
 
 

 

Abstract—This article presents a principal research line 
within the group of Geometric Methods in Robotics: the 
development of efficient algorithms for kinematic con-
straint solving, with applications to Robotics, Computer-
Aided Geometric Design and Structural Biology. The mul-
tidisciplinary nature of the topic justifies the participation 
of researchers from different areas. Currently, the group 
involves members of the Institute of Robotics and Indus-
trial Informatics and the departments of Chemical Engi-
neering and Mathematics of the Technical University of 
Catalonia (UPC).  

Index Terms—Kinematic Constraint Solving, Robotics, 
Structural Biology, Computer-Aided Design. 

I. INTRODUCTION 

The purpose of this research is to develop efficient al-
gorithms for solving the following strongly NP-hard 
problem: given an arbitrary collection of kinematic con-
straints among a set of solids, generate all spatial con-
figurations of these solids that satisfy them. When the 
number of feasible solutions is infinite, the algorithm 
must be able to find a discretization of the whole solu-
tion space or, when needed, it must find the configura-
tions that minimize a given objective function in the in-
volved variables.  

This abstract formulation has concrete instantiations 
in several problems of Robotics, CAD or Structural Bi-
ology, where the considered solids are the rigid links of 
a robot mechanism, the geometric elements of a CAD 
design, or the atoms of a molecule, respectively. In those 
settings, the kinematic constraints are induced by the 
kinematic pairs of the robot (such as prismatic, revolute, 
or spherical joints), the geometric constraints of the de-
sign (such as incidence, parallelism, orthogonality, scale 
or size) or the atomic interactions of the molecule (such 
as covalent bonds, hydrogen bonds or hydropho-
bic/hydrophilic interactions). We next examine some 
applications in detail, in each of these fields. 

A. Inverse kinematics of robots and molecules 

Although the inverse kinematic problem has been 
solved for specific architectures, the inexistence of a 
general procedure for solving inverse kinematic prob-
lems usually prevents a specific robot design to be used. 
Having a general method able to solve any architecture 
(without limitations on the number of kinematic loops, 
the type of the joints, or the degree of redundancy) 
would remove this limitation. This is a relevant problem 
nowadays, given the widespread use of parallel robots 
(that lead to kinematic loops between the base and the 
platform), modular reconfigurable robots (that are able 
to adopt very different architectures whose inverse 
kinematics is unknown) and humanoid robots (that fre-
quently originate kinematic loops when they grasp an 
object with both hands, or when they perform motions 
in contact with the environment). A solution to this 
problem would also have important applications in 
Structural Biology, where a common problem is to com-
pute all spatial configurations of large biomolecules, 
taking into account the constraints of their kinematic 
loops, in order to determine their biological function in 
the cell. 

B. Collision free path planning and docking 

Although there exist efficient path planners for robots 
with a tree-like arquitecture, there does not exist an effi-
cient method for this purpose in robots that contain ki-
nematic loops. These loops arise in the coordinated ma-
nipulation of an object by several manipulators, in the 
path planning of parallel robots, or in tasks requiring 
some elements of the robot to be in contact with the en-
vironment. This problem also arises in Drug Design, 
where one has to elucidate whether a small molecule 
(such as that of a certain drug) fits in a specific cavity of 
a larger molecule (such as a protein in the cellular 
membrane). 
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Fig. 1: Kinematic loops appearing in the direct kinematics of parallel manipulators. The figure shows a 
simulation of the parallel robot 3-URU DYMO, by Dimitri Zlatanov. A kinematic loop is created between any 
two legs, and all closure constraints of such loops must be simultaneously solved, in order to study the possible 
motions of the platform. Currently, no system exists that is able to solve the direct or inverse kinematics of a ro-
bot of arbitrary architecture. 

