SOLVING MULTI-LOOP LINKAGES
BY ITERATING 2D CLIPPINGS

J.M. Porta, L. Ros, F. Thomas and C. Torras
Institut de Robotica i Informatica Industrial (CSIC-UPC)
Llorens i Artigas 4-6, 08028-Barcelona, Spain

{jporta,IIros,fthomas,ctorras}@iri.upc.es

Abstract

A multi-loop linkage can be viewed as a graph of kinematic con-
straints, and its solution entails finding joint configurations satisfying
all constraints simultaneously. In this paper, a general algorithm to ob-
tain all solution configurations is presented. Each loop provides a matrix
equation in homogeneous coordinates, which is handled as a constraint
on the involved joint variables. The algorithm uses one constraint at
a time to reduce the valid ranges for variables, by iteratively applying
two simple geometric operations: segment-trapezoid and circle-rectangle
clippings. The obtained experimental results qualify this approach as a
valuable alternative to other interval-based strategies.

Keywords: Kinematic constraints, constraint graph, geometric constraint systems,
multilinear equations, clipping.

1. Introduction

The resolution of graphs of kinematic constraints has aroused interest
not only within Kinematics (analysis of multi-loop linkages, simulation
of deployable mechanisms), but also within related disciplines such as
Robotics (path planning of closed-loop kinematic chains, contact anal-
ysis, assembly specification) and Computer Graphics (constraint-based
sketching and design, geometric modeling for CAD). In the latter con-
texts, the problem is formulated as a system of geometric constraints
between objects (Kramer, 1992), whose resolution entails finding object
positions and orientations that satisfy all constraints simultaneously.

Solving a constraint graph amounts to solving its underlying system of
loop-closure equations. Thus, the general methods developed for finding
all the roots of systems of algebraic equations can be (and have been)
applied to this problem. Three types of methods can be distinguished:
algebraic geometry, homotopy and interval-based ones.

Our group has been exploring the latter type of algorithms, first using
interval Newton methods (Castellet and Thomas, 1998) and, afterwards,

the subdivision and convex-hull properties of the Bernstein polynomials
(Bombin et al., 2000). An interesting feature of this second technique
is that it does not require the computation of any Jacobian. Along this
line, we propose here a remarkably simpler branch-and-bound algorithm
that only relies on two basic 2D clipping operations.

2. From a constraint graph to a system of
equations

When reference frames are attached to the objects, the constraints can
be expressed as sets of allowed transformations between these reference
frames. Although these transformations are usually described by means
of homogeneous coordinates and Denavit-Hartemberg parameters, other
representations are possible but this does not modify the discussion that
follows.

We will only consider transformations with independent translational
and rotational degrees of freedom. This includes most problems of prac-
tical interest but excludes, for example, those including screw motions
because the translational and rotational motions are linked by the pitch
of the screw.

Each loop or cycle c¢ in the constraint graph can be expressed as a
sequence of homogeneous transformations, where each transformation
is either a constant matrix or a translation/rotation matrix including a
single variable. In a solution configuration, the result of composing the
transformations in the loop must equal the identity. Thus, each cycle
leads to a matrix equation:

A1y ey Ty 01y, 0p) =1, (1)
where z1,...,x, are variables involved in translation transformations,
01,...,0,, are rotational variables, and [is the identity matrix.

For multi-loop graphs, not all resulting matrix equations are indepen-
dent, but only those belonging to a cycle basis of the graph. In the
current implementation, we use a basis of fundamental cycles (derived
from a spanning tree), but this is clearly a point susceptible of improve-
ment, as discussed in Section 7.

Each matrix equation leads to 12 scalar equations, one for each row ¢
(but the last, which has constant values) and column j in the transfor-
mation matrix:

fi’j(zl""’xnaela---aem):(5i,j7 (2)

where §; ; is 1 if 7 is equal to j, and 0 otherwise.
Obviously, the system of matrix equations defined by the cycle ba-
sis of the graph can be solved by working on the resulting set of scalar

equations. However, the presence of rotational variables in the scalar
functions (2) is quite troublesome because it leads to trigonometric ex-
pressions. The tangent-half-angle substitution has been the usual choice
to transform them into a system of algebraic equations, but it might
introduce extraneous roots because of its singularity at 6y = £x.

