

where ¢ is a positive constant that determines the speed of learning.
To prevent the unbounded growth of weights, different normalization
procedures have been used, the most common one being that based on
the euclidean metrics.

This rule can be viewed as a unineuronal analog of classical condi-
tioning: one has only to pair repeatedly an unconditioned stimulus x
with a conditioned stimulus x5, assigning initially to wi; a value high
enough to force the neuron to fire (r; = 1) when activating z; after
some pairings, the neuron will discharge when only x5 is presented.

The most extensively studied application of the Hebbian rule is the
implementation of associative memories (Hinton and Anderson, 1981),
which are network learning models able to carry out pattern association

article.tex; 25/09/2002; 12:26; p.9

10 Carme Torras

tasks. The three most interesting aspects of this kind of networks: re-
sistance to noise, addressing by content, and generalisation capability,
derive from the distributed way in which information is stored.

The Hebbian rule has also been incorporated into competitive-learning
networks (Rumelhart and Zipser, 1985), which consist of a set of hierar-
chically layered neurons, each neuron receiving excitatory input from
the layer immediately above. Futhermore, the neurons in each layer
are grouped into disjoint clusters, each neuron in a cluster inhibiting
all other neurons within the cluster. The name “competitive learning”
comes from the fact that the neurons within a cluster “compete” with
one another to respond to the pattern appearing on the layer above; the
more strongly any particular neuron responds, the more it shuts down
the other members of its cluster, which therefore becomes a winner-
take-all network (Feldman and Ballard, 1982). A cluster containing n
neurons can be considered an n-ary feature, every stimulus pattern
being classified as having exactly one of the n possible values of this
feature. It has been proved that, if the stimulus patterns naturally fall
into classes, the system will find exactly these classes and the attained
classification will be very stable. However, when presented with arbi-
trary input environments, competitive learning models can become very
unstable and the need appears of stabilizing their response through the
use of specialized mechanisms, leading to adaptive resonance models
(Grossberg, 1987). These are recurrent modular networks able to form
a new cluster whenever they are presented with an input pattern that
is very different from the patterns previously seen.

Following the same line of competitive learning, Kohonen (1988) has
proposed to use self-organizing feature maps (SOM) to learn mappings
that preserve topography (i.e. neurons that are spatially close in the
network learn to be maximally activated by input vectors close accord-
ing to the euclidean metrics). Essentially, this is realized through two-
layer networks with intralayer lateral inhibition and interlayer plastic
excitatory connections. A self-organized map is thus a winner-take-all
network, where neuron k£ wins if it satisfies:

> wigzi >y wijzi, Vi (5)
i i
The learning rule for this type of network is:

wij(t + 1) = wij(t) + chyp(5) (2 (t) — wir(t)), (6)

where hy(.) is a Gaussian function centered at k used to modulate the
adaptation steps as a function of the distance to the winning neuron.

An updated state-of-the-art on SOMs can be found in (Kohonen,
2001) and (Oja and Kaski, 1999).

article.tex; 25/09/2002; 12:26; p.10

Neural computing increases robot adaptivity 11

5.2. ERROR-MINIMISATION RULES

These rules work by comparing the response to a given input pattern
with the desired response and then modifying the weights in the direc-
tion of decreasing error. Depending on whether the desired response
is specified at the single neuron or overall network levels, the gradient
of the error with respect to each synaptic weight will necessarily be or
may only be locally computable; moreover, the repertoire of learning
tasks that can be carried out in the latter case is wider than that
accomplishable in the former case.

The most classic error-correction rule that requires specification of
the desired response for each single neuron is the perceptron learning
rule (Minsky and Papert, 1969). Its expression in terms of the generic
neuron model that we use as reference (1) is:

wij(t =+ 1) = wij(t) + C(.’L‘; (t) — xj(t))xi(t), (7)

where both the desired response z7(t) and the actual response z;(t) of
the neuron j are binary, since the f in equation (1) is taken to be a
threshold logic function. The same consideration about normalization
made for the Hebbian rule applies also here.

The networks of neurons using the perceptron learning rule, called
perceptrons, are well-suited to carry out linearly-separable pattern clas-
sification tasks. However, for non-linearly-separable tasks, a trade-off
occurs between the discriminative abilities and learnability in these
networks. Minsky and Papert (1969) proved that topological features
such as connectedness and symmetry cannot be discriminated by two-
layer perceptrons (see Figure 5), but if more layers are introduced then
the learning rule can no longer be applied, since there is no way to
compute the desired response for each single neuron from the desired
network output. This led to the development of backpropagation (see
below).

The LMS learning rule (Widrow and Hoff, 1960) is expressed by
the same equation (7), but considering z7(t) and z;(f) to take real
values and the f in equation (1) to be a semi-linear function. When
the parameter ¢ is made to approach zero with time, the weights of a
two-layer network equipped with this rule —called Madaline— converge
to a configuration that minimises the square error between the actual
output and the desired one. This is why this rule is called the LMS
rule, for “least mean squares”.

An extension of the error-minimisation rules so far described to
the case where the desired response is specified only for a subset of
neurons (those whose outputs constitute the output of the network) is
backpropagation (LeCun, 1985; Rumelhart et al., 1986). As its name

article.tex; 25/09/2002; 12:26; p.11

12 Carme Torras

NUMBER OF TYPES OF EXCLUSIVE OR CLASSES WITH MOST GENERAL
HIDDEN NODES DECISION REGIONS PROBLEM MESHED REGIONS REGION SHAPES
/
NO HIDDEN NODES o
O HALF PLANE C /
BOUNDED BY 6’
g E HYPERPLANE / /|
Foo ®

TWO HIDDEN NODES

A

O CONVEX OPEN /
OR
A
CLOSED REGIONS B

>

Number of Nodes)

MANY HIDDEN NODES v
ARBITRARY °
(Complexity \
limited by \

Figure 5. Discriminative abilities of two-layered and three-layered perceptrons.

indicates, it proceeds by propagating error signals from the output
neurons back to the sensory neurons, through all intermediate layers,
so that appropriate corrections can be applied to all connection weights.
Note that this procedure works only for layered feedforward networks.

