
1504 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

Speeding Up the Learning of Robot Kinematics
Through Function Decomposition

Vicente Ruiz de Angulo and Carme Torras

Abstract—The main drawback of using neural networks or
other example-based learning procedures to approximate the in-
verse kinematics (IK) of robot arms is the high number of training
samples (i.e., robot movements) required to attain an acceptable
precision. We propose here a trick, valid for most industrial
robots, that greatly reduces the number of movements needed to
learn or relearn the IK to a given accuracy. This trick consists in
expressing the IK as a composition of learnable functions, each
having half the dimensionality of the original mapping. Off-line
and on-line training schemes to learn these component functions
are also proposed. Experimental results obtained by using nearest
neighbors and parameterized self-organizing map, with and
without the decomposition, show that the time savings granted
by the proposed scheme grow polynomially with the precision
required.

Index Terms—Function approximation, learning inverse kine-
matics, parameterized self-organizing map (PSOM), robot kine-
matics, training samples.

I. INTRODUCTION

A robot manipulator is a multifunctional and repro-
grammable articulated mechanism able to move in a

given workspace. It usually consists of several bodies linked
by joints, and it is commanded by providing values to some of
these joints. Thus, when moving, the robot can be thought of as
realizing a mapping from joint space to workspace coordinates,
which is referred to as the forward kinematics mapping. Robot
programming, however, is most easily carried out in terms
of the Cartesian coordinates of the workspace, leaving to the
controller the task of translating such specification into joint
variables. Thus, robot control critically depends on the so-called
inverse kinematics mapping (IKM), i.e., that providing joint
coordinates as a function of the desired position and orientation
of the robot end-effector in the workspace.

Their range of application would widen if robots were
made adaptive not only to environmental variations but also to
changes in their own geometry. Since these geometric changes
affect the IKM, a way of learning (or tuning) this mapping
automatically while robots move is highly desirable. Recently,
the development of humanoid robots has further raised the
interest in this problem [1]. An overview of the approaches
proposed to learn the IKM is provided in [9].

Manuscript received July 8, 2003; revised March 24, 2005. This work was
supported in part by the Catalan Research Commission through the Robotics
and Control group and in part by the Spanish Ministry of Education under I+D
project DPI 2004–07358. An earlier version of this paper was presented at the
2002 International Conference on Artificial Neural Networks [7].

The authors are with the Institut de Robòtica i Informàtica Industrial, 08028
Barcelona, Spain (e-mail: ruiz@iri.upc.edu; torras@iri.upc.edu).

Digital Object Identifier 10.1109/TNN.2005.852970

Such learning is especially useful for robots that have uncer-
tainties difficult to model, as, for example, robots with flexible
links. It is also interesting when the IKM is difficult or slow
to compute, as in the case of redundant robots. Moreover, rigid
nonredundant robots also benefit from such learning, since this
permits their on-line recalibration during normal functioning.
In particular, high-precision robots may need to be recalibrated
often, which makes some applications impractical or impossible
without such learning capability. Furthermore, in space stations
or dangerous zones, a human could not be available when a re-
calibration is needed. Thus, on-line learning of the IKM may be
very helpful in these cases.

However, it has some drawbacks, such as the requirement of a
sophisticated setup, with sensors able to determine the position
and orientation of the end-effector. This setup makes the system
more expensive but may also be useful for other purposes. A
more serious drawback is the high number of samples often re-
quired to approximate the mapping up to the desired accuracy.
This paper proposes a solution to this second drawback.

Typically, neural network applications have many input vari-
ables, some of which are redundant and others of which have a
negligible effect on the output variables. Thus, the underlying
mapping can be considered as lying on a low-dimensional man-
ifold. The hard part of the learning task is to guess the structure
of the mapping from the tangle of information. The difficulty
lies here, rather than in the fine approximation of every detail,
since the mappings are often fairly simple.

Instead, in the learning of the IKM, one has completely inde-
pendent input variables, each of them powerfully influencing the
result. Under these conditions, the number of points required to
approximate the mapping tends to be exponential in the number
of variables. Moreover, in contrast with other applications, the
mapping has a complex shape and should be approximated with
a high accuracy. Thus, the number of learning points required
may be huge [3], [4].