Fig. 2: Kinematic loops in modular reconfigurable robots. The figure shows the robot POLYBOT, designed 
in the Palo Alto Research Institute of California. Given its modular structure, the robot can adopt a variety of 
configurations, many of them creating kinematic loops that must be taken into account when analyzing the mo-
bility of the robot or when planning its motions. Since the inverse kinematics of a general robot is not a solved 
problem, such robots frequently exhibit simpler motions than those they could actually perform, given its rich 
architecture. 

loops with 
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C. Solving constrained designs in CAD  

A fundamental problem of computer-aided mechani-
cal design is how to move a set of objects to its final po-
sition in an assembly. Usually, this is done by manually 
specifying a number of coordinate transformations be-
tween the reference frames of the distinct objects - a 
hard task that quite often introduces position errors in 
the assembly.  As an alternative, we propose to specify 
the final positions of the solids (as well as their allowed 
relative motions) in an interactive way, using con-
straints such as that the face of one object must be co-
planar with the face of another object, or that a given 
edge coincides with another one, and so on. Our con-
straint-based approach would allow an easy specifica-
tion and simplification of this task.  We must point out 
that, although this is a long-standing challenge of Ro-
botics and Artificial Intelligence, none of the systems 
developed so far, such as LAMA [1], RAPT [2], TLA 
[3], or AUTOPASS [4], show a significant performance 
in cases of practical interest.  

The rest of the paper is structured as follows. Section 
II outlines the historical development of the group. Sec-
tion III summarizes previous related work in the litera-
ture. Section IV presents a recently developed method-
ology within the group and, finally, Section IV shows 
some specific problem instances that have been solved 
using it. 

II. GROUP GENESIS 

Several members of the group have been working in 
inverse kinematics problems with applications to Robot-
ics and CAD-CAM for the past fifteen years. The first 
publications date back to the Ph.D. thesis of Federico 
Thomas [5,6,7], where a method based on Group-
Theory was proposed to solve a system of kinematic 
constraints. Soon after, during the period 1988-1991 
and within the project “Constraint-based Spatial Rea-
soning” (Spanish CICyT reference TIC88-0197), led by 
Carme Torras, this work was extended to pursue the so-
lutions within specified ranges for the degrees of free-
dom of the mechanism. The results for planar chains 
and spherical mechanisms appeared in the Ph.D. thesis 
of Enric Celaya [8] and these techniques were later ap-
plied to the analysis and synthesis of multi-loop mecha-
nisms [9] and redundant manipulators [10]. An algo-
rithm to specify the positions of several solids subject to 
a number of geometric constraints between them was 
given in [11], extending other previous developments 
[12]. Later on, in the period 1996-1999, within the pro-
ject “Analysis of Spatial Constraints and their Applica-

tion to Mechanical Design and Robot Task Simulation” 
(Spanish CICyT reference TIC96-0721-C02-01), led by 
Federico Thomas, this group demonstrated that the gen-
eral interval-based methods used to solve systems of 
nonlinear equations, when applied to inverse kinematics 
problems, are very efficient and easy to implement when 
compared to other techniques. Several versions of this 
basic idea were developed in the Ph.D. thesis of Albert 
Castellet and published in [13,14,15]. Next, the group 
focused on interval methods based on the properties of 
Bernstein polynomials, devising a fast algorithm [16,17] 
that has been later simplified using the properties of 
multilinear functions [18,19,20].  

Currently, the group involves the nine authors of this 
paper, who collaborate within the R+D project "Design 
and Implementation of Efficient Parallelized Algorithms 
of Distance Geometry, with Applications in Computa-
tional Kinematics and Proteomics", led by Lluís Ros and 
funded by the Spanish Ministry of Science (with refer-
ence TIC2003-03396). 

The group recently received international recognition 
by being granted the organization of the International 
Symposium on Advances in Robot Kinematics, in the 
2002 edition. 

III. RELATED WORK 

Although the formulated problem can be approached 
by using geometric constructive techniques [21], only 
the algebraic approaches have proved general enough to 
handle all problem instances. These consist in translat-
ing the original kinematic problem into a system of al-
gebraic equations that is then solved using any suitable 
standard technique. Unfortunately, a good solution to 
both algebrization and resolution, treated as independ-
ent problems, does not necessarily lead to an efficient 
solution of the kinematic problem. One of the aims of 
our work is to find a good combination of algebrization 
and resolution, so that the whole process is easy to un-
derstand and implement, and yet computationally effi-
cient in practice. 