Backpropagation generalises the perceptron rule by minimising the
mean square error £ between the actual and the desired responses to
all input patterns, through the repeated application of the rule:

oF
awij '

wij(t + 1) = Wjj (t) —cC (8)
A crucial point is that the f in equation (1) must now be a con-
tinuously differentiable function, such as the sigmoid or the hyperbolic
tangent, as described in Section 4.1.
Note also that the LMS learning rule is a particular instance of this
generic rule, since for the former the transfer function f is semi-linear
and thus 0z;/0w;; = x;, leading to:

oE (9_E 0z
8wij - 890]- 8wij

= (¢f — zj)zi. (9)
By incorporating this result into (8), equation (7) is obtained.
Rumelhart et al. (1986) have applied the generic rule (8) to multi-

layered feedforward networks of neurons with a sigmoidal transfer func-

tion. In this case, taking o = 1 in equation 2 for simplicity, 0z;/0w;; =

article.tex; 25/09/2002; 12:26; p.12

Neural computing increases robot adaptivity 13

ziz;(1 — z;) and the factor 0F/0x; has to be calculated from the
activity levels xj, of the neurons in the next layer. Hence, starting with
the neurons in the output layer, for which 0E/0z; = (2} — z;), the
computation proceeds backwards:

OE ~ OE duy,

gz 9Tk _ (1- |
axj - oxy, ax] Z w]kxk J?k) (0)

and therefore:
oF OE Oz,
Ow;;j = oz, j 8w”

= wizj(1 —%)ZSE wirze(l —z). (1)
K 9Tk

Backpropagation is the most well-known neural learning algorithm
and the most widely used in practice. It is especially well-suited for
solving feature discovery tasks; features relevant for discrimination be-
tween input patterns get progressively encoded in the activity of the
neurons belonging to intermediate layers. Of course, it has the usual
drawbacks of all gradient descent techniques, namely the possibility of
getting stuck in local minima and a slow convergence rate. Because of
this, numerous acceleration procedures have been proposed.

Moreover, backpropagation suffers from catastrophic forgetting of
the previously learned patterns when trained with a new pattern (Ruiz
and Torras, 2000). Thus, techniques to prevent forgetting by explicitly
minimising degradation while encoding a new pattern (Park et al., 1991;
Ruiz and Torras, 1995) and by introducing noise (An, 1996; Ruiz and
Torras, 2002b) have been devised.

Another problem that need to be coped with when applying back-
propagation is overfitting: the neural network converges to an approx-
imation tailored to the training samples, which does not reflect the
underlying function, and thus yields a high generalisation error. This
is usually addressed by using methods for model complexity control
(Bishop, 1995; Cherkassky, 2002) and, in particular, regularisation. An
interesting observation is that many such methods lead to functional
invariance (Ruiz and Torras, 2001a; Ruiz and Torras, 2001b), i.e., they
converge to the same function irrespective of network size for fixed
regularisation parameters.

5.3. REINFORCEMENT RULES

These rules do not require being supplied with the desired responses,
either at the single neuron or at the overall network levels, but in-
stead a measure of the adequacy of the emitted responses suffices.
This measure is reinforcement, which is used to guide a random search
process to maximise reward. Hence, reinforcement rules can be consid-
ered neuronal analogs of instrumental conditioning in that the neuronal

article.tex; 25/09/2002; 12:26; p.13

14 Carme Torras

spontaneous responses are favored or weakened through the application
of certain reinforcement schemes.

Here we will describe only the most widely used reinforcement rule,
namely the associative search learning rule (Barto et al., 1981),
which incorporates the required source of randomness in the transfer
function of the neuron model used, i.e. a noise with Gaussian distri-
bution is added to the weighted sum of inputs in equation (1). The
simplest expression of this rule is:

wij(t + 1) = w;j(t) + cxi(t)z;(t)r(t) (12)

where 7(t) is the reinforcement signal.

Note that this is the reinforcement-based counterpart of the corre-
lational rules (equation 4).

A neuron model equipped with this rule learns to maximise r(t) for
each stimulus situation. If r(¢) is a random variable, its mathematical
expectation is instead maximised. The neural networks that incorporate
the above rule are called associative search networks and, if certain
conditions are satisfied, they learn to respond to each stimulus situation
X, = (zp1,...21,) of aset {X1,... Xy} repeatedly presented, with the
vector Y = (y1,...Yn) that maximises the reinforcement function r.
The conditions that have to be satisfied are: (a) the function r has to
be unimodal, and (b) for each neuron, the subset of stimulus situations
in which the optimum response is 0 has to be linearly separable from
the corresponding subset in which the optimum response is 1.

Depending on whether the reinforcement signal is provided at the
overall network level or is particularised for each single neuron, the
structural credit-assignment problem does or does not arise. This is
the problem of correctly assigning credit or blame to the action of
each neuron that contributed to the overall evaluation received. When
dynamical situations need to be considered, because what is of interest
is a temporal sequence of events, then a temporal credit-assignment
problem also arises. Instead of assigning credit or blame to the action
of each neuron in the network, credit or blame must here be assigned to
each action in a sequence. In (Sutton, 1988) it has been proposed to use
temporal-difference methods for this purpose. Methods of this type have
been embodied, for example, in “critic modules” used in conjunction
with reinforcement learning approaches. The goal of these modules
in this setting is to produce an heuristic reinforcement signal which,
by predicting future outcomes, is more informed than that directly
supplied by the environment.

Sutton and Barto (1998) provide a very thorough and up-to-date
introduction to reinforcement learning, and Krose (1995) offer a view
of the several ways in which it has been applied to robots.

article.tex; 25/09/2002; 12:26; p.14

Neural computing increases robot adaptivity 15

6. Neurocontrol approaches

It follows from the preceding sections that neural networks can be
viewed as general procedures for approximating nonlinear mappings
given a set of inputs and some information on the corresponding out-
puts. Now, how can they be used in a robot control setting? This section
presents the three approaches that have so far been proposed.

Generally, a system to be controlled (be it either an articulation, a
wheel, or an entire robot) can be characterized by a transition function
g1 and an output function gs. The control signal u(¢) in conjunction
with the current state of the system x(¢) determines the next state
x(t + 1) = gi(u(t),x(¢)). In each state x(t), the system produces an
output y(t) = g2(x(t)).

A controller can be thought of as an inverse model of the system in
that, given a desired output y*(¢) and the current state, the controller
has to generate the control signal that will produce that output.

The most straightforward neural control approach, named direct
inverse modelling, uses the system itself to generate input-output
pairs and trains the inverse model directly by reversing the roles of
inputs and outputs (Figure 6). The applicability of this approach is
restricted to systems characterized by one-to-one mappings (otherwise,
the inverse is a one-to-many mapping) and its success depends on
the quality of the sampling (the inputs have to be selected so that
the induced outputs cover adequately the output space). Jordan and
Rumelhart (1992) provide a detailed treatment of these issues.

X(t-1)
u(t-1) SYSTEM

y(®)

INVERSE

MODEL

Figure 6. Direct inverse modelling approach.

The forward modelling approach proceeds in two stages. In the
first stage a forward model of the system is learned from input-output
pairs. The second stage consists of composing the obtained forward

article.tex; 25/09/2002; 12:26; p.15

16 Carme Torras

model with another network and training the composition of the two
to approximate the identity mapping (Figure 7). The weights of the
forward model are held fixed in this second stage, while the weights
of the controller network undergo adaptation. In the case that the
forward mapping is many-to-one, this approach can be biased to find
a particular inverse with certain desired properties.

X(t-1)

y*(1)-y(t)

y* () INVERSE u(t-1) FORWARD y(®)

MODBEL MODEL

Figure 7. Forward modelling approach.