Several attempts have been made at reducing the number of
required samples, among them the use of hierarchical networks
[5], [11], the learning of only the deviations from the nominal
kinematics [6], and the use of a continuous representation by
associating a basis function to each node [10].

In this paper, we propose a practical trick that can be used
in combination with all the methods above. It consists in de-
composing the learning of the IKM into several independent
and much simpler learning tasks. This is done at the expense of
sacrificing generality: the procedure works only for some robot
models subject to certain types of deformations. Specifically,
the procedure assumes that the last three robot joints cross at
a point. This is fulfilled by the most popular commercial robot

1045-9227/$20.00 © 2005 IEEE

DE ANGULO AND TORRAS: SPEEDING UP THE LEARNING OF ROBOT KINEMATICS 1505

Fig. 1. The photograph shows a PUMA robot with the variables
� = (� ; � ; �) and � = (� ; � ; �) for the first three and the last
three joint angles, respectively, superimposed. X and
 are the desired
position and orientation of the end-effector. On top, the original, full
six-to-six inverse kinematic mapping is specified. Below on the right, the
proposed decomposition of the mapping is sketched. Its two components are
three-to-three inverse mappings, depending on only translation and rotation,
respectively, plus offsets as described in the text.

arms, such as the PUMA or the Stanford robot. The condition
continues to hold after any encoder miscalibration and the other
most likely deformations of the robot geometry.

The gain obtained is worth the sacrifice. The input dimension-
ality of each of the tasks resulting from the decomposition is half
that of the original one. Thus, for a given desired accuracy, if the
number of training samples required to learn the IKM directly is

, through the decomposition it reduces to . This
yields an enormous reduction in the number of samples required
for high-precision applications.

The paper is structured as follows. In the next section, we
describe the proposed decomposition of the IKM. Section III
presents the training scheme needed to learn the component
functions. In Section IV, both a nearest neighbor algorithm and
a parameterized self-organizing map (PSOM) are used to learn
the IKM, both directly and through the decomposition, permit-
ting one to quantify the savings obtained in relation to the pre-
cision required. Conclusions are drawn in Section V.

II. DECOMPOSING THE INVERSE KINEMATICS MAPPING

As mentioned in the preceding section, the number of sam-
ples required to learn the IKM grows exponentially with the
number of input variables. To keep this growth within reason-
able bounds, we propose to decompose the IKM in such a way
that each component function depends on only half of the input
variables. Since the input, in this case, is naturally divided into
position and orientation, every component function should de-
pend on either the desired position or orientation alone. The
most interesting case of a robot with six rotational joints for
which such decomposition is possible is that in which the axes
of the three last joints cross at a point. We will formulate the
decomposition for this case, the most common one, although it
can be applied to other types of robots as well.

A. Overview of the Proposed Approach

In order to make the formal derivation of our approach more
understandable, we first provide the reader with an intuitive
view of what we are aiming at. Fig. 1 shows the involved vari-
ables and mappings particularized for the widely known PUMA
robot. and are the values of

the first three and the last three joint angles, respectively.
and are the desired position and orientation of the end-ef-
fector. Then, the full IKM maps into . Our pro-
posed decomposition consists of two mappings (labeled “trans-
lation” and “rotation” in the figure) yielding and , whose in-
puts are and , respectively, combined with apropriate offset
functions. The meaning of the offsets will become clear in what
follows. Here we just like to point out that, in this case, the
two inverse mappings and the two offsets are three-dimensional
functions, while the full IKM is a six-dimensional function.

In what follows, we begin by explaining why can be easily
obtained under the above assumption; then we show how can
be calculated as a composition of functions dependent on .

B. Calculus of

Let and be the position and orientation of the end-ef-
fector. Our purpose is to express as a composition of functions
dependent on part of the given data , so that the compo-
nent functions needing to be learned depend only on either
or .

The position of the point at which the last three axes cross
can be recovered from and is as follows:

(1)

where is a well-defined function, which for each end-ef-
fector orientation provides the relative position of with re-
spect to . Note that is not moved by varying , and thus it
depends only on . This function is the translation offset
mentioned in Fig. 1.

