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Abmad- In this article, we show marginal stability 
in SLAM, guaranteeing convergence to a non-zero mean 
state error estimate bounded by a constant value. Moreover, 
marginal stability guarantees also convergence of the Riccati 
equation of the one-step ahead state error covariance to at 
least one psd steady slate solution. In the search far real- 
time implementations of SLAM, covariance inllation methods 
produce a suboptimal filter that erentually may lead to the 
computation of an unbounded state error covariance. We pro- 
vide tight constraints in L e  amount of decorrelation possible, 
to guarantee convergence of the state error covariance, and 
at the same time, a linear-time implementation of SLAM. 

I. INTRODUCTION 

Simultaneous Localization and Map Building (SLAM) 
in mobile robotics has been an active research topic for 
over fifteen years. A Kalman filter (U) based approach to 
the SLAM problem is adopted in this paper [I], [Z]. One 
adnntage in using such optimal state estimator, is that it 
is possiblc to show the convergence properties of SLAM, 
at least, for the linear case. 

Under the typical fully correlated SLAM measurement 
model, it is not possible to obtain a zero mean state 
error estimate, unless p d a l  observability is corrected 131. 
Instead, one may obtain a constant hounded state estimate, 
dependant on the initial filter conditions. The reason being, 
that the filter used, one in which the vehicle and landmark 
estimates are stacked in the same state vector, is marginally 
stable. However, marginal stability does guarantee conver- 
gence of the state error covariance Riccati equation to at 
least one psd solution. The typical KF SLAM algorithm 
produces a relative map with zero uncertainty [Z]. 

To speed up the performance of the algorithm, some 
authors have proposed the use of covariance inflation 
methods for the decorrelation of the state error covariance 
[4], subject to suboptimality of the filter. Adding pseudo- 
noise covariance for the landmark states is equivalent to 
making the system controllable. However, full decorrela- 
tion of a partially observable system might lead to filter 
unstability [51. In this communication we show how to 
diagonalize only part of the state error covariance to obtain 
a suboptimal filter that is both linear in time, and stable, 
at the same time. 

The paper is structured as follows. Section II presents 
the model of the system and the Extended KF based 
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algorithm to the SLAM problem. Section III shows the 
convergence properties of both the state error and state 
error covariance for the partially observable SLAM system. 
In Section IV we show how as a consequence of having 
a partial controllability, filtering of the landmark state 
estimates is terminated after a small number of iterations, 
i.e., their corresponding Kalman gain terms tend to zero. 
In subsection IV-A we show a situation in which the filter 
becomes unstable during covariance inflation. In subsection 
IV-B we introduce a method for covariance decorrelation 
that preserves the stability of the filter. Furthermore, we 
show in subsection IV-C another solution for a stable co- 
variance inflation algorithm, consisting on first recovering 
full observability prior to decorrelating the entire state error 
covariance matrix. Conclusions are presented in Section V. 

11. KALMAN FILTER BASED SLAM 
A. System Model 

Formally speaking, the motion of the robot and the 
measurement of the map features are governed by the 
discrete-time state transition model 

Xk+l =f(Xk,uk,Vk) (la) 
zr = h(xr,wr) (Ib) 

The state vector xx contains the pose of the robot xr,t 
at time step k, and a vector of stationqz map features xf, 

The input vector uk is the vehicle control command, 
and vc and w k  are Gaussian random vectors with zero 
mean and covariance matrices V and W, respectively, 
representing on the one side unmodeled robot dynamics 
and system noise; and measurement noise on the other side. 

B. Algorithm 
Provided the set of observations Z r  = {zl,. . . , zk} was 

available for the computation of the current map estimate 
xplk, the expression 

gives an a priori noise-free estimate of the new locations 
of the robot and map features after the vehicle control 
command u k  is input to the system. Similarly, 

zr+lllc = h(Xr+llr,O) (4) 
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constitutes a noise-free a priori estimate of sensor measure- 
ments. 

Given that the landmarks are considered stationary, their 
a priori estimate is simply ~ f , ~ + ~ l k  = xf ,k lk ;  and the a 
priori estimate of the map state error covariance showing 
the increase in robot localization uncertainty is 

p k + l l k  = E [ i k + l l k k i + l l k \  (3 
= F P ~ ~ ~ F ~  + G V G ~  (6) 

The Jacobian matrices F and G contain the partial 
derivatives of f with respect to x and v, evaluated at 

Assuming that a new set of landmark observations zkfl 
coming from sensor data has been correctly matched to 
their map counterparts, one can compute the error between 
the measurements and the estimates with ih+,lk = zk+l - 
~ k + ~ l k .  This error aids in revising both the map and robot 
locations. The a posteriori state estimate is 

(7) 

( X k l k , U k >  0). 