The first stage can be obviated if the Jacobian matrix of the system
is known. This is the matrix of partial derivatives of outputs with
respect to inputs. In the case of a robot arm, the Jacobian permits
deriving the linear and angular velocity of the end-effector from the
joint velocities (Fu et al., 1987). Different procedures to compute the
Jacobian can be found in (Samson, 1990). By a straightforward appli-
cation of the chain rule, the Jacobian can be used to derive the input
errors as a function of the output errors (Krose and van der Smagt,
1993). This is precisely the purpose of the forward model in the forward
modelling approach and, therefore, its first stage is no longer needed.

Note also that, if instead of the desired outputs, only a reinforcement
signal (i.e. a measure of how well the system is performing) is available,
then this approach can still be applied. In this case, the forward model
encompasses both the system and the reinforcement function, and it
is used in the second stage to derive the suitable weight modifications
to be performed in the controller network. Alternatively, the first mod-
elling stage can be obviated and the reinforcement signal can be used
directly to determine weight modifications in the controller network.

Finally, the feedback-error learning approach requires having a
conventional feedback controller linked to the system and the role of
the neural controller is to make the feedback error signal tend to zero
(Figure 8). One interesting characteristic of this approach is that there
is no need of a separate training phase, but instead the system is trained
during operation.

article.tex; 25/09/2002; 12:26; p.16

Neural computing increases robot adaptivity 17

INVERSE ui(t-1)
MODEL
.
y® | o+ FEEDBACK ug(t-1) u(t-1) 0
SYSTEM
CONTROLLER +

Figure 8. Feedback-error learning approach.

Jordan (1993) and the chapter on ‘sensorimotor learning’ in (Arbib,
1995) provide a detailed treatment of the concepts presented in this
section. In Chapter 9 of (Miller et al., 1990b), Kawato carries out a
comparison between the three approaches.

It is worth noting that the application of error-correction schemes
does not necessarily require training with a teacher that tells the cor-
rect answer (which would be unfeasible in many robotic applications),
neither does it imply the exclusive use of error-minimisation learn-
ing rules. To state it more explicitly, the above approaches can be
applied under both supervised and unsupervised (or self-supervised)
training modes and through the use of correlational, reinforcement or
error-minimisation learning rules.

7. Robot sensorimotor mappings

Motion control, both in biological and technological systems, relies
strongly on sensorimotor mappings. These mappings vary considerably
(Torras, 1989), depending not only on the nature of the involved sensors
and actuators, but also on the goal pursued.

Tasks to be carried out by robots are usually specified in world
coordinates (or, alternatively, in terms of sensor readings), while robot
moves are governed by their actuator’s variables. For instance, a sealing
task may be specified as a given curve in 3D space or as following a
prespecified visual pattern, but it has ultimately to be translated into
currents sent to the motors governing the different joints. Therefore,
robot control critically depends on the availability of accurate mappings
from physical space or sensor space to joint space or motor space. The
discussion in what follows is centered on mappings required for robot

article.tex; 25/09/2002; 12:26; p.17

18 Carme Torras

arms to work, but similar arguments apply to the case of mobile robots
(Millan and Torras, 1992; Millan and Torras, 1999).

For a gripper to reach a desired position and orientation in space, the
robot controller must access a mapping relating workspace coordinates
to joint coordinates. This is called inverse kinematics mapping, because
the natural (direct) map is that relating the values of the joint coordi-
nates defining an arm configuration to the position and orientation of
its end-effector (hand, gripper,...) in the workspace.

If a desired end-effector trajectory is specified instead, then the
controller should resort to an inverse dynamics mapping relating such
trajectory to the forces and torques that need to be exerted at the dif-
ferent joints to realize it. Note that this mapping, which is again called
inverse for the same reason above, cannot be characterized uniquely
in terms of inputs and outputs, it being instead dependent on state
variables (or the short-term history of inputs) as it is usually the case
with dynamic systems.

For tasks entailing the achievement of a goal using sensory feedback,
programming even in terms of the coordinates of the workspace can
be very complex. An example of this is the insertion of components
with small clearance, since devising a detailed force-control strategy
that performs correctly in all possible situations, and subject to real-
world conditions of uncertainty and noise, is extremely difficult. What
is needed to accomplish this type of tasks is an appropriate sensori-
motor mapping relating sensory patterns to motor commands. Such a
mapping can be thought of as resulting from the composition of a map
from sensor space to physical space, with another from physical space
to motor space. This relay through physical space is necessary if an
interpretation in terms of the coordinates of the workspace is required
to program the robot, but it may appear to be superfluous from a be-
havioural viewpoint (see the chapter on ‘limb geometry, neural control’
in (Arbib, 1995) for a discussion about intermediate representations).

The diversity of the aforementioned mappings sometimes hides what
they have in common: an underlying highly nonlinear relation between
a continuous (often hard to interpret) input domain and a continuous
motor domain; a relation that is very difficult (when not impossible)
to derive analytically. Furthermore, because of environmental changes
or robot tear-and-wear, the mappings may vary in time and then one
would like the controller to adapt to these variations, without any hu-
man intervention if possible. Therefore, a way of learning (or tuning)
these mappings automatically while robots move is highly desirable.
Since, as we have mentioned, neural networks are essentially procedures
for approximating nonlinear mappings, they constitute a good tool to
attain the desired adaptivity.

article.tex; 25/09/2002; 12:26; p.18

Neural computing increases robot adaptivity 19

7.1. INVERSE KINEMATICS

Making robots adaptive to changes in their own geometry (e.g., link
bending, encoder shifting and other wear-and-tear deformations oc-
casioned by regular functioning) would certainly widen their range
of application. Since these geometric changes affect the robot inverse
kinematics, the interest of using neural networks to approximate such
mapping has been widely recognized. Especially when the operation
conditions of the robot (in space, underwater, etc.) make it very hard
to recalibrate it.

Along this line DASA (Daimler-Benz Aerospace S.A.), in the frame-
work of the Advanced Servicing Robot project targeted at unmanned
space stations, proposed an application of maintenance of electronic
equipment that required the automatic recalibration of a 6-dof robot in-
situ, since recalibration through teleoperation from earth is a very time-
consuming task due to communication delays. After reviewing previous
approaches to the learning of inverse kinematics, we will present the
solution implemented in the REIS robot included in the space-station
mock-up located at DASA’s R&D laboratory, in Bremen, Germany (see
Figure 9).

Figure 9. Space station mock-up at Daimler-Benz Aerospace, Bremen.

The most simple way to tackle the learning of inverse kinematics is
to apply the direct inverse modelling approach to a feedforward network

article.tex; 25/09/2002; 12:26; p.19

20 Carme Torras

using backpropagation. Many researchers have experimented with this
approach by applying it to a variety of robot models (Krose and van
der Smagt, 1993; Torras, 1993). The one-to-many problem mentioned
in Section 6 appears here, because most robots can access the same
position and orientation under several joint configurations, but the
problem is obviated by designing the training set in a way that the
resulting function is one-to-one (by using robot configurations with the
links always in the same half-spaces).