Thus, is a partial inverse kinematics mapping
(the translation component mentioned in Fig. 1) with reduced
dimensionality with respect to the original problem. It may be
multivalued for unrestricted workspaces, and it can be learned
with known methods. Since is not directly available, it must
be previously calculated

(2)

The correctness of guarantees the correctness of con-
ditioned on the correctness of . Therefore, we shall guarantee
the correctness of by using the remaining degrees of freedom

as shown below.

C. Calculus of

To calculate , we consider a simplified version of the inverse
kinematics mapping by freezing in a reference configuration.
In this way, only depends on , thus making a learn-
able inverse kinematics mapping, namely, the rotation compo-
nent in Fig. 1. We need to model the relation between in
an arbitrary configuration with the orientation in a reference
configuration , which will provide us with the rotation offset
mentioned in Fig. 1. Let us write this down formally. To simplify
the exposition, we assume that is represented as a rotation ma-
trix.

First we define a fixed configuration of the first three joints
to be used as reference. Then, we define a new function
such that is the rotation that transforms the orientation

1506 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

TABLE I
THE FOUR FUNCTIONS INVOLVED IN THE DECOMPOSITION OF THE INVERSE KINEMATICS LEARNING

(a) (b)

Fig. 2. Illustration of the rotation offset function
 (�). When the robot moves
the first three joints from (a) � to (b) � while maintaining the last three joints
fixed, the gripper undergoes a rotation of
 (�) going from (a)
 to (b)
 (�)
.

of the end-effector at a configuration to the orientation it
would have at

(3)

Fig. 2 illustrates this function. Note that is independent of
, and the only requirement is that the last links and joints in

are not flexible.
We shall now define the function such that is the
value which at yields the orientation .
We can apply to both members of the equality (3),

leading to

and thus

(4)

is a three-to-three inverse mapping, which constitutes
the rotation component mentioned in Fig. 1.

D. The Target Decomposition

Table I summarizes the four functions involved in the decom-
position. Supposing we are able to learn , , , and

, the inverse kinematics can be calculated in two phases.
First we obtain following (2); then we calculate according to
(4). The first diagram in the Appendix illustrates this two-phase
process.

We have obtained expressions for and as a composition
of functions, each having as domain a part of the input or

. Thus, their learning can be expected to require a number of

samples orders of magnitude lower than that needed to learn the
whole IKM directly.

III. LEARNING

The function is a special case because of its simplicity
and will be considered separately from the other three functions.
If, through external sensors, the setup permits acquiring the po-
sition at which the last three axes cross, then this function
is not even needed: it suffices to consider directly as
input. If, on the contrary, needs to be derived from ,
then a simple procedure entailing only the motion of the last two
joints can be applied. One can observe the position and orienta-
tion of the end-effector and then make a step, e.g., in , while
maintaining the remaining joints fixed, and again observe the
position and orientation. From these two observations, the axis
of can be deduced uniquely. Making a step in and another
observation, the axis of can be deduced. Finally, as neither
the observations can be expected to be accurate nor the actual
axes may really cross at a point, the middle point of the segment
realizing the minimum distance between the two axes is taken as
an estimation of the crossing point . Thus, the total number
of observations required to derive from is three (which
can be integrated in the learning of , as described below), and
neither in this case nor in the previous one is iterative learning
required for the encoding of .

The remaining functions , , and are inverse
functions, in the sense that we cannot generate the output for a
given input. Their learning can be accomplished with strategies
entailing different degrees of parallelism and sophistication, as
shown next.

To help visualize the data flow for the different learning strate-
gies, flow diagrams for each of them are included in the Ap-
pendix .

A. Independent Learning

The simplest approach is to learn each function independently
in a phase preceding the functional operation of the robot. Algo-
rithms to provide inputs and outputs for , , and
to a learning system are sketched below.