As an alternative, it is possible to introduce the changes y, = cos
and zp = sinfj that present no discontinuity. Using this variable sub-
stitution, the scalar equations become:

Jii (@1 s Ty Yty ooy Yms 215 - - - 5 Zm) = 05 . (3)

The drawback of this variable substitution is that we have m addi-
tional variables and, thus, the search space is considerably enlarged. The
advantage is that now all f; ; functions are multilinear and, consequently,
the equations are simpler to solve.

In the next sections, we describe how these equations can be solved
using simple 2D clipping techniques and how the circle-based restriction
(y2 + 22 = 1) existing between some of the variables is used to ensure
that only valid roots are found.

3. Bounding multilinear functions

Because of its application in the field of nonlinear programming, a
great deal of effort has been devoted to finding piecewise-linear bounds
for multilinear functions. It is well-known that the convex envelope of
one such function on the unit hypercube is polyhedral and that finding
this envelope is an NP-hard problem.

In this paper, we will use a much looser and easy-to-compute bound,
namely the projections of the convex envelope on the planes (zg, f(x))
for all k. To this end, we will make use of the following result, which is
a direct consequence of Theorem 1.1 in (Rikun, 1997):

The point (x, f(x)) € R"T!, where f is a scalar multilinear function
and x = (%1,...,2,) € [z}, 7%] x --- X [z], %] is contained in the convex
hull of the 2" points {(x, f(x))|zx € {z4,z¥}}.

This convex hull property leads to a simple clipping strategy for
bounding the solutions of a system of multilinear equations, as described
in Section 4.1.

4. Two clipping operations

The algorithm we present takes an initial box B C R™ in configuration
space and uses two clipping operations —segment-trapezoid clipping and
circle-rectangle clipping— to iteratively cut off portions of B containing
no root. For simplicity, we here explain how they work on a system of

just one equation in two unknowns. The extension to multiple equa-
tions and any number of variables will then become straightforward, as
summarized in Section 5.

4.1 Segment-trapezoid clipping

Assume we want to find all solutions of a multilinear equation f(x) =
8, x = (r1,72), for x in the box B = [z}, 1%] x [z},z%] € R2. Since
the graph of (x, f(x)) must lie within the convex hull of the 22 = 4
points {(x, f(x))| x € {z}, 2%} x {z},2%}}, we can compute the convex
hull of these points in % and intersect it with the plane f(x) = § to
obtain a polygon whose rectangular hull gives a better bound for the
solutions. Although this method seems inefficient for a high number of
variables, Bombin et al. (2000) show that the explicit computation of
the convex hull may be avoided, and that the overall procedure can be
reduced to solving 2n linear programming problems. Nevertheless, the
method can be further simplified by accepting looser bounds through
the following variation, illustrated in Fig. 1. Instead of computing the
intersection of the convex hull with the f(x) = § plane, we simply start
by projecting the hull onto each coordinate plane as depicted in Fig.
la, and intersecting each of the resulting trapezoids with the f(z) =
line, as shown in Fig. 1b. Usually, these segment-trapezoid clippings
reduce the ranges of some variables, and the Cartesian product of them
all gives a box smaller than B still bounding the root locations (the black
rectangle in Fig. 1a). The experiments show that, although the latter
strategy produces less pruning than the former, a root finding process
using it is faster due to the lower cost of its simpler operations.

max

min

(b)

Figure 1. Segment-trapezoid clipping.

4.2 Circle-rectangle clipping

When two variables of a same rotation, say y; and zi, are constrained
by an equation y,% + z,% = 1, their ranges can be further reduced with a
circle-rectangle clipping operation, as illustrated in Fig. 2. Suppose that
after all possible segment-trapezoid clippings we end up with a certain
box B of possible values for y; and zj (see Fig. 2a). Since only the values
lying on y;+27 = 1 are consistent with the equations, we can clip this box
with the circle, yielding the smaller shaded rectangles in Fig. 2b. Note
that, in general, clipping against the unit circle may produce more than
one clipped box (Srinivasan, 1992). Although this frequently prunes
large portions of the search space, it would also produce a great deal
of branching in the search algorithm below, and it is often preferable
to take the rectangular hull of all clipped boxes as the output of this
clipping operation, rather than the individual boxes themselves. This
also permits a simpler box-handling strategy in the search algorithm
described next.

2 25

Yi Yi

(a) (b)

Figure 2. Circle-rectangle clipping.