Jordan and Rumelhart (1992) showed that a minimum-norm con-
straint or temporal smoothness constraints could be easily incorporated
into the learning procedure to bias the choice of the particular inverse
function obtained, when the same type of network was used under a
forward modelling approach.

The conclusion reached after extensive experimentation with feed-
forward networks under both approaches is that a coarse mapping can
be obtained quickly, but an accurate representation of the true mapping
is often not feasible or extremely difficult. The reason for this seems to
be the global character of the approximation obtained with this type
of networks using sigmoid units: every connection weight has a global
effect on the final approximation that is obtained (Krése and van der
Smagt, 1993).

An obvious way to avoid this global effect is of course using local
representations, so that every part of the network is responsible for
a small subspace of the total input space. Thus, Ritter et al. (1992)
have used a Kohonen self-organizing map together with the LMS rule
to learn the visuomotor mapping of a robot arm with three degrees of
freedom (dof) in 3D space. A direct inverse modelling approach under a
completely unsupervised training mode is used. The target position of
the end-effector is defined as a spot registered by two cameras looking
at the workspace from two different vantage points (refer to Figure 10,
but disregarding the inner cube and the arrow pointing towards the
gripper).

Neurons are arranged in a 3D lattice to match the dimensionality
of physical space. It is expected that learning will make this lattice
converge to a discrete representation of the workspace. Each neuron
1 has associated a four-dimensional vector w; representing the retinal
coordinates of a point of the workspace. The response of the network
to a given input u is the vector of joint angles 8 and the 3 x 4 Jacobian
matrix Ay associated with the winning neuron k, i.e. that satisfying:

wiu > wiu, Vi (13)

Note that this is just equation (5) rewritten in matrix form.

article.tex; 25/09/2002; 12:26; p.20

Neural computing increases robot adaptivity 21

0=(6, 0,0,)

0= 6+ Ag(u-w) 4\

Figure 10. Set-up for inverse kinematics learning.

The joint angles produced for this particular input are then obtained
with the expression:

O(u) =0k + Ag(u— wy). (14)

A learning cycle consists of the following four steps:

1. First, the classical Kohonen rule (equation 6) is applied to the
weights:

Wi = w4 ¢ (i) (u(t) — wi(), (15)

)

article.tex; 25/09/2002; 12:26; p.21

22 Carme Torras

where c is the learning rate and h(.) is a Gaussian function cen-
tered at k used to modulate the adaptation steps as a function of
the distance to the winning neuron.

2. By applying 6(u) to the real robot, the end-effector moves to posi-
tion u’ in camera coordinates. The difference between the desired
position u and the attained one u’ constitutes an error signal that
permits applying an error-correction rule, in this case the LMS rule:

9*:9k+A9:9k+Ak(u—u'). (16)

3. By applying the correction increment A (u—u’) to the joints of the
real robot, a refined position u” in camera coordinates is obtained.
Now, the LMS rule can be applied to the Jacobian matrix by using
Au = (u —u") as the error signal:

N Au”

4. Finally, the Kohonen rule is applied to the joint angles:
07 = 071 + ¢ hi (i) (0% 0k (1)), (18)
and the Jacobian matrix:
AT = AP+ B (i) (AT - Ax(1)), (19)

where again ¢ is the learning rate and hj(.) is a Gaussian function
centered at k used to modulate the adaptation steps as a function
of the distance to the winning neuron.

Extensive experimentation by Ritter et al. (1992) and other groups
has shown that the network self-organizes into a reasonable represen-
tation of the workspace in about 30.000 learning cycles. This should
be taken as an experimental demonstration of the powerful learning
capabilities of this approach, because the conditions in which it is made
to operate are the worst possible ones: no a priori knowledge of the
robot model, random weight initialization, and random sampling of
the workspace during training.

This basic model has been extended in three directions to cope
with higher-dof robots. First, a hierarchical version, consisting of a
3D SOM whose nodes have associated a 2D SOM each, was applied
to a 5-dof robot. The 3D net encodes the workspace as before, while
each 2D subnet approximates the end-effector orientation space at the
corresponding position (Ritter et al., 1992).

article.tex; 25/09/2002; 12:26; p.22

Neural computing increases robot adaptivity 23

Ruiz de Angulo and Torras (1997) adapted this hierarchical model
to suit a practical setting (refer now to the complete model in Figure
10). Thus, instead of learning the kinematics from scratch, only the
deviations from the nominal kinematics embedded in the original robot
controller are learnt. This, together with informed initialization and
sampling, as well as several modifications in the learning algorithm
aimed at improving the cooperation between neurons, led to a speed-up
of two orders of magnitude with respect to the original model.

The resulting algorithm constitutes the core of the recalibration
system that was installed in the REIS robot included in the space-
station mock-up located at DASA, as mentioned above. Figure 9 is a
photograph of such a set-up, where the different racks containing the
electronic cards that the robot should maintain are shown. The robot
must reach the handles of the racks with enough precision to be able to
pull them out and, afterwards, extract a faulty card in order to replace
it by another one. Although testing in this set-up has been constrained
by the need to preserve robot integrity, the system has proven able to
correct large miscalibrations of the robot: 95% of the decalibration was
corrected with the first 25 movements, this percentage raising to 98%
after 100 movements (Ruiz de Angulo and Torras, 1997). Moreover,
other desirable features in stand-alone applications, such as parameter
stability, are guaranteed.

The third extension of the basic model in equations (13)-(19) relies
on the generalisation of SOMs to parameterized SOMs (called PSOMs).
The idea is to turn the discrete representation into a continuous one
by associating a basis function to each neuron, so that a parameterized
mapping manifold is obtained. Moreover, PSOMs make no distinction
between inputs and outputs, thus encoding bidirectional mappings. The
PSOM reduces considerably the number of training samples required to
attain a given precision as compared to the SOM (Walter and Ritter,
1996), allowing the learning of the full inverse kinematics of a 6-dof
robot with less than 800 movements.

The main drawback of using neural networks to approximate the
inverse kinematics of robot arms is precisely the high number of train-
ing samples (i.e., robot movements) required to attain an acceptable
precision. A trick has recently been proposed (Ruiz de Angulo and
Torras, 2002a), valid for most industrial robots, that greatly reduces
the number of movements needed to learn or relearn the mapping to a
given accuracy. This trick consists in expressing inverse kinematics as a
composition of learnable functions, each having half the dimensionality
of the original mapping. A training scheme to learn these component
functions has also been proposed. Experimental results obtained by
using PSOMs, with and without the decomposition, show that the time

article.tex; 25/09/2002; 12:26; p.23

24 Carme Torras

savings granted by the proposed scheme grow polynomically with the
precision required.