Learning of
Repeat for to whatever
Select
Choose arbitrarily
Move to . Observe ,

DE ANGULO AND TORRAS: SPEEDING UP THE LEARNING OF ROBOT KINEMATICS 1507

Learn with as input and as
output

Learning of
Select arbitrarily
Move to . Observe
Repeat for to whatever
Select
Move to . Observe
Learn with as input and as
output

Learning of
Repeat for to whatever
Select
Move to . Observe
Learn with as input and as output

B. Partially Overlapped Learning

There are alternatives more efficient than the independent
learning of all functions. We first suggest the parallelization
of the encoding of (if cannot be directly acquired by
means of external sensors) and in one phase, and that of
and in another phase.

For the first parallelization, it is enough that two of the move-
ments carried out in the course of learning change consecu-
tively and alone.

The second phase is carried out with the following algorithm:

Learning of and
Select arbitrarily
Move to . Observe
Repeat for to whatever
Select
Move to . Observe
Learn with as input and as
output
Learn with as input and
as output

C. Fully Overlapped (On-Line) Learning

None of the above learning strategies can be used to per-
form on-line learning, i.e., learning that is integrated in normal
working operation. The strategy that we present now parallelizes
the learning of all the functions used in our procedure to cal-
culate the IKM. Interestingly, it permits carrying out arbitrary
movements, as, for example, those required by an application,
while at the same time refining the estimation of the IKM of the
robot.

To get these advantages, we need access to the inverse
, which gives the orientation that the argument pro-

duces when . Fortunately, being the inverse of , it can
be learned from its same input–output samples. In some types
of systems [10], even the learning of a function automatically

makes available a proper estimation of its inverse and, there-
fore, a separate estimator for would not be required.
This is the algorithm:

Learning of , , and
Repeat for to whatever
Select
Move to . Observe
Learn with as input and

as output
Learn with as input and
as output
Learn with as input and
as output
Learn with as input and
as output

When this algorithm is integrated in the normal operation of
the robot, and are the configurations to which the robot is
moved, instead of being generated randomly. In this algorithm,

is learned without any help of the other functions. On the con-
trary, the learning of (and its inverse) is supported by and,
reciprocally, is needed to learn . Three entities should be
clearly distinguished: 1) the actual functions , and
resulting from the robot geometry, 2) the estimations of these
functions, and 3) the data generated to estimate the functions.
There is a positive feedback between and : when the esti-
mator of ameliorates, the data provided to learn are more
exact, as well as itself, which redounds to the accuracy of the
data for .

But feedback can also be negative. Imagine, for example, that
our learning system has arrived to the desired accuracy in the
calculus of the IKM and a serious and sudden damage happens,
affecting only the last elements of the robot. will remain ac-
curate, but (and its inverse) will not. In this mode of learning,
the inaccuracy of will lead to erroneous data for (and its
inverse), which will worsen its estimation. Thus, after a sudden
and important damage, it could be wise to check whether is
accurate and, if it is so, suppress the step where it is learned. It
is important to note that in the case of damage to the first links,
not only and will be affected but usually also (and its
inverse), since the reference will not produce in general the
same orientation with any given as before damage. Therefore,
any checking of (or its inverse) alone is useless.

In a certain sense, and are learned exclusively from one
another: the error in the training data for is exactly the ap-
proximation error for , and the error in the training data for

is exactly the approximation error for . So, how can the
learning of these functions progress? It suffices to have a starting
point in the form of a known point for one of the functions. Such
a point to initiate positive feedback is always available for :

, where stands for the null rotation representation.
For memory-based systems it is enough to provide it as a first
point and keep it unaltered if necessary. For systems requiring
repeated presentations of the training patterns, a periodical re-
mind is convenient.

1508 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

Fig. 3. Number of movements required to obtain different levels of position
precision using the nearest neighbor algorithm.

IV. EXPERIMENTAL RESULTS

We have used the PUMA robot as a testbed to validate our
procedure in a controlled setting. Three learning systems have
been tested with our decomposition approach: back-propagation
networks, the nearest neighbor algorithm, and local parame-
trized self-organizing maps [10]. We present results with the last
two, since comparisons with the former are more prone to sub-
jectivity due to variable factors, such as architecture, learning
algorithm, and degree of training, which cannot be optimized
with the same values for the two experiments that need to be
conducted to compare results.

A. Results Using the Nearest Neighbor Algorithm

The workspace used was generated by allowing a range of
30 in each of the six joints.