Finding all solutions to a system of nonlinear poly-
nomial equations within some finite domain is an ubiq-
uitous problem for which a wealth of resolution tech-
niques has been proposed. Reviews of these methods in 
the context of Robotics, CAD/CAM and Structural Biol-
ogy can be found for example in [22], [23], and [24], 
respectively. Broadly speaking, the proposed methods 
fall into three categories, depending on whether they use 
algebraic geometry, continuation or interval-based tech-



 
 

 

niques. While methods in the first two categories are in 
theory complete (they are able to find all solutions if 
these exist in a finite number) and general (they can 
tackle any system of multivariate polynomial equations), 
in practice they have a number of limitations. For ex-
ample, algebraic geometric methods (including those 
based on elimination and Gröbner bases) usually ex-
plode in complexity, may introduce extraneous roots, 
and can only be applied to relatively simple systems of 
equations. Beyond this, they may require the solution of 
a high-degree polynomial, which may be a numerically 
ill-conditioned step in some cases. It must be noted, 
however, that despite these inconvenients recent work 
on sparse resultants is presently uncovering the further 
potential these methods possess [25]. On the other hand, 
as noted in [26], continuation techniques must be im-
plemented in exact rational arithmetic to avoid numeri-
cal instabilities, leading to important memory require-
ments because large systems of complex initial value 
problems have to be solved. For an arbitrary problem, 
moreover, neither of these approaches is able to obtain 
the solution variety, if its dimension is greater than zero.  
Interval-based methods are also complete and general, 
but, although they can be slow in practice, they present 
a number of advantages that make them a competitive 
alternative: (1) contrarily to elimination methods, the 
equations are tackled in their input form, thus avoiding 
the need of intuition-guided symbolic reductions (2) 
they are numerically stable, (3) they also work if the di-
mension of the solution variety is greater than zero, (4) 
they deal with variable bounds in a natural way, and (5) 
they are simple to implement. 

Two main classes of interval-based methods have 
been explored in the Robotics literature: those based on 
the interval version of the Newton method (also known 
as the Hansen algorithm) and those based on subdivi-
sion.  To our knowledge, the first applications of the 
Hansen algorithm in this field were due to Rao et al. 
[27] and Didrit et al. [28], who respectively applied the 
interval Newton method to the inverse kinematics of 6R 
manipulators and the forward analysis of Stewart-
Gough platforms. Rather than plunging into specific 
mechanisms, Castellet and Thomas then tackled general 
single-loop inverse kinematics problems [15], showing 
that the Hansen algorithm can be sped up if it is used in 
conjunction with other necessary conditions drawn from 
the problem itself.  Later on, successful applications of 
the interval Newton method were also reported by Mer-
let in singularity analysis and mechanism design of par-
allel manipulators [29,30]. Subdivision techniques, in 
turn, were developed in the early nineties by Sherbrooke 

and Patrikalakis in the context of constraint-based 
Computer Aided Design [26]. These exploit the subdivi-
sion property of Bernstein polynomials, which avoids 
the computation of derivatives while maintaining the 
quadratic convergence of the Hansen algorithm.  Their 
application to general multi-loop mechanisms was made 
possible after explicit expressions for the control points 
of their closure equations were found in [17], allowing 
their rewriting in Bernstein form.  A specific subdivi-
sion technique was then developed in [18], which leads 
to a remarkably simpler algorithm when the problem 
can be described only by multilinear constraints [19].  
Given this simplicity, it seems logical to elucidate 
whether a formulation of every geometric constraint 
solving problem is possible in terms of such constraints 
exclusively. We have showed that the theory of Distance 
Geometry allows such a formulation, thus permitting a 
reasonably good symbiosis between algebrization and 
resolution, as initially sought [20]. This problem formu-
lation and a novel subdivision-based constraint-solving 
technique for multilinear equations will be summarized 
next. 

IV. METHODOLOGY 

A. From kinematic to distance constraints 

We propose the use of methods from Distance Ge-
ometry to tackle the problem at hand. A preliminary 
step to that end entails the translation of the original 
formulation, that specifies a number of kinematic con-
straints among a set of solids, to the canonical formula-
tion in Distance Geometry, that specifies a number of 
distance constraints among a set of points. The latter 
setting asks, for a set of n points in 3-space, with speci-
fied distances between some of them, to compute (up to 
congruences) all spatial realizations of the point set that 
satisfy the prescribed distances. Such a point set with 
prescribed distances can be mechanically interpreted as 
a bar-and-joint framework, a structure of rigid bars (the 
known distances) joined at their ends with ideal univer-
sal joints (the points). Then, the goal can be rephrased 
as finding all possible configurations of this bar-and-
joint framework, up to congruences.  