Recently, the development of humanoid robots has raised the interest
in learning inverse kinematics. Due to the many dof’s involved, the aim
is no longer learning the mapping for the whole workspace, but focussed
on a specific trajectory. Following the trend of using localized repre-
sentations, D’Souza et al. (2001) have applied a supervised algorithm
—locally weighted projection regression— in this context, with promising
results.

7.2. INVERSE DYNAMICS

When the robot dynamics needs to be taken into account, as in tra-
jectory following, the control learning problem becomes more involved.
An inverse dynamics mapping relating end-effector accelerations to the
required joint forces and torques needs now to be considered. Only
very rarely this mapping can be computed analytically and, if so, it is
of course highly specific to a particular robot and payload.

Neural networks have been applied to learning either the inverse
dynamics mapping directly or through the error provided by a fixed-
gain controller, as described below. Observe that the dynamics case
differs from the kinematics one in that, to generate the input-output
pairs, one needs some sort of fixed controller driving the robot from the
very beginning. As learning of the inverse dynamics mapping proceeds,
the output of the neural network becomes more accurate and the effect
of the fixed controller tends progressively to zero.

Since the cerebellum is known to be involved in the production and
learning of smooth movements, several cerebellar models have been
proposed and applied to control robot arms. The pioneer such model
was the Cerebellar Model Articulation Controller (CMAC) developed
by Albus (1975), but today the debate is still open as to what model
best captures the functionality of the cerebellum and whether any such
model can constitute a practical option to control robots (van der
Smagt and Bullock, 1997). A point of agreement is that the cerebellum
constructs an inverse dynamics model as it learns. Thus, cerebellar
models have been used for this purpose inside robot controllers.

Miller et al. (1990a) have combined the table look-up facilities pro-
vided by CMAC with an error-correction scheme similar to the LMS
rule to accomplish the dynamic control of a 5-dof robot. The idea
underlying this combination is similar to that of enlarging SOMs with
the LMS rule, as described in the preceding section. Here, CMAC is
used to represent the state space in a compact and localized manner,
as there SOMs were used to cover the robot workspace. To teach the
robot to follow a given trajectory, successive points along it are supplied

article.tex; 25/09/2002; 12:26; p.24

Neural computing increases robot adaptivity 25

to both the neural network and a fixed-gain controller and then their
responses are added up to command the robot. Therefore, the neural
network acts as a feedforward component. After each cycle, the actual
command given to the robot together with its current state are used
as an input-output pair to train the neural network following a direct
inverse modelling approach. As learning progresses, the CMAC network
approximates the inverse dynamics mapping so that the difference be-
tween the current and desired states tends to zero, and consequently the
neural network takes over control from the fixed-gain controller. The
network converges to a low error (between 1 and 2 position encoder
units) within 10 trials, provided enough weight vectors are used.

The same trajectory learning task above has been tackled by Miyamoto
et al. (1988) by using the feedback-error learning approach. They used
directly as error signal the output of the feedback controller, which
can be interpreted as a local linearization of the inverse dynamics
mapping if the learning rate is sufficiently small. This error measure
is less accurate than that used by Miller et al. (1990a), but has the
advantage of being directly available in the control loop, thus avoiding
the computation of the current state of the robot required in the direct
inverse modelling approach. The authors report that, after training the
robot to follow a trajectory lasting 6 seconds for 300 trials, the average
feedback torque decreased from a few hundreds to just a few units,
demonstrating that the neural network had taken over control from
the fixed-gain controller. Moreover, the mean square error in the joint
angles decreased steadily 1.5 orders of magnitude.

7.3. FORCE-MOTOR MAPPINGS

As mentioned at the beginning of Section 7, in tasks requiring the
insertion of components with small clearance, devising a detailed force-
control strategy is extremely difficult. Thus, the possibility of using
neural networks to learn the action to apply in response to each force
pattern (i.e., the appropriate sensorimotor mapping) looks very attrac-
tive.

Gullapalli et al. (1994) have used an associative reinforcement learn-
ing system to learn active compliant control for peg-in-hole insertion
using a 6-dof robot. The system takes the sensed peg positions and
forces, as well as the previous position command, as inputs, and pro-
duces a new position command as output. Thus, eighteen real values
are entered into a network with two hidden layers of backpropagation
units, and six real values are produced by its output layer of stochastic
reinforcement-learning units. The reinforcement signal depends on the
discrepancy between the sensed and the desired position of the peg,
with a penalty term being activated whenever the sensed forces on the

article.tex; 25/09/2002; 12:26; p.25

26 Carme Torras

peg exceed a preset maximum. The training runs start with the peg
at a random position and orientation with respect to the hole, and
end when either the peg is successfully inserted or 100 time steps have
elapsed. Experimental results show that, after 150 trials, the robot
is consistently able to complete the insertion. Moreover, the time to
insertion decreases continuously from 100 to 45 time steps over the
subsequent 500 training runs.

7.4. VISUOMOTOR MAPPINGS

Depending on the task to be performed and the camera-robot arrange-
ment, visuomotor mappings take different forms. Thus, in eye-hand
coordination, where cameras external to the robot are used to monitor
the pose (position and orientation) of its end-effector, a mapping from
the camera coordinates of a desired end-effector pose to the joint angles
that permit attaining that pose is sought. This mapping is closely re-
lated to the inverse kinematics one, especially if the camera coordinates
of selected points in the end-effector uniquely characterize its pose.
Therefore, the same models used to learn inverse kinematics have been
applied to the learning of the visuomotor mapping underlying eye-hand
cooordination (Ritter et al., 1992).

A camera mounted on a robot arm is used in tasks such as visual
positioning and object tracking. The goal of these tasks is to move the
camera so that the image captured matches a given reference pattern.
The target is thus no longer a position of the robot in space but a
desired image pattern, and the desired visuomotor mapping needs to
relate offsets w.r.t. that pattern with appropriate movements to cancel
them. In visual positioning, the scene is assumed to be static and the
main issue is to attain high precision. Applications include inspection
and grasping of parts that cannot be precisely placed (e.g., in under-
water or space settings). The aim of object tracking is to maintain a
moving object within the field of view, speed being here the critical
parameter instead of precision.

The classical way of tackling these tasks consists of defining a set of
image features (corners, holes, etc.) and then deriving an interaction
matrix relating 2D shifts of these features in the image to 3D move-
ments of the camera (Espiau et al., 1992). The advantages of applying
neural networks to this task are the direct learning of the interaction
matrix, as well as avoiding the costly matching of features in the current
and reference images.

Note that the visuomotor mapping can be implemented with or with-
out a relay through physical space, depending on how the movements
of the camera are commanded. Figure 11 shows the visual positioning

article.tex; 25/09/2002; 12:26; p.26

Neural computing increases robot adaptivity 27

scheme in the case of using such a relay, which therefore requires having
an inverse kinematics mapping in place.