For the control experiment (labeled “standard”) we simply
generate random movements of the robot in the range above
and observe the resulting positions and orientations. These and
their associated joint configurations are added to the training
set after appropriate normalization. When the nearest neighbor
algorithm is queried with a desired position and orientation, it
searches the closest position-orientation vector stored and re-
turns as output the corresponding joint values.

In the other experiment, we test our partially overlapping pro-
cedure: the robot is moved with a random to get a point for ,
and again with random to get points for and in each iter-
ation. The learners for the three functions are nearest neighbor
algorithms analogous to the one used in the first experiment.

Fig. 4. Number of movements required to obtain different levels of orientation
precision using the nearest neighbor algorithm.

Orientations and rotations are represented with five elements
(last column and last row) of the corresponding rotation matrix
that determine it univocally except in gimbal lock situations.

Figs. 3 and 4 show the total number of movements required to
get different precision levels. Units are millimeters for position
and radians for orientation. Standard deviations are below the
resolution level of the graphic and, thus, are not shown. The pre-
cision was evaluated by querying for 200 random position-ori-
entation configurations inside the workspace. It is interesting to
detail some of the data used to build the graphic: while the stan-
dard procedure needed 280 movements to attain a precision of
50 mm and 440 movements to attain a precision of 1 rad, the
partially overlapping procedure only needed 40 and 90 move-
ments, respectively, to obtain the same precisions. Moreover,
higher precisions enlarge the differences: the standard proce-
dure required 45 000 and 35 000 movements to get precisions
of 20 mm and .4 rad, respectively, whereas the partially over-
lapping procedure only needed 400 and 1100 movements, re-
spectively.

To reveal more clearly the benefit of the partially overlap-
ping procedure with increasing precisions, we have displayed in
Figs. 5 and 6 the ratios between the number of movements re-
quired by the standard and the partially overlapping procedures.
A polynomical scaling of this ratio with the precision required
is appreciable for both position and orientation.

B. Results Using Local PSOMs

A PSOM [10] approximates a function using a regular grid of
sampled points, the nodes of the network. Because of its excel-
lent interpolation capabilities, the required number of points is

DE ANGULO AND TORRAS: SPEEDING UP THE LEARNING OF ROBOT KINEMATICS 1509

Fig. 5. Ratio between the two curves displayed in Fig. 3.

Fig. 6. Ratio between the two curves displayed in Fig. 4.

very small. Of particular interest to us is that PSOMs treat input
and output variables in the same way. This means that it is as nat-
ural to ask which output corresponds to a given input as asking
which input corresponds to a given output. Therefore, a search
in the input variables is naturally addressed and embedded in
the framework of these networks, allowing one to manage in-
verse-multivalued functions without problems.

When using PSOMs to learn the kinematics of the virtual
robots, the movements are generated following a regular grid in
the space of joint angles covering the workspace. Then we move
the robot to the different configurations represented in the grid
to obtain the associated positions and orientations. Thus, each
node in the grid requires one movement. Once trained, a PSOM
works by putting some constraints on a subset of the variables
of the system (input or output), for example, fixing them to a
desired value. The system then carries out a quick optimization
aimed at finding a point of the approximated input–output man-
ifold satisfying the constraints or, if impossible, the closest one
to satisfying them. The starting point of the process is the stored
point (node) that best satisfies the constraints. From it, an iter-
ative minimization procedure is launched, which finishes in a
few steps. For PSOMs trained on the kinematics of a robot, to

TABLE II
POSITION (IN MILLIMETERS) AND ORIENTATION (IN RADIANS) PRECISIONS

OBTAINED WITH DIFFERENT NUMBERS OF MOVEMENTS USING THE

STANDARD PROCEDURE

TABLE III
POSITION (IN MILLIMETERS) AND ORIENTATION (IN RADIANS) PRECISIONS

OBTAINED WITH DIFFERENT NUMBERS OF MOVEMENTS USING THE NEW

DECOMPOSITION PROCEDURE

get the inverse kinematics we simply fix the position and orien-
tation variables, and we let the minimization get the point in the
interpolating surface with the desired pose values. Then the re-
maining components of the point are taken to be the result. This
is the control (“standard”) experiment.

