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Abstract— In this article, we show marginal stability
in SLAM, puaranteeing convergence to a nen-zere mean
staite error estimate bounded by a constant value, Moreover,
margina) stability guarantees also convergence of the Riccati
equation of the one-step ahead state error covariance to at
least one psd steady state solution. In the search for real-
time implementations of SLAM, covariance inflation methods
produce a suboptimal filter that eventually may lead to the
computation of an unbounded state error covariance, We pro-
vide tight constraints in the amount of decorrelation pessible,
to puarantee convergence of the state error covariance, and
at the same time, a linear-time implementation of SLAM.

I. INTRODUCTION

Simultaneous Localization and Map Building (SLAM)
in mobile robotics has been an active research topic for
over fifteen years. A Kalman filter (KF) based approach to
the SLAM problem is adopted in this paper [1], [2]. One
advantage in using such optimal state estimator, is that it
is possible to show the convergence properties of SLAM;
at least, for the linear case.

Under the typical fully correlated SLAM measurement
model, it is not possible to obtain a zero mean state
error estimate, unless partial observability is corrected [3].
Instead, one may obtain a constant bounded state estimate,
dependant on the initial filter conditions. The reason being,
that the filter used, one in which the vehicle and landmark
estimates are stacked in the same state vector, is marginatly
stable. However, marginal stability does guarantee conver-
gence of the state error covariance Riccati equation to at
least one psd solution, The typical KF SLAM algorithm
produces a relative map with zero uncertainty [2].

To speed up the performance of the algorithm, some
authors have proposed the use of covariance inflation
methods for the decorrelation of the state error covariance
[4], subject to suboptimality of the filter. Adding pseudo-
noise covariance for the landmark states is equivalent to
making the system controllable. However, full decorrela-
tion of a partially observable system might lead to filter
unstability [5). In this communication we show how to
diagonalize only part of the state error covariance to obtain
a suboptimal filter that is both linear in time, and stable,
at the same time.

The paper is structured as follows. Section II presents
the model of the system and the Extended KF based
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algorithm to the SLAM problem. Section III shows the
convergence properties of both the state error and state
error covariance for the partially observable SLAM system.
In Section IV we show how as a consequence of having
a partial controllability, filtering of the landmark state
estimates is terminated after a small number of iterations,
i.e., their corresponding Kalman gain terms tend to zero.
In subsection IV-A we show a situation in which the filter
becomes unstable during covariance inflation. In subsection
IV-B we introduce a method for covariance decorrelation
that preserves the stability of the filter. Furthermore, we
show in subsection IV-C another solution for a stable co-
variance inflation algorithm, consisting on first recovering
full observability prior to decorrelating the entire state error
covariance matrix. Conclusions are presented in Section V.

II. KALMAN FILTER BASED SLAM

A. System Model

Formally speaking, the motion of the robot and the
measurement of the map features are governed by the
discrete-time state transition model

(la)
(1b)

xKp 1 = £, g, vi)
Zy = h(xk,Wk)

The state vector X contains the pose of the robot x4
at time step &, and a vector of stationary map features x ¢,

ie., X
rk

%= | @
The input vector u, is the vehicle control command,
and v, and wj are Gaussian random vectors with zero
mean and covariance matrices V' and W, respectively,
representing on the one side unmodeled robot dynamics
and system noise; and measurement noise on the other side.

B. Algorithmn
Provided the set of observations Z* = {z1,..., 2} was
available for the computation of the current map estimate
Xj|k» the expression
X = Tk, Ui, 0) 3

gives an a priori noise-free estimate of the new locations
of the robot and map features after the vehicle control
command wy is input to the system. Similarly,

2y = h(xp 1, 0) 1G]
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constitutes a noise-free a priori estimate of sensor measure-
ments.

Given that the landmarks are considered stationary, their
a priori estimate is simply Xsx 16 = Xjp; and the a
priori estimate of the map state error covariance showing
the increase in robot localization uncertainty is

(5
)

The Jacobian matrices ¥ and (G contain the partial
derivatives of f with respect to x and v, evaluated at
(xklk: uy, 0)

Assuming that a new set of landmark observations z ;.4
coming from sensor data has been correctly matched to
their map counterparts, one can compute the error between
the measurements and the estimates with Z; |y, = Zzy —
Zp41jk- This error aids in revising both the map and robot
locations. The a posteriori state estimate is

Pirie = BERigais Xhpape)
= FPyF +GVGT

Xet1lks1 = Xeare + KZppi (7
and the Kalman gain is computed with '
K= Pk+1|r\-HTS"1 &)
where S is termed the measurement innovation matrix,
S=HP., H +W ©)

and H contains the partial derivatives of h with respect to
x evaluated at {Xpqqp,0).