Reference Feature Move
features deviations command :
Control Inverse Joint
I
+ law kinematics controllers
Feature
extraction
Features Image

Figure 11. Visual positioning scheme.

This scheme has been used in an application developed for Thomson
Broadcast Systems (Wells et al., 1996) for the inspection of large objects
(e.g., ship hulls, airplane wings, etc.). Since these objects are difficult
to move, it is the camera that has to travel to attain a pre-specified
position and orientation with respect to the object. The developed
camera, control system consists of a feedforward network trained with
backpropagation under a direct inverse modelling approach. The training
procedure consists of moving the camera from the reference position to
random positions and then using the displacement in image features
together with the motion performed as input-output pairs. In opera-
tion, the robot is commanded to execute the inverse of the motion that
the network has associated to the given input.

The key option in this work is the use of global image descriptors,
which permits avoiding the costly matching of local geometric features
in the current and reference images. By using a statistical measure
of variable interdependence (the mutual information criterion), sets of
global descriptors as variant as possible with each robot dof are selected
from a battery of features, including geometric moments, eigenvectors,
pose-image covariance vectors and local feature analysis vectors (Wells
and Torras, 2001). The results obtained with a 6-dof show that, after
10.000 learning cycles, translation and rotation errors are lower than
2mm and 0.1 degrees, respectively. Figure 12 shows the robot-mounted
camera and the reference image of an object to be inspected (a water
valve), together with several snapshots along the visual positioning pro-
cess. In this case, the silhouette of the object could be readily extracted
and 32 Fourier descriptors coding it were used as image features. It can
be observed that, after 7 movements, the captured image is practically
registered with the reference one.

article.tex; 25/09/2002; 12:26; p.27

28 Carme Torras

-

a) Robot and camera b) Referenceimage

c) Initial image d) Initial contours

f) After 5 movements

g) After 7 movements h) Final image

Figure 12. Visual positioning system developed in collaboration with Thomson
Broadcast Systems.

article.tex; 25/09/2002; 12:26; p.28

Neural computing increases robot adaptivity 29

Concerning object tracking, Schram et al. (1996) have used a feed-
forward network together with a conjugate gradient learning algorithm
to make a camera track a cart moving arbitrarily on a table. A visuo-
motor mapping relating the current and past visual coordinates of the
cart with joint displacements is built on-line as the robot moves. Only
two robot dofs need to be controlled, and thus the network has two
outputs, while several numbers of inputs have been tried. The tracking
performance is shown to improve as more previous positions of both
the cart and the robot are used, attaining an average lag of only 8mm
in the case of seven inputs.

8. Summary and concluding remarks

This paper has reviewed the ways in which neural computing may
help to increase sensorimotor adaptivity in robots. First, the most
common neuron models and network topologies have been presented,
to next describe in more detail the mechanisms of neural adaptiv-
ity. These mechanisms have been inspired in the learning paradigms
of Behavioural Psychology (classical and instrumental conditioning),
and fall into three classes that require progressively more feedback:
correlational, reinforcement and error-minimisation rules.

Some trends in the development of these learning rules deserve no-
tice, since they have parallels in other disciplines dealing with adaptiv-
ity at diferent scales, such as Evolutionary Computation and Artificial
Intelligence. The first trend is that of progressing from binary variables
to continuous ones. This entails moving from discrete search spaces and
classification tasks to manifold representations and function approxi-
mation. Then, issues such as model complexity control and functional
invariance become very important.

A second trend is that of progressively replacing local feedback for
more global one, this globalisation taking place both spatially and
temporally. The first learning rules proposed required feedback to be
supplied to each single neuron. Backpropagation made a big step for-
ward in allowing feedback to be supplied at the overall network level
(spatial globalisation). Reinforcement learning has greatly contributed
to dealing with deferred feedback (temporal globalisation).

The dichotomy between locality and globality appears also in the
state space representation. Correlational rules are often incorporated
into network models that build localised representations (such as SOM,
ART and CMAC), while the strength of most models based on error-
minimisation and reinforcement rules lies precisely in the distributed
(global) way in which information is represented across all the net-

article.tex; 25/09/2002; 12:26; p.29

30 Carme Torras

work weights. In the localised representations, appropriately tuning
the neighbourhood size is a key issue.

Moving from off-line to on-line learning is another trend observed
in neural computing. Initial learning procedures were designed to work
in a batch mode (with all training samples supplied at the same time),
while a later challenge was to incorporate new samples into an al-
ready trained network. Sequential learning addresses this challenge by
explicitly seeking to avoid catastrophic forgetting.

Finally, let us mention the important role that randomness plays
in learning. This has been widely acknowledged in many contexts,
but specifically in neural computing noisy inputs and weights have
proven useful for regularisation (a complexity control method), and
randomness is of course a key ingredient of reinforcement learning.

After the overview of neural adaptivity, the paper has focused on
its application to robot control. This basically entails the learning of
nonlinear mappings relating stimuli to responses. Three neurocontrol
approaches have been presented: direct inverse modelling, forward mod-
elling and feedback-error learning. Then several robotic applications
have been surveyed, classified according to the underlying mapping
that needs to be approximated: inverse kinematics, inverse dynamics,
force-control mapping and visuomotor mapping. Each application has
been presented in terms of the neurocontrol approach used and the
network model and learning strategy applied.

The learning of inverse kinematics makes robot arms adaptive to
changes in their own geometry (e.g., link bendings, encoder shiftings,
etc.), while learning of the remaining three mappings allows robots to
cope with changing environments (e.g., different loads, moving objects,
etc.).

A first remark stemming from the survey of robotic applications
is that in the case of mappings that can be easily sampled, it seems
sufficient to apply a direct inverse modelling approach combined with
a plain error-minimisation procedure. Some simple inverse kinematics
mappings and visuomotor mappings used for visual positioning have
been learned in this way. If the input space is complex, then many
researchers have resorted to a combination of correlational rules for the
efficient coding of that space, with error-minimisation rules to build the
appropriate association with the outputs. The use of SOMs to encode
the robot workspace or the sensor space, as well as the application
of CMAC to the coding of the robot dynamics state space, fall into
this category. In both cases, the LMS rule is used to build the ap-
propriate input-output mapping: inverse kinematics in the former case
and inverse dynamics in the latter one. In the case that a measure
of the error is directly available in the control loop, as it happens in

article.tex; 25/09/2002; 12:26; p.30

Neural computing increases robot adaptivity 31

some inverse dynamics applications, then it seems natural to apply
a feedback-error learning approach. The very nature of this approach
points towards the use of error-minimisation rules, although if the error
measure is thought of as a qualitative rather than a quantitative one,
then it becomes a sort of reinforcement and the learning scheme can
be considered as a reinforcement-based one. Finally, when the task is
specified as a goal to be reached using sensory feedback, without making
explicit the movements necessary to reach it, then the only possibility
is to resort to reinforcement learning schemes, which depend just on
the availability of a measure of success rather than an error measure.