Xk+illi+i = Xb+i lk + K%+ijk 

and the Kalman gain is computed with 

K = Pk+1lkHTS-' (8) 

where S is termed the measurement innovation matrix, 

s = H P , + , ~ ~ H ~  + w (9) 

and H contains the partial derivatives of h with respect to 
x evaluated at ( X ~ + ~ I ~ , O ) .  

Finally, the a posteriori estimate of the map state error 
co\.ariance must also be revised once a measurement has 
taken place. It is revised with the Joseph form to guarantee 
positive semi-definiteness. 

P ~ + ~ ~ ~ + ~  = (I - K H ) P ~ + , ~ ~  (I - KH)' + K W K ~  
(10) 

111. CONVIXGENCE 

Substituting the linearized version of (3) in (7). we may 
rewrite the KF in the one-step ahead prediction form 

Xk+iIk = (F-KH)Xkjk-i +KZt ( 1 1 )  

and with the appropriate substitutions, using ( 5 )  and ( I I ) ,  
the corresponding prediction error dynamics becomes 

?k+llx = (F - KH)Sklc-l + Gvk - Kwk (12) 

In general, only for a stable mamx F - KH, the 
estimation error will converge to a zero mean steady state 
value. However, in SLAM, F - KH is marginally stable, 
thus the steady state error estimate is bounded to a constant 
value, subject to the filter initial conditions. To show 
F ~ KH marginally stable, consider the one landmark 
monobot. F = I, G = [ 1 0 IT, and H = [ -1 1 1. 
For any value of 

the Kalman gain, computed with (8), is 

where 
s = a; +a; - 2p,a, +a: (15) 

is the innovation variance. Consequently, 

with eigenvalues 

(s - a: '' - a t )  ) and s f  0 

One of the eigenvalues being on the unitary circle yields 
marginal stability, i.e., constant hounded non-zero mean 
error state estimate convergence. Moreover, the marginal 
stability of F - KH guarantees at least one psd steady 
state solution to the Riccati equation for the one-step ahead 
state error covariance [6] 

P k + l j l i  = (F - KH)Pklr_l(F - KHp + 
G V G ~  + K H W H ~ K ~  (17) 

IV. PARTIAL CONTROLLABILITY 
The dynamics of the model assume the landmarks are 

fixed elements, for which no process noise is considered. 
Therefore, their associated noise covariance (its determi- 
nant) will asymptotically tend to  zero [2]. The filter gain 
for the landmark states will also tend to zero. 

Given that 
F =  

and 
G =  ["a, 

the controllability matrix for such plant is 

C E [ GV1/? 1 , , , I Fdh"-lGV'/2 ] (18) 

Consequently, the dimensionality of the controllable 
subspace, spanned by the column space of C is rank C = 
dimx,, regardless of the number of landmarks in the 
map. Obviously, the only controllable states are the ones 
associated with the vehicle motion. 

When a stochastic system is partially controllable, such 
as in the case of SLAM, the Gaussian noise sources Vk 
do not affect all of the elements of the state space. That 
is, some states are uncorrupted by the noise. The diagonal 
elements of P corresponding to these uncormptible states 
will be driven to zero by the Kalman filter, and once this 
happens, these estimates will remain fixed and no funher 
observations will alter their values. Figure 1 shows two 
simulations for a linear SLAM case, a monobot with one 
and two landmarks. The purpose is to show the evolution 
of the localization errors for both the monohot and the 
landmarks, and the reduction of the landmark part of the 
Kalman gain, due to the unconbollability of the system. 
The only way to remedy this situation is to add a positive 
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definite pseudo-noise covariance to those uncormptible 
states [7]. 

A. O(F) but urisrable par/ia//j obsen~able S U M  
A clever way to add pseudo-noise to the model is by 

diagonalizing the state error covariance matrix [4], 151, [SI. 
The result is a suboptimal filter that will compute inflated 
estimates for the vehicle and landmark covariances, that 
has the computational advantage of being uncorrelated. 
The addition of a covariance term A P  to the a priori state 
covariance estimate 

P&+, ,~  = F P , ~ ~ F ~  + GVG' + AP (19) 
is equivalent to providing a new form to the plant noise 
Jacobian G' = [ G I ] 

P,+,jx = FP,1kFT + G' [ Ap ] G'T (20) 

A P  may be chosen, for example. such as to minimize 
the trace of a resulting block diagonal P in (19) (see [ 5 ] ) .  

Choosing a full rank A P  is equivalent to having noise 
input to more states than those that can be observed with 
the filter. In this case, because of pmial observability, 
both vehicle and landmark variance estimates become 
unbounded. Figure 2 shows this for the same monobot 
experiment as in the previous simulation. This phenomena 
was first observed in [ 5 ]  using relative maps. 

Not only both the vehicle and landmark state estimation 
variances become unbounded. Also, thanks to the full 
controllability of the system, the Kalman gain for the 
revision of the landmark states is greater than zero; but 
still, does not converge to a steady state value. We believe 
that the addition of pseudo-noise should be performed only 
at most, in the amount of states equal to the dimension of 
the observable subspace. 