In the experiment to test our decomposition approach, a
PSOM is created for each of the functions to be learned: we
generate a grid for and move the first three robot joints to
traverse each of its points in order to get simultaneously points
for and . In the same way, a grid for is generated and
movements are carried out accordingly to get points for . This
corresponds to the partially overlapping learning procedure
of Section III-B. In the operation phase, to get, for example,
the value of , we simply fix the orientation values of the
corresponding PSOM.

In the experiments presented in this section, we used a PSOM
variant known as LPSOM [10]. The “L” stands for “local” be-
cause this model builds a PSOM by extracting for each query
a subgrid of the sampling grid, which is centered on the closest
point to the query. This subgrid has a size of four points per axis
in our tests.

For the bunch of experiments carried out with PSOMs, the
workspace for the PUMA robot has been considerably enlarged.
The ranges allowed for the six joints [2] in these experiments
are as follows: [150, 10], [215, 100], [35, 80], [110,
170], [100, 100], [100, 100]. Orientations and rotations are

1510 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

Fig. 7. Flow diagram of the proposed approach in operation. It shows how the inverse kinematics of the robot is calculated in two stages.

Fig. 8. Flow diagram for the independent learning of
 (�), �(�), and � (�).

represented as before with five elements of the corresponding
rotation matrix.

Tables II and III show the precisions attained with an in-
creasing number of movements. Note that since the movements
in Table II correspond to PSOM grids of six dimensions, while
those in Table III are obtained with two grids of three dimen-
sions, it was not possible to have the same number of move-
ments in both tables (in the former versus 2 in the latter).
The precision was evaluated by querying for 400 random po-
sition-orientation configurations inside the workspace. The ta-
bles only cover numbers of movements that seem reasonable. It
was impossible with our computer memory resources (allowing
grids of up to 262 144 points) to reach precisions under 1 mm
and 01 rad with the standard procedure, whereas the decompo-
sition procedure only needed 686 and 1024 movements to get
these precisions, respectively.

A final and important remark is that the time to obtain good
precisions was also orders of magnitude faster with the decom-
position approach. This is due to lower searching times to get
the closer node in the grids and to lower complexity in the opti-
mizations performed in the PSOMs.

V. CONCLUDING REMARKS AND FUTURE WORK

The purpose of this paper is to propose a procedure to learn
the inverse kinematics mapping with a reasonable number of
movements when high accuracy is required.

To this end, we assume that the axes of the last three joints
cross at a point, which is a condition fulfilled by most robot
arms. This condition holds after the most likely miscalibrations
such as, for example, encoder shift. More severe physical
damage affecting the first links (those whose axes are not

DE ANGULO AND TORRAS: SPEEDING UP THE LEARNING OF ROBOT KINEMATICS 1511

Fig. 9. Flow diagram for the overlapped learning of
 (�) and �(�), while � (�) remains being learned independently.

Fig. 10. Flow diagram for the fully overlapped learning of
 (�), �(�), � (�), and � (�). The selection of � and � can be done either directly or through
the operation module.

required to cross) is also allowed. Even the gripper or a phys-
ical element linking the cross-point to the gripper can also be
deformed without violating the assumption.

One of the most promising applications of our method is the
learning of IK for flexible robots. Usually the first links are much
longer and heavier than the last ones, which are used mainly

1512 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

to give an appropriate orientation to the gripper. This makes
the first links more prone to elastic deformation due to lever
effect. If the last links are short and robust, the cross-condition
is valid for this type of robot. Since our method reduces the
dimensionality of the functions to be learned from six to three, it
is affordable to include the weight changes as an extra variable
and still have quick learning (in fact, one only need add this
variable as an input in the learning of and).

In addition to learning efficiency, our method has other ad-
vantages over classic learning of IK in some contexts. For ex-
ample, in [6], we tackled IK learning for an REIS robot placed
in a Space Station mockup whose mission was to insert and ex-
tract cards from a rack. If, due to launching stress or wear-and-
tear, the IK mapping would strongly deviate from the nominal
one, the movements required for relearning could damage the
rack (or further damage the robot). With the procedure proposed
here, it is possible to learn to move in the complete workspace
without actually moving everywhere, and only approach risk
zones after learning has been succesfully completed.