The number of learning cycles required ranges widely in the appli-
cations described, depending on the complexity of the mapping to be
learned as well as on the accuracy required. Note that learning time
is directly related to the number of training samples, each of which
entails at least one robot movement. And robots are slow as compared
to computers. Therefore, minimising the number of training samples
is of paramount importance in the application of neural networks to
robotics, and many efforts are currently oriented in this direction (e.g.,
adaptive sampling, function decomposition).

Acknowledgments

This work has been partially supported by the Catalan Research Com-
mission, through the “Robotics and Control” group, and the Spanish
Science and Technology Commission (CICYT) under contract TAP99-
1086-C03-01. The author thanks Bernd Maediger, from Daimler-Benz
Aerospace, and Christophe Venaille, from Thomson Broadcast Sys-
tems, for providing the specifications and the robot set-ups for the
applications described in Sections 7.1 and 7.4 in the framework of the
former Esprit project CONNY, and also for supplying the photographs
in Figures 9 and 12, respectively. Thanks also to Gordon Wells, from
Telecom Italia, for supplying Figures 2 to 5.

References

Aarts EHL and Korst JHM (1988) Simulated annealing and Boltzmann machines: a
stochastic approach to combinatorial optimization and neural computing. John
Wiley and Sons

Albus JS (1975) A new approach to manipulator control: The cerebellar model
articulation controller (CMAC). Transactions of the ASME, Journal of Dynamic
Systems, Measurement and Control 97: 220-227

An G (1996) The effects of adding noise during backpropagation training on
generalization performance. Neural Computation 8: 643-674

Arbib MA (1995) Handbook of Brain Theory and Neural Networks. MIT Press,
Cambridge, MA (An updated second edition will appear in November 2002)

article.tex; 25/09/2002; 12:26; p.31

32 Carme Torras

Back T, Fogel DB and Michalewicz Z (eds) (1997) Handbook of Evolutionary
Computation. Oxford University Press, New York, and Institute of Physics
Publishing, Bristol

Beyer H-G and Schwefel H-P (2002) Evolution strategies - A comprehensive
introduction. Natural Computing 1(1): 3-52

Barto AG, Sutton RS and Brouwer PS (1981) Associative Search Network: A
reinforcement learning associative memory. Biological Cybernetics 40: 201-211

Bishop C (1995) Neural Networks for Pattern Recognition. Oxford University Press

Bofill P, Fontdecaba E and Torras C (1995) Optimization networks for the generation
of Block Designs. Journal of Artificial Neural Networks 2(4): 303-312

Bofill P and Torras C (2001) Neural cost functions and search strategies for the
generation of Block Designs: An experimental evaluation. Intl. Journal of Neural
Systems 11(2): 187-202

Cherkassky V (2002) Model complexity control and statistical learning theory.
Natural Computing 1(1): 109-133

Cybenko G (1989) Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems 2(4): 303-314

D’Souza A, Vijayakumar S and Schaal S (2001) Learning inverse kinematics. Proc.
IEEE/RSJ Conf. on Intel. Robots and Systems, Maui, Hawaii, USA, pp. 298-303

Dorigo M (ed) (1996) Special issue on ‘Learning Autonomous Robots’. IEEE
Trans. on Systems, Man and Cybernetics, Part B: Cybernetics 26(3)

Espiau B, Chaumette F and Rives P (1992) A new approach to visual servoing in
robotics. IEEE Trans. on Robotics and Automation 8(3): 313-326

Feldman JA and Ballard DH (1982) Connectionist models and their properties.
Cognitive Science 6: 205-254

Fu KS, Gonzilez RC and Lee CSG (1987) Robotics: Control, Sensing, Vision, and
Intelligence. McGraw-Hill Book Company, New York

Funahashi K-I (1989) On the approximate realization of continuous mappings by
neural networks. Neural Networks 2(3): 183-192

Gerstner W (1999) Spiking neurons. In: Maass W and Bishop CM (eds) Pulsed
Neural Networks. MIT Press, Cambridge, MA

Girosi F and Poggio T (1990) Networks and the best approximation property.
Biological Cybernetics 63: 169-176

Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA

Grifi6 R, Cembrano G and Torras C (2000) Nonlinear system identification using
additive dynamic neural networks. Two on-line approaches. IEEE Trans. on
Circuits and Systems I: Fundamental Theory and Applications 47(4): 150-165

Grossberg S (1987) Competitive learning: from interactive activation to adaptive
resonance. Cognitive Science 11: 23-63

Gullapalli V, Barto AG and Grupen R. (1994) Learning admittance mappings for
force-guided assembly. Proc. IEEE Intl. Conf. on Robotics and Automation,
IEEE Computer Society Press, Los Alamitos, CA, pp. 2633-2638

Hebb DO (1949) The Organization of Behavior. Wiley, New York

Hertz J, Krogh A and Palmer RG (1993) Introduction to the Theory of Neural
Computation. Addison-Wesley

Higuchi T, Iwata M and Liu W (eds) (1997) Evolvable Systems: From Biology to
Hardware. Springer-Verlag, Berlin Heidelberg New York

Hinton GE and Anderson A (1981) Parallel Models of Associative Memory. Erlbaum,
Hillsdale, NJ

Hopfield JJ (1982) Neural networks and physical systems with emergent collective
computational abilities. Proceedings National Academy of Sciences USA 79:

2554-2558
Hopfield JJ and Tank DW (1985) ‘Neural’ computation of decisions for optimization

problems. Biological Cybernetics 52: 141-152
Hornik K, Stinchcombe M and White H (1989) Multilayer feedforward networks are
universal approximators. Neural Networs 2(5): 359-366

article.tex; 25/09/2002; 12:26; p.32

Neural computing increases robot adaptivity 33

Husbands P and Meyer JA (1998) Proc. 1st European Workshop on Evolutionary
Robotics (EvoRobot’98). Springer-Verlag, Berlin Heidelberg New York

Jordan MI (1993) Computational aspects of motor control and motor learning. In:
Heuer H. and Keele S (eds) Handbook of Perception and Action: Motor Skills,
Academic Press, New York

Jordan MI and Rumelhart DE (1992) Forward models: Supervised learning with a
distal teacher. Cognitive Science 16, 307-354

Kohonen T (1988) Self-Organization and Associative Memory (second edition).
Springer-Verlag, Berlin Heidelberg New-York Tokyo

Kohonen T (2001) Self-Organizing Maps (third edition). Series in Information
Sciences 30, Springer-Verlag, Berlin Heidelberg New York Tokyo

Koza JR (1992) Genetic Programming: On Programming Computers by means of
Natural Selection. MIT Press, Cambridge, MA

Krose BJA (ed) (1995) Special issue on ‘Reinforcement Learning and Robotics’.
Robotics and Autonomous Systems 15(4)