The reduction of a set of kinematically constrained 
solids to an equivalent bar-and-joint framework is al-
ways possible. We give some examples of such reduc-
tion, and point the reader to [19,20] for further details:  

o The direct kinematics of the Stewart-Gough plat-
form in Figure 3a, that entails finding all valid pos-
tures of the platform that are compatible with the 
actuator lengths, is trivially reduced to that of find-



 
 

 

ing all valid configurations that the bar-and joint 
framework of Figure 3b can adopt. 

o The inverse kinematics of the 6R manipulator of 
Figure 4a, that consists in finding which actuator 
angles take the end effector to the specified pose, 
can be reduced to computing all possible configura-
tions of the bar-and-joint structure in Figure 4b. 

o In Structural Biology, the computation of all con-
formations of a given molecule, like the cyclohex-
ane in Figure 5a, can be reduced to finding the con-
figurations of an equivalent robot (Figure 5b) or of 
its equivalent bar-and-joint framework (Figure 5c). 

B. Cayley-Menger equations 

Once the reduction to a bar-and-joint framework has 
been performed, equations can be drawn from the The-
ory of Distance Geometry to compute all valid configu-
rations of such a framework. Distance Geometry refers 
to the analytical study of Euclidean Geometry in terms 
of some polynomials that are invariant under changes of 
the reference frame. These polynomials are expressed as 
Cayley-Menger determinants, which solely depend on 
the unknown distances of the problem at hand. The 
Cayley-Menger determinant of m points p1,…, pm is de-
fined as the determinant of a square matrix G, with m+1 
rows and columns, where the element G(i,j) is the 
square of the distance between pi and pj, and the ele-
ments in the last row and column are all one, except 
G(m+1,m+1), which is set to zero.  

A fundamental theorem of Distance Geometry, then, 
establishes that a set of points with prescribed distances 
is realizable in 3-space if and only if all Cayley-Menger 
determinants on groups of five points vanish. In other 
words, the unknown distances may be computed by solv-
ing a system of polynomial equations made up with all 
Cayley-Menger determinants of five points, made equal 
to zero. 

C. A branch-and-prune algorithm 

Cayley-Menger equations happen to be multilinear. 
For this reason, we have devised an algorithm to solve 
them that takes advantage of this property. We just sum-
marize it here and refer the reader to [19,20] for further 
details. The algorithm takes a rectangular box B of the 
search space as input, and delivers a set of small boxes 
as output, containing all solutions lying inside B.  

Generally speaking, the algorithm isolates the solu-
tions in B by iterating two operations, box reduction and 
box bisection, using the following branch-and-prune 
scheme. Using box reduction, portions of B containing 
no solution are cut off by narrowing some of its defining 

intervals.  This process is iterated until either the box is 
reduced to an empty set, in which case it contains no 
solution, or the box is "sufficiently" small, in which case 
it is considered a solution box, or the box cannot be 
"significantly" reduced, in which case it is split into two 
sub-boxes via box bisection. If the latter occurs, the 
whole process is repeated for the newly created sub-
boxes, and for the sub-boxes recursively created thereaf-
ter, until one ends up with a collection of boxes whose 
size is under a specified size threshold. 

If there are only a finite number of solution points in 
B, this algorithm returns a collection of small boxes 
containing them all. If, contrarily, the solution space is 
an algebraic variety of dimension one or higher, the al-
gorithm returns a collection of small boxes discretizing 
the portions of this variety contained in B. In all cases, 
the algorithm is complete, in the sense that every solu-
tion point will be contained in one of the returned boxes. 

V. EXPERIMENTS 

The previous methodology has been implemented and 
successfully applied to the following problems, some of 
them unsolved up to this date. The first three arise in 
Robotics, the fourth appears in constraint-based CAD 
and the last one in Structural Biology. All execution 
times are given for a Pentium IV at 1.8 GHz, under 
LINUX. 