A possible way of improving orientation accuracy is to
change the representation of rotations and orientations in the
learning systems. We have used five elements of the rotation
matrix, which guarantees that rotations that are close to one
another also have close representations (a property not exhib-
ited, for example, by Euler angles and quaternions). This is
not the best representation for learning since, for example, the
full rotation matrix leads to lower errors, although it is more
expensive in computation and memory and, overall, has the
problem of how to map the interpolated matrices to true rotation
matrices. This representation issue is not particularly linked to
our decomposition procedure. It can be avoided in future work
by calculating as a function of positions and translations
instead of orientations and rotations.

We have to mention that a very similar decomposition proce-
dure can be developed for robots not fulfilling the cross-point
condition, but whose first three joints are prismatic. A more in-
volved task is the development of a general decomposition pro-
cedure for serial manipulators with arbitrary joints. This proce-
dure cannot be obtained as a straightforward generalization of
the one presented in this paper, since here we have exploited
the condition that the last three joint axes cross at a point. Some
preliminary work in this direction can be found in [8].

To conclude, let us stress that our decomposition procedure
places requirements on the robot to which it is applied, but not
on the learning method. Thus, it can be used in combination with
any such method based on input–output training samples.

APPENDIX

A. Operation Module of the Proposed Decomposition
Approach

See Fig. 7.

B. Independent Learning Strategy

See Fig.8.

C. Partially Overlapped Learning Strategy

See Fig. 9.

D. Fully Overlapped Learning Strategy

See Fig. 10.

REFERENCES

[1] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kine-
matics,” in Proc. IEEE/RSJ Conf. Intelligent Robots Systems (IROS’01),
Hawaii, 2001, pp. 298–303.

[2] K. S. Fu, R. C. González, and C. S. G. Lee, Robotics: Control, Sensing,
Vision, and Intelligence. New York: McGraw-Hill, 1987.

[3] B. J. A. Kröse and P. P. van der Smagt, “Robot control,” in An Introduc-
tion to Neural Networks, 5th ed. Amsterdam, the Netherlands: Univ.
of Amsterdam, 1993, ch. 7.

[4] T. M. Martinetz, H. J. Ritter, and K. J. Schulten, “Three-dimensional
neural net for learning visuomotor coordination of a robot arm,” IEEE
Trans. Neural Netw., vol. 1, no. 1, pp. 131–136, 1990.

[5] H. Ritter, T. Martinetz, and K. J. Schulten, Neural Computation and
Self-Organizing Maps. New York: Addison-Wesley, 1992.

[6] V. R. de Angulo and C. Torras, “Self-calibration of a space robot,” IEEE
Trans. Neural Netw., vol. 8, no. 4, pp. 951–963, 1997.

[7] , “Learning inverse kinematics via cross-point function decompo-
sition,” in Proc. Int. Conf. Artificial Neural Networks (ICANN-02), vol.
2415, Lecture Notes in Computer Science, 2002, pp. 856–861.

[8] , “Using PSOM’s to learn inverse kinematics through virtual de-
composition of the robot,” in Proc. 8th Int. Work-Conf. Artificial Neural
Networks (IWANN 2005), Lecture Notes in Computer Science, 2005.

[9] C. Torras, “Robot arm control,” in Handbook of Brain Theory and
Neural Networks, 2nd ed, M.A. Arbib, Ed. Cambridge, MA: MIT
Press, 2003, pp. 979–983.

[10] J. Walter and H. Ritter, “Rapid learning with parametrized self-orga-
nizing maps,” Neurocomputing, vol. 12, pp. 131–153, 1996.

[11] J. Walter and K. J. Schulten, “Implementation of self-organizing neural
networks for visuo-motor control of an industrial robot,” IEEE Trans.
Neural Netw., vol. 4, no. 1, pp. 86–95, 1993.

Vicente Ruiz de Angulo was born in Miranda de
Ebro, Burgos, Spain. He received the B.Sc. and Ph.D.
degrees in computer science from the Universidad del
País Vasco, Spain.