Finally, the a posteriori estimate of the map state error
covariance must also be revised once a measurement has
taken place. It is revised with the Joseph form to guarantee
positive semi-definiteness.

Pivijin = (T - KH)Pryyy (- KH) + KWKT
(10)

111, CONVERGENCE

Substituting the linearized version of (3} in (7), we may
rewrite the KF in the one-step ahead prediction form

amn

and with the appropriate substitutions, using (5) and (11),
the corresponding prediction error dynamics becomes

Xpr1k = (F — KH) sty 1 + Kzp,

ik+1|k = (F - KH)ika—l + Gvk - KWL- (12)

In general, only for a stable matrix F — KH, the
estimation error will converge to a zero mean steady state
value. However, in SLAM, F — KH is marginally stable,
thus the steady state ervor estimate is bounded to a constant
value, subject to the filter initial conditions. To show
F — KH marginally stable, consider the one¢ landmark
monobot. F=L G=]1 0] ,andH=]-1 1].
For any value of

P [ o2 poyoy ]

pPOrTf o-?. 13

the Kalman gain, computed with (8), is

1[ —a?
K== v 14
L "
where
s=0} + 0} —2p0,05 + 04 (13)
is the innovation variance. Consequently,
1[ —e2+s az
F-KH=- v v 16
3 [ &2 -0l +s } {as)

with eigenvalues

1,
{ %(s—agwaﬁ,) } and s#0

One of the eigenvalues being on the unitary circle yields
marginal stability, i.., constant bounded non-zero mean
error state estimate convergence. Moreover, the marginal
stability of F — KH guarantees at least one psd steady
state solution to the Riccati equation for the one-step ahead
state error covariance [6]

Piyip = (F~KH)Pay_o(F-KH) +

GVGE + KHWH KT (an

IV. PARTIAL CONTROLLABILITY

The dynamics of the model assume the landmarks are
fixed elements, for which no process noise is considered.
Therefore, their associated noise covariance (its determi-
nant) will asymptotically tend to zero [2]. The filter gain
for the landmark states will also tend to zero.

Given that
F= [FXT 1]
o= (51

the controllability matrix for such plant is

C=] GVY?| | Famx-Igy¥2 ] (18)

Consequently, the dimensionality of the controllable
subspace, spanned by the column space of C is rank C =
dimx,, regardless of the number of landmarks in the
map. Obviously, the only controllable states are the ones
agsociated with the vehicle motion.

When a stochastic system is partially controllable, such
as in the case of SLLAM, the Gaussian noise sources vy
do not affect all of the elements of the state space. That
is, some states are uncomupted by the noise. The diagonal
elements of P corresponding to these uncorruptible states
will be driven to zero by the Kalman filter, and once this
happens, these estimates will remain fixed and no further
observations will alter their values. Figure 1 shows two
simulations for a linear SLAM case, a monobot with one
and two landmarks. The purpose is to show the evolution
of the localization errors for both the monobot and the
landmarks, and the reduction of the landmark part of the
Kalman gain, due to the uncontrollability of the system.
The only way to remedy this situation is to add a positive
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a) Rebol and landmark paosition

b) Robot localizaticn error ¢) Landmark localization error d) Kalman pains

Fig. 1. Parially observable SLLAM for a monobot during Brownian motien with 100 iterations. The vehicle location is indicated by the darkest curve
al the ~1m level in the first column of plots. In the same set of figures, and close to it, is a lighlcr curve indicating the vehicle location estimate as
computed by the filter, along with 2o bounds on such estimate shown as dotted lines. The dark straight lines at the 1m level indicate the landmark
location estimates; and the lighter curves are noise corrupled signals of sensor measurements. Alse shown, ate a pair of dolted lines for 2¢ bounds on
the Jandmark location estimates. The second column of plots shows the vehicle localion crror only, and its corresponding variance, also on the form of
20 doticd bounds. Sec how the localization error has non-zero mean due to partial observability, an undesirable feature in Kalman filiering. The third
column shows non-zere mean Jandmark state estimate errors, And, (he last column shows the Kalman filter pains both for the vehicle and landmark
revision 1erms. The Kalman gains for the revision of the landmark estimates rapidly tend to zero. the reason being that these states are unconirollable.

definite pseudo-noise covariance to those uncorruptible
states [7].