Kroése BJA and van der Smagt PP (1993) An Introduction to Neural Networks (5th
edition). University of Amsterdam

LeCun Y (1985) Une procedure d’aprentissage pour reseau au seuil assymetrique.
Proc. of COGNITIVA, pp. 599-604

McCulloch WS and Pitts WH (1943) A logical calculus of the ideas immanent in
nervous activity. Bull. Math. Biophys. 5: 115-133

Milldn JR and Torras C (1992) A reinforcement learning connectionist approach
to robot path finding in non-maze-like environments. Machine Learning 8(3/4):

363-395
Milldn JR and Torras C (1999) Learning sensor-based navigation. In: Morik K,

Kaiser M and Klingspor V (eds) Making Robots Smarter: Combining Sensing
and Action through Robot Learning. Kluwer Academic Publishers, Boston, MA

Miller WT, Hewes RP, Glanz FH and Kraft LG (1990a) Real-time dynamic control
of an industrial manipulator using a neural-network-based learning controller.
IEEE Trans. on Robotics and Automation 6(1): 1-9

Miller WT, Sutton RS and Werbos PJ (1990b) Neural Networks for Control. MIT
Press, Cambridge

Minsky M and Papert S (1969) Perceptrons: An Introduction to Computational
Geometry. MIT Press, Cambridge, MA (An expanded second edition appeared
in 1988)

Mitchell T, Franklin J and Thrun S (1996) Recent Advances in Robot Learning.
Kluwer Academic Publishers, Boston, MA

Miyamoto H, Kawato M, Setoyama T and Suzuki R (1988) Feedback-error-learning
neural network for trajectory control of a robotic manipulator. Neural Networks

1: 251-265
Morik K, Kaiser M and Klingspor V (1999) Making Robots Smarter: Combin-

ing Sensing and Action through Robot Learning. Kluwer Academic Publishers,
Boston, MA
Oja E and Kaski S (eds) (1999) Kohonen Maps. Elsevier Science, Amsterdam,

Holland
Omidvar O and van der Smagt P (1997) Neural Systems for Robotics. Academic

Press, San Diego, CA

Park DC, El-Sharkawi MA and Marks IT RJ (1991) An adaptively trained neural
network. IEEE Trans. on Neural Networks 2(3): 334-345

Pavlov IP (1927) Conditioned Reflexes. Oxford University Press

Peterson C and Soédeberg B (1989) A new method for mapping optimization
problems onto neural networks. Intl. Journal of Neural Systems 1(1): 3-22

Ritter H, Martinetz T and Schulten K (1992) Neural Computation and Self-
Organizing Maps. Addison Wesley, New York

Ruiz de Angulo V and Torras C (1995) On-line learning with minimum degradation
in feedforward networks. IEEE Trans. on Neural Networks 6(3): 657-668

Ruiz de Angulo V and Torras C (1997) Self-calibration of a space robot. IEEE
Trans. on Neural Networks 8(4): 951-963

article.tex; 25/09/2002; 12:26; p.33

34 Carme Torras

Ruiz de Angulo V and Torras C (2000) A framework to deal with interference in
connectionist systems. AT Communications 13(4): 259-274

Ruiz de Angulo V and Torras C (2001a) Architecture-independent approximation
of functions. Neural Computation 13(5): 1119-1135

Ruiz de Angulo V and Torras C (2001b) Neural learning invariant to network size
changes. Proc. Intl. Conf. on Artificial Neural Networks (ICANN’01), Vienna,
Austria, Lecture Notes in Computer Science 2130: 33-40

Ruiz de Angulo V and Torras C (2002a) Learning inverse kinematics via cross-
point function decomposition. Proc. Intl. Conf. on Artificial Neural Networks
(ICANN-2002), Madrid, Spain, Lecture Notes in Computer Science 2415: 856-861

Ruiz de Angulo V and Torras C (2002b) A deterministic algorithm that emulates
learning with random weights. Neurocomputing 48(1-4): 975-1002

Rumelhart DE, Hinton GE and Williams RJ (1986) Learning representations by
back-propagating errors. Letters to Nature 323: 533-535

Rumelhart DE and Zipser D (1985) Feature discovery by competitive learning.
Cognitive Science 9: 75-112

Samson C, LeBorgne M and Espiau B (1990) Robot Control: The Task Function
Approach. Oxford Engineering Science Series 22, Oxford Science Publications

Schram G, van der Linden FX, Krose BJA and Groen FCA (1996) Visual tracking
of moving objects using a neural network controller. Robotics and Autonomous
Systems 18: 293-299

Simon HA (1969) The Sciences of the Artificial. MIT Press, Cambridge, MA

Skinner BF (1938) The Behavior of Organisms: An Experimental Analysis. Appleton
Century

Steels L (1995) The Biology and Technology of Intelligent Autonomous Agents.
NATO ASI Series F, Springer-Verlag, Berlin Heidelberg New York

Sutton RS (1988) Learning to predict by the methods of temporal differences.
Machine Learning 3: 9-44

Sutton RS and Barto AG (1998) Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA

Torras C (1985) Temporal-Pattern Learning in Neural Models. Lecture Notes in
Biomathematics 63, Springer-Verlag, Berlin Heidelberg New York

Torras C (1989) Sensorimotor integration in robots. In: Ewert P and Arbib MA
(eds) Visuomotor Coordination: Experiments, Comparisons, Models and Robots,
Plenum Press, pp. 673-689

Torras C (1993) Symbolic planning versus neural control in robots. In: Rudomin P,
Arbib MA, Cervantes-Pérez F and Romo R (eds.) Neuroscience: From Neural
Networks to Artificial Intelligence, Research Notes in Neural Computing 4: 509-
523, Springer-Verlag: Berlin Heidelberg New-York

Torras C (ed) (2001) Special issue on ‘Neural Networks at IJCAI’01’. Intl. Journal
of Computational Intelligence and Applications 1(4)

van del Smagt P and Bullock D (eds) (1997) Can Artificial Cerebellar Models Com-
pete to Control Robots? DLR, Technical Report #515-97-28, German Aerospace

Center

van de Velde W (ed) (1993) Special issue on ‘Towards Learning Robots’. Robotics
and Autonomous Systems 8(1-2)

Walter J and Ritter H (1996) Rapid learning with parametrized self-organizing maps.
Neurocomputing 12: 131-153

Wells G and Torras C (2001) Assessing image features for vision-based robot
positioning. Journal of Intelligent and Robotic Systems 30(1): 95-118

Wells G, Venaille Ch and Torras C (1996) Vision-based robot positioning using
neural networks. Image and Vision Computing 14: 715-732

Widrow B and Hoff ME (1960) Adaptative switching capatibility and its relation to
the mechanisms of association. Kybernetik 12: 204-215

Ziemke T and Sharkey N (eds) (1998) Special issue on ‘Biorobotics’. Connection
Science 10(3-4)

article.tex; 25/09/2002; 12:26; p.34