During 1988–1989, he was Assistant Professor at
the Universitat Politècnica de Catalunya, Spain. In
1990, he joined the Neural Network Laboratory, Joint
Research Centre, European Union, Ispra, Italy. From
1995 to 1996, he was with the Institut de Cibernètica,
Barcelona, Spain, participating in the ESPRIT project
entitled “Robot Control Based on Neural Network

Systems.” He spent six months with the Istituto Dalle Molle di Studi Sull’ In-
teligenza Artificiale di Lugano, Italy, working in applications of neural networks
to robotics. Since 1996, he has been with the Institut de Robòtica i Informàtica
Industrial, Barcelona. His interests in neural networks include fault tolerance,
noisy and missing data processing, and their application to robotics and com-
puter vision.

Carme Torras received the M.Sc. degree in mathe-
matics from the Universitat de Barcelona, Barcelona,
Spain, the M.Sc. degree in computer science from
the University of Massachusetts, Amherst, and the
Ph.D. degree in computer science from the Univer-
sitat Politècnica de Catalunya, Spain.

She is a Research Professor with the Institut de
Robòtica i Informàtica Industrial, Barcelona. She has
published four books and more than 100 papers in the
areas of neurocomputing, robotics, and vision. She
has been Local Project Leader of several European

projects, such as “Robot Control Based on Neural Network Systems,” “Self-Or-
ganization and Analogical Modeling Using Subsymbolic Computing,” “Plan-
ning Robot Motion,” and “Behavioral Learning: Sensing and Acting.”

	toc
	Speeding Up the Learning of Robot Kinematics Through Function De
	Vicente Ruiz de Angulo and Carme Torras
	I. I NTRODUCTION

	Fig.€1. The photograph shows a PUMA robot with the variables $\t
	II. D ECOMPOSING THE I NVERSE K INEMATICS M APPING
	A. Overview of the Proposed Approach
	B. Calculus of $\theta $
	C. Calculus of $\nu $

	TABLE I T HE F OUR F UNCTIONS I NVOLVED IN THE D ECOMPOSITION OF
	Fig. 2. Illustration of the rotation offset function $\Omega _{0
	D. The Target Decomposition
	III. L EARNING
	A. Independent Learning
	B. Partially Overlapped Learning
	C. Fully Overlapped (On-Line) Learning

	Fig.€3. Number of movements required to obtain different levels
	IV. E XPERIMENTAL R ESULTS
	A. Results Using the Nearest Neighbor Algorithm

	Fig.€4. Number of movements required to obtain different levels
	B. Results Using Local PSOMs

	Fig.€5. Ratio between the two curves displayed in Fig.€3 .
	Fig.€6. Ratio between the two curves displayed in Fig.€4 .
	TABLE II P OSITION (IN M ILLIMETERS) AND O RIENTATION (IN R A
	TABLE III P OSITION (IN M ILLIMETERS) AND O RIENTATION (IN R
	Fig.€7. Flow diagram of the proposed approach in operation. It s
	Fig. 8. Flow diagram for the independent learning of $\Omega _{0
	V. C ONCLUDING R EMARKS AND F UTURE W ORK

	Fig. 9. Flow diagram for the overlapped learning of $\Omega _{0}
	Fig.€10. Flow diagram for the fully overlapped learning of $\Ome
	A. Operation Module of the Proposed Decomposition Approach
	B. Independent Learning Strategy
	C. Partially Overlapped Learning Strategy
	D. Fully Overlapped Learning Strategy
	A. D'Souza, S. Vijayakumar, and S. Schaal, Learning inverse kine
	K. S. Fu, R. C. González, and C. S. G. Lee, Robotics: Control, S
	B. J. A. Kröse and P. P. van der Smagt, Robot control, in An Int
	T. M. Martinetz, H. J. Ritter, and K. J. Schulten, Three-dimensi
	H. Ritter, T. Martinetz, and K. J. Schulten, Neural Computation
	V. R. de Angulo and C. Torras, Self-calibration of a space robot
	C. Torras, Robot arm control, in Handbook of Brain Theory and Ne
	J. Walter and H. Ritter, Rapid learning with parametrized self-o
	J. Walter and K. J. Schulten, Implementation of self-organizing