A. O(N) but unstable partially observable SLAM

A clever way to add pseudo-noise to the model is by
diagonalizing the state error covariance matrix [4], [5], [8].
The result is a suboptimal filter that will compute inflated
estimates for the vehicle and landmark covariances, that
has the computational advantage of being uncorrelated.
The addition of a covariance term AP to the a priori state
covariance estimate

Piiape = FPF + GVG' + AP 19

is equivalent to providing a new form to the plant noise

Jacobian G'= [ G 1]
%
Py =FPF + G [ AP } (N0

AP may be chosen, for example, such as to minimize
the trace of a resulting block diagonal P in (19) (see [5]).

Choosing a full rank AP is equivalent to having noise
input to more states than those that can be observed with
the filter. In this case, because of partial observability,
both vehicle and landmark variance estimates become
unbounded. Figure 2 shows this for the same monobot
experiment as in the previous simulation. This phenomena
was first observed in [5] using relative maps.

Not only both the vehicle and landmark state estimation
variances become unbounded. Also, thanks to the full
controllability of the system, the Kalman gain for the
revisicn of the Jandmark states is greater than zero; but
still, does not converge to a steady state value. We believe
that the addition of pseudo-noise should be performed only
at most, in the amount of states equal to the dimension of
the observable subspace.

B. O(N) and stable parrially observable SLAM

One solution to the problem of unstability during co-
variance inflation, is to decorrelate only the landmark
state estimates, and to preserve all vehicle to landmark

correlations. o
ar= [ vy ]

such that Py + V¢, the map part of the state error
covariance, is block diagonal.

Figure 3 shows a partially observable monobot under
Brownian motion for which only the landmark part of the
state error covariance matrix has been decorrelated. The
algorithm does converge to a steady state solution under
this circumstances, and still can be implemented in real
time. The one landmark case is identical than the original
case, since a linear one landmark map is already diagonal
(scalar actually).

For the two-landmark case, the landmark variance es-
timate is greater than the optimal solution shown in the
third column in Figere 1. That is, the covariance has been
inflated during decorrelation. Furthermore, now that the
system is controllable, the Kalman gains for the landmark
state estimates do not become zero, and they converge to
a steady state value.

Moreover, we cai see experimentally, that the covariance
inflation suboptimal partially observable SLAM converges
only when

21

rank AP < rank O

C. O(N) and swable fully observable SLAM

Considering the fully observable case [3], even if we
add pseudo-noise to the vehicle as well as to the landmark
states, the covariance will reach a steady-state value, and
the Kalman gain will not be zero, at least, in the linear

(22)
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Fig. 2. Partially observable SLAM for a Brownian molion monchot with 100 itcrations. The entire state error covarance is decorrelated with the
minimal trace solution [5]. By decorrelating the cntire stalc error covariance matrix, the covariance estimates become unbounded.
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Fig. 3. Partially obscrvable SLAM for a Brownian motion monobot with 100 iterations, The stawe error covarance is decorrelated only for the landrnark
part of the state vector, with the minimal trace solution. By decomretating only the map part of the state effor covariance matrix, we preserve filter

stability.
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a) Robot and landmari localization b) Vehicle error ¢) Landmark localization error d) Kalman gains

Fig. 4. Fully cbservable S1LAM for 2 Brownian motion monobot with 100 iterations. The entire state error covarance is decorrelated with the minimal
trace solution. In the lincar case, it is possible 1o decorrelate the eatire slate crror covariance matrix, and still preserve filter stability.
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a) Vehigle Jocalizaijon crror b} vehicle covariance

¢} Landmark localization errors. d) Landmark covariance

Fig. 5. TPartially obscrvable SLAM for a car-like vehicle at the University of Sydncy Car Park. The cntire state etror covariance matrix is decorrelated

with the minimal trace solution [3].