A. Direct kinematics of a Stewart-Gough platform. 

The problem is to find all poses that the platform of 
Figure 6a can adopt, given the lengths of its six actua-
tors. Here, two Cayley-Menger equations can be set, in-
volving the variables r3,6 y r1,4, where ri,j represents the 
square distance between the i-th and j-th points on such 
platform. The curves of these equations intersect at six 
points (Figure 6b). The algorithm computes the six solu-
tions in 10 miliseconds. In [20], it is shown that the ge-
neric root finding methods of MAPLE, for example, 
based on the Newton-Raphson method, are unable to 
find two of these solutions, because they lie in a region 
where the jacobian of the equations almost vanishes. 

B. Inverse kinematics of an overconstrained 6R robot 

For a 6R kinematic loop (Figure 6c), when the rota-
tion axes of each link are copunctual and form an equal 
angle in all links, the loop has two assembly modes: one 
is flexible (a one dimensional continuum of solutions) 
while the other is rigid (an isolated point in its configu-
ration space).  

This problem has been formulated as a system of six 
Cayley-Menger equations in six unknowns, and has  



 
 

 

Fig. 4. A PUMA robot with six degrees of freedom (a) and its associated bar-and-joint framework (b). 

Fig. 5. The natural conformations of cyclohexane (a) can be obtained by solving the inverse kinematics of a 
6R loop (b), mechanically equivalent to this molecule. The configurations of this loop correspond to the con-
figurations of an associated bar-and-joint framework (c).  
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Fig. 3.  An octahedral Stewart-Gough platform (a) and its associated bar-and-joint framework (b). 



 
 

 

Fig. 6. Kinematic problems solved by the proposed method in the field of Robotics. (a and b) Direct kinematics of a Stewart-
Gough platform. (c and d) Inverse kinematics of an overconstrained 6R robot. (e and f) Inverse kinematics of a 7R robot. 
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been solved in 30 miliseconds. The returned solution 
boxes are shown in Figure 6d. It is assumed that Mano-
cha's algorithm [31] is able to solve any 6R loop. How-
ever, it can be shown that such algorithm is unable to 
tackle this particular case, because it has infinite solu-
tions. 

C. Inverse kinematics of a 7R robot 

The inverse kinematics of a robot with seven rotational 
degrees of freedom, like that of figure 6e, yields the one-
dimensional continuum of possible configurations given 
in Figure 6f. The algorithm spends 14 minutes to solve 
the associated system of 11 equations in 11 variables. As 

far as we know, this is the first time that such a solution 
space has been fully discretized. 

D. All lines tangent to four spheres 

Finding all lines simultaneously tangent to four 
spheres is a hard problem in Computational Geometry 
and, to our knowledge, an efficient solution to it was not 
given until 2001 [32]. The problem finds several appli-
cations in Computer Graphics and Geometric Model-
ling, including visibility computations with moving 
viewpoints, computing smallest enclosing cylinders of 
point sets and placement problems in CAD. Using the 
general algorithm we propose, the problem translates to 

Fig. 7. Kinematic problems solved by the proposed method in the fields of constraint-based CAD and Structural Biology. 
(a and b): Common tangents to four spheres. (c and d): Inverse kinematics of the cycloctane molecule. See the text for details. 
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a system of 44 equations  in 18 variables (it is thus 
redundant) and can be solved in 180 seconds, yielding 
the 12 solutions depicted in Figure 7a, corresponding to 
the 12 box clusters of Figure 7b. 

E. Inverse kinematics of the cycloctane molecule 

This exemplifies a central problem in Structural Biol-
ogy: to compute all configurations that a molecule can 
adopt (like that of the cycloctane depicted in Figure 7c), 
knowing its topological structure, and the lengths of its 
covalent bonds. In Robotics, the problem is identical to 
that of computing all configurations of an 8R loop. Such 
a loop has two degrees of redundancy and, as a result, 
its solution space must be an algebraic variety of dimen-
sion 2. In Fugure 7d we show several consecutive slices 
of this variety. A fine discretization of this solution 
space permits the validation of a long-standing conjec-
ture in Chemistry: that the cycloctane molecule can be 
assembled in two different modes, and that no path ex-
ists from one mode to the other, without breaking the 
carbon ring. 
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