5. The algorithm

The proposed algorithm, which we have named Cuik (Fig. 3), aims at
determining a set S of small boxes that include the solutions for a given
kinematic problem. The valid ranges for the variables (including those
coming from the sine and cosine substitutions) are used to set up an
initial list of boxes. This list constitutes the search space where to look
for solution boxes. In this algorithm, a box is a solution when it has a
size below a user-provided threshold (o) and it fulfills all the possible
segment-trapezoid and rectangle-cycle clipping tests. This simple crite-
rion may classify as solution boxes those that are very close to a solution
point, but that do not actually include the point itself. Avoiding these
pseudo-solutions calls for more strict acceptance criteria, as mentioned
in Section 7.

The Cuik Algorithm
Input: A kinematic graph description
Output: A set of solution boxes (S)
Process:
Compute a cycle basis of the graph
S« 0
L <+ Initial list of bozes
while not empty(L)
B « first boz(L)
do
s <size(B)
Reduce_Box(B)
until empty(B) or size(B)< o or size(B)/s > p
if not empty(B) then
if size(B)< o then
S+ Su{B}
else
Split B into two sub-bozes: Bi, B2
Add B1 and Bz to L
endif
endif
endwhile

Figure 8. The Cuik algorithm.

To determine the set of solution boxes, each one of the initial boxes is
reduced as much as possible by the successive application of the trape-
zoid and circle clippings described in the previous section (see Fig. 4).
Three possible outcomes are possible from the box-reduction process:

s The box becomes empty: In any of the clippings a variable in-
terval can become empty because there is no intersection between
the segment and the trapezoid or between the circle and the rectan-
gle. This indicates that the analyzed box does not contain solution
points and we can simply stop the exploration in the search space
delimited by this box.

m The box becomes small: Then we add it to the solution set.

s The box can not be significantly reduced: If the reduction
ratio of the box is above a user-provided threshold (p), the box
reduction is stopped and the box is split into two sub-boxes. In
the current version of the algorithm, we simply split the box along
its larger dimension. However, as commented in section 7 this

Reduce_Box(B)
Input: A box defined as a set of intervals:

Output: The same box but eventually resized

Process:
for each cycle ¢
V {vo,...,vx} (Set of indezes of variables involved in c)

C= {C(X) |X = (:CT)O’ R 3$'Uk) € {wijgixgo} X...X {wﬁikawgk}}
for eachv €V
for each i € [1,3] and j € [1,4]
min' + min{c;;; | c € C, z, = 21}
max' «+ max{c;; |c € C, z, =z'}
min* min{¢;; |c € C, z, = zy}
max® ¢ max{c;; |c € C, z, = zy}
ifi=jthend=1
else § =0
Trapezoid _Clipping(z),z¥, min', max!, min*, max*, §)
if ., is a rotation variable then
w < Index of the circle-related variable of .,
Circle_Clipping(z, £¥, z.,, 2%)
endif
endfor
endfor
endfor

Figure 4. The Reduce_Box function. c(wo,...,x) refers the evaluation of the
cycle matrix equation at point (o, ..., Zx), and ¢;,; denotes the element at row ¢ and
column j of matrix c.

point requires further consideration. After the split, the circle
clipping process is used to transmit the interval reduction to the
corresponding circle-related variable. If the two new boxes are
added to the beginning of the list, the Cuik algorithm implements
a depth-first search, and if they are added to the end of the list
the search is breadth-first.

Two factors have to be taken into account to determine the cost of any
interval-based algorithm: the number of processed boxes and the cost to
process each box. In the case of the Cuik algorithm, the emphasis is put
in efficiently processing each box, even at the cost of having to process
more boxes than if a more costly box reduction process were used.

Note that the algorithm in Fig. 4 projects 4 times the 2* cycle evalu-
ations for each cycle ¢; (I € [1..n]), for each variable z, (v € [1..k]), and
for each element of the matrix equation. This amounts to 4-n-k-12-2F

(b)

Figure 5. (a) The Gosselin platform. (b) The solution boxes determined by the
Cuik algorithm with f; = —0.2266, 82 = —0.7103 and, 85 = 0.073.

point projections and, hence, even for few variables per cycle, this is the
most expensive step of the box-reduction process.

One advantage of the Cuik algorithm is that box-reductions are com-
pletely independent of one another and, therefore, the algorithm can be
readily parallelized with the consequent increment in efficiency.

6. Experimental results

Fig. 5a shows the platform presented in (Gosselin and Gagné, 1995).
In this mechanism, the S parameters are the inputs for the platform
actuators and the §’s are the joint values to be determined by the Cuik
algorithm. This platform has eight valid configurations, four attainable
for any value of the actuators parameters, and four particular for each
set of inputs.