2) Vehicle localization error b} Vehicle covariance

¢) Landmark localization errors d) Landmark covariance

Fig. 6. Partially observable SLAM for a car-like vehicte at the Universily of Sydney Car Park. Only the map part of the slate crror covariance matrix
is decorrclated with the mictimal trace sohation. By adding controtlabilily fo as many slates as those thal are observable, the filter remains stable, and

the eslimated covariances remain bounded.

a) Vehicle localization error b} Vehicle covaniance

Fig. 7.

d) Landmark covariance

c) Landmark localization errors

Fully observable SLAM for a car-like vehicle al the University of Sydney Car Park. Only the map parl of the state ermor covariance is

decorrclated with the minimal trace solution. Full ohservability guarantees independence of the filter initial conditions, ard an accurale absolute map
is obtained. with smatler covariance estimates than its relative counterpart.

case. Iigure 4 shows this resulis diagonalizing the whole
state error covariance (not only the landmark part of P).

In this latter experiment, the state error variances reach
lower values than those in the partially observable case.
The solution of the Riccati equation is now independent of
the injtial covariance estimate Pgq.

We have observed experimentally however, that with a
nonlinear vehicle model, it is best to also decorrelate only
the map part of the state error covariance, even in the fully
observable case.

D, Experimental Results

We show now results on a series of experiments for non-
linear vehicle with an also nonlinear measurement model,
using the ACFR - University of Sydney database [9).
The 1est run used corresponds to a car-like vehicle at the
University Car Park. The landmarks used are tree trunks,
as measured with a laser range finder. The reconstructed
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maps are compared to GPS ground truth for accuracy.
The first experiment corresponds to a typical partially
observable SLAM run, in which the entire state error
covariance is being decorrelated as discussed in Section
IV-A. Figure 5 plots results on this run, showing in column
b) and d) unbounded covariances both for the vehicle
and landmark state estimates, due to the naive covariance
inflation methed used.

The second experiment corresponds to the same partially
observable SLAM conditions, but decorrelating only the
map part of the state error covariance. Adding pseudo-
noise to the landmark states during the inflation procedure
amounts to making the system controilable; and doing
so for as many states as those observable, produces both
vehicle and landmark bounded state covariances estimates.
This is shown in Figure 6, columns b) and d). Figure 8
column a) shows the actual vehicle path and landmark
location estimates recavered by the algorithm, compared
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Vehicle path and landmark location estimates, compared to GPS ground truth for an a) partially observable suboptimal SLAM run, and a b)

fully observable suboptimal SLAM run; both with decorrelation of only the map part of the state eror covariance matrix.

to GPS ground truth for the beacons. Note that even when
the “relative” map is consistent [2], it is slightly rotated
and shifted from the actual beacon locations. The amount
of this shift depends on the initial vehicle uncertainty, i.e.,
the initial filter conditions, and can be seen in Figure 6,
column ¢).

The last experiment shown corresponds to a fully ob-
servable SLAM .run {(using the first observed beacon as
an anchor [3]), and also decorrelating only the map part
of the state error covariance. In this case, the vehicle and
landmark covariance estimates do not depend on the initial
filter conditions, and thus are significantly reduced. This
is shown in columns b) and d) in Figure 7, The absolute
landmark estimate error is also significantly reduced, as
shown in Figure 7, column c¢). Figure 8 column b) shows
the actual vehicle path and landmark estimates as recovered
by the filter. The beacon shown in the center of the plot
is used as an anchor to the map, and no state estimate
is computed for it, This last map was obtained with
a suboptimal linear-time SLAM algorithm that has both
bounded covariance estimates, and independence on the
filter initial conditions; thus producing a fast and accurate
absolute map.

V. CONCLUSIONS

A unit norm eigenvalue for the matrix F—XH makes the
state error estimate converge o a non zero mean constant
bounded value in the linear case SLAM. Marginal stability
of such partially observable system produces also at least
one psd solution to the steady state Riccati equation for
the covariance error, provided the initial conditions of P
are also psd.

Suboptimal techniques to improve the speed of the algo-
rithm include covariance inflation methods to diagonalize
the state error covariance matrix. These techniques may
lead to unstability if pseudo-noise is added in a higher state
dimensionality than what can be observed. We propose to

diagonalize only the map part of the state error covariance,
thus guaranteeing convergence of P, and at the same time
obtaining an Q() algorithm.
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