E. O(N)  and siable yurtiall>s obsenable SLAM 
One solution to the problem of unstability during co- 

variance inflation, is to decorrelate only the landmark 
state estimates, and to preserve all vehicle to landmark 
correlations. 

A.=[. V f j  (21) 

such that Pf + VI, the map pan of the state error 
covariance, is block diagonal. 

Figure 3 shows a partially observable monobot under 
Brownian motion for which only the landmark p m  of the 
state error covariance matrix has been decorrelated. The 
algorithm does converge to a steady state solution under 
this circumstances, and still can be implemented in real 
time. The one landmark case is identical than the original 
case, since a linear one landmark map is already diagonal 
(scalar actually). 

For the two-landmark case, the landmark variance es- 
timate is greater than the optimal solution shown in the 
third column in Figure 1. m a t  is, the covariance has been 
inflated during decorrelation. Furthermore, now that the 
system is controllable, the Kalman gains for the landmark 
state estimates do not become zero, and they converge to 
a steady state value. 

Moreover, we can see experimentally, that the covariance . 
inflation suboptimal pattially observable SLAM converges 
only when 

rank A P  5 rank (7 (22) 

C. O ( N )  and srable fully obsemable SLAM 
Considering the fully observable case [3], even if we 

add pseudo-noise to the vehicle as well as to the landmark 
states, the covariance will reach a steady-state value, and 
the Kalman gain will not be zero, at least, in the linear 
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case. Figure 4 shows this results diagonalizing the whole 
state error covariance (not only the landmark pan of P). 

In this latter experiment, the state error variances reach 
lower values than those in the partially observable case. 
The solution of the Riccati equation is now independent of 
the initial covariance estimate Polo. 

We have observed experimentally however, that with a 
nonlinear vehicle model, it is hest to also decorrelate only 
the map part of the state error covariance, even in the fully 
observable case. 

D. Experimental Results 

We show now results on a series of experiments for non- 
linear vehicle with an also nonlinear measurement model, 
using the ACFR - University of Sydney database 191. 
The test run used corresponds to a car- l ie  vehicle at the 
University Car Park. The landmarks used are tree trunks, 
as measured with a laser range finder. The reconsmcted 

maps are compared to GPS ground truth for accuracy. 
The first experiment corresponds to a typical partially 
observable SLAM r u ~  in which the entire state error 
covariance is being decorrelated as discussed in Section 
N-A. Figure 5 plots results on this run, showing in column 
b) and d) unbounded covariances both for the vehicle 
and landmark state estimates, due to the ndve covariance 
inflation method used. 

The second experiment corresponds to the same partially 
observable SLAM conditions, but decorrelating only the 
map part of the state errur covariance. Adding pseudo- 
noise to the landmark states during the inflation procedure 
mounts  to making the system controllable: and doing 
so for as many states as those observable, produces both 
vehicle and landmark bounded state covariances estimates. 
This is shown in Figure 6,  columns b) and d). Figure 8 
column a) shows the actual vehicle path and landmark 
location estimates recovered by the algorithm, compared 
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to GPS ground m t h  for the beacons. Note that even when 
the "relative" map is consistent [2], it is slightly rotated 
and shifted from the actual beacon locations. The amount 
of this shift depends on the initial vehicle uncertainty, i.e., 
the initial filter conditions, and can be seen in Figure 6, 
column c). 

The last experiment shown corresponds to a fully oh- 
servable SLAM.run (using the first observed beacon as 
an anchor [3]), and also decorrelating only the map pari 
of the state error covariance. In this case, the vehicle and 
landmark covariance estimates do not depend on the initial 
filter conditions, and thus are significantly reduced. This 
is shown in columns b) and d) in Figure 7. The absolute 
landmark estimate error is also significantly reduced, as 
shown in Figure 7, column c). Figure 8 column b) shows 
the actual vehicle path and landmark estimates as recovered 
by the filter. The beacon shown in the cents of the plot 
is used as an anchor to the map, and no state estimate 
is computed for it. This last map was obtained with 
a suboptimal linear-time SLAM algorithm that has both 
hounded covariance estimates, and independence on the 
filter initial conditions; thus producing a fast and accurate 
absolute map. 

v. CONCLUSIONS 

A unit norm eigen\due for the matrix F-KH makes the 
state error estimate converge to a non zero mean constant 
bounded value in the linear case SLAM. Marginal stability 
of such partially observable system produces also at least 
one psd solution to the steady state Riccati equation for 
the covariance error, provided the initial conditions of P 
are also psd. 

Suboptimal techniques to improve the speed of the algo- 
rithm include covariance inflation methods to diagonalize 
the state error covariance matrix. These techniques may 
lead to unstability if pseudo-noise is added in a higher state 
dimensionality than what can be observed. We propose to 

diagonalize only the map part of the state error covariance, 
thus guaranteeing convergence of P, and at the same time 
obtaining an O ( N )  algorithm. 
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