Observe that this problem involves six rotational variables and, con-
sequently, the Cuik algorithm works in a twelve-dimensional space.

The kinematic graph for this platform has two fundamental cycles,
each involving four variables (two of them shared with the other cycle).

The initial range for the 6 variables is [0,27]. With o = 0.1, these
initial ranges conform a search space where approximately 4 - 10 solu-
tion boxes can be defined. Despite this large search space, the problem
is solved by an optimized version of the Cuik algorithm in less than 1.25
seconds on a Pentium IIT at 7T00MHz, using the parameters ¢ = 0.1 and
p=0.8.

In this example, the algorithm starts with a single box and it exam-
ines up to 679 boxes, only 58 of which are considered solutions. Fig. 5b
shows the solution boxes projected on a plane defined by a pair of prob-

(a) (b)

Figure 6. (a) The Bennett linkage. (b) The discretization of the one-dimensional
space of solutions provided by the Cuik algorithm.

lem variables. We see that, as expected, the solution boxes accumulate
around the eight solution points of the proposed problem.

If we need more precision in the solution boxes, we can run the pro-
gram with a lower value for the parameter . For instance, for ¢ = 0.01
(10 times smaller than before), the search space is enlarged up to 4-10%7,
but the execution time is increased in less than 0.2 seconds.

Fig. 6a represents the Bennett’s linkage, a 4R spatial closed chain with
1-d.o.f. mobility. Fig. 6b shows the discretization of the one-dimensional
solution space provided by the Cuik algorithm. This discretization in-
cludes about 300 boxes and is obtained in less than 1 second (with
o =0.1 and p = 0.8).

We have also tested our implementation with more complex problems.
As a reference, all the valid solutions of a 6R manipulator are found by
the algorithm in about 5 minutes.

7. Conclusions and envisaged enhancements

In this paper, we have shown the feasibility of efficiently solving com-
plex kinematic problems using very simple 2-D clipping techniques.

The presented Cuik algorithm can be seen as the skeleton of a software
package to solve arbitrary graphs of kinematic constraints. Currently,
the algorithm deals with cycles, variables and matrix components in
an exhaustive, uninformed way. Future work will try to develop good
heuristics for all choice points in the algorithm. For example, it is not
clear what the most suitable cycle basis is, or even if the addition of
redundant cycles could speed up the process. Likewise, first solving the
cycles with discrete solutions may prune drastically the search space. It
seems equally advisable to begin by processing variables shared between

many cycles. Another point that also deserves consideration is that of
deciding how to split boxes whose size can not be further reduced. Solu-
tion accuracy should also be improved by using more elaborate criteria
to determine whether a small box contains a root.

The results we have obtained show that the presented algorithm is
specially adequate for kinematic problems with many loops but with
few variables per loop (up to 4 or 5). To efficiently confront problems
with more variables per loop, the algorithm should be extended with
other techniques for solving algebraic equations.

Acknowledgements

This research has been partially supported by the Catalan Research
Commission, through the “Robotics and Control” group, and the Span-
ish CICYT under contracts TAP99-1086-C03-01 and TIC2000-0696.

References

Bombin, C., Ros, L., and Thomas, F. (2000), A concise Bézier clipping technique for
solving inverse kinematics problems, in Advances in Robot Kinematics, J. Lenarcic
and M.M. Stanisic (eds.), pp. 53-60, Kluwer Academic Publishers.

Castellet, A., and Thomas, F. (1998), An algorithm for the solution of inverse kine-
matic problems based on an interval method, in Advances in Robot Kinematics,
M. Husty and J. Lenarcic (eds.), pp. 393-403, Kluwer Academic Publishers.

Gosselin C. M. and Gagné M. (1995), A close-form solution for the direct kinematics
of a special class of spherical three-degree-of-freedom parallel manipulators, in
Computational Kinematics, J.-P. Merlet and B. Ravani (eds.), pp. 231-240, Kluwer
Academic Publishers.

Kramer, G.A. (1992), Solving Geometric Constraint Systems, Cambridge, The MIT
Press.

Rikun, A.D. (1997), A convex envelope formula for multilinear functions, J. of Global
Optimization, vol. 10, pp. 425-437.

Srinivasan, R.V. (1992), A fast circle clipping algorithm, in Graphics Gems III, pp.
182-187, Academic Press.

