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Abstract- In this article, we show that partial observability information in SLAM that shows explicitly the unobservable . .  
hinders full reconstructibility of the state space in SLAM, making 
the final map estimate dependent on the initial observations, 
and not guaranteeing Convergence to a positive semi-definite 
covariance matrix. By characterizing the form of the total Fisher 
information we am able to determine the unobservable state 

directions of the state space. 
by 

appending the robot pose and the landmark locations is fully 
correlated, a situation that hinders full observability. Moreover, 

In summary; in SLAM, the State space 

space directions. To overcome this problem, we formulate new 
fully observable measurement modeh that make SLAM stable. 

the modelling of map states as static landmarks yields a 
partially controllable state vector. The identification of the first 

I. INTRODUCTION 

The study of stochastic models for Simultaneous Local- 
ization and Map Building (SLAM) in mobile robotics has 
been an active research topic for over fifteen years. Within 
the Kalman filter (KF) approach to SLAM, seminal work 
by Smith and Cheeseman [ l ]  suggested that as successive 
landmark observations take place, the correlation between the 
estimates of the location of such landmarks in a map grows 
continuously. This observation was ratified by Dissanayake er 
a/. [2] with a proof showing that the estimated map converges 
monotonically to a relative map with zero uncertainty. They 
also showed how the absolute accuracy of the map reaches a 
lower bound defined only by the initial vehicle uncertainty, and 
proved it for a one-landmark vehicle with no process noise. 

In this communication we address these results as a con- 
sequence of partial observability. We show that full recon- 
struction of the map state vector is not possible with typical 
measurement models, regardless of the vehicle model chosen, 
and propose new fully observable models. Also, we show 
experimentally how the expected error in state estimation is 
proportional to the number of landmarks used. 

An explicit solution to the SLAM problem for a one- 
dimensional vehicle called the monobor was presented by 
Gibbens er al. [3]. It shed some light on the relation between 
the total number of landmarks and the asymptotic values for 
the state error covariance P. They observed for example, 
that in SLAM, the rate of convergence of P is fixed, and 
that its asymptotic value is independent of the plant variance. 
In their solution to the I-d Brownian motion case, the state 
error covariance is linked to the total number of landmarks in 
the form of the total Fisher information IT = x;(l/of). 
The expression indicates the “informarional equivalence of 
the measurements and the innovarions” [4], and was derived 
from a simple likelihood function, one that does not contain 
the fully correlated characteristics of the measurement model. 
We derive a more general expression for the tolal Fisher 
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of these problems, and the steps taken to palliate it, are covered 
in this article. The effects of partial controllability in SLAM 
are covered in [ 5 ] .  

The paper is structured as follows. In Section I1 we analyze 
the steady state behavior of the error state covariance in 
SLAM for the monobot, and show how the steady state of the 
filter will always depend on the initial noise parameters. The 
effect is known as marginal stability [6], and is in general an 
undesirable feature in state estimation. In Section III we derive 
an expression for the total Fisher information in SLAM. The 
analysis yields a closed form solution that shows, explicitly, 
the unobservable directions of the map smte. 

Marginal filter stability and the singularity of the Fisher 
information matrix are equivalently consequences of having 
partial observability. Section N is devoted to the computation 
of general expressions for the bases of the controllable and 
observable subspaces in SLAM. These expressions are later 
simplified in Sections V and VI for the monobot, and for 
a planar wheeled vehicle. We prove, in the end, that the 
angle between these two subspaces is determined only by the 
total number of landmarks in the map. The result is that as 
the number of landmarks increases, the state components get 
closer to being reconstructible. 

In Section VII we show bow partial observability in SLAM 
can be avoided by adding a fixed external sensor to the 
state model, or equivalently, by setting a fixed landmark in 
the environment to serve as global localization reference. 
Full observability yields the existence of a (not necessarily 
unique) steady state positive semi-definite solution for the 
error covariance matrix, guaranteeing a steady flow of the 
information about each state component, and preventing the 
uncertainty (error state covariance) from becoming unbounded 
~41. 

11. STEADY STATE BEHAVIOR OF KF-SLAM 

We start the discussion with a pictorial representation of the 
asymptotic behavior of the K€-SLAM algorithm. The steady 
state covariance matrix is given by the solution of the Ricatti 

0-7803&?32-3/04/$17.00 @CO4 IEEE 397 

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on March 26, 2009 at 16:11 from IEEE Xplore.  Restrictions apply.



equation 

P = F(P - P H ~ ( H P H ~  + w)-'HP)F~ + v ( I )  

with F and H the plant and measurement model Jacobians, 
respectively: and V and W the motion and sensor noise 
covariances. 

For the linear fully observable case, the solution to the 
Ricatti equation will converge to a steady state covariance only 
if the pair {F, H} is completely observable. If in addition, the 
pair {F, I} is completely controllable, then the steady state 
covariance is a unique positive definite matrix, independent 
of the initial covariance Polo [4]. These two conditions are 
not satisfied in general in SLAM, and for the linear case, 
the solution of ( I )  is a function of the initial vehicle pose 
covariance P,,olo, V, W, and the total number of'landmarks 
n. Note however that, for the nonlinear case, the computation 
of the Jacobians F and H will in general also depend on the 
steady state value of x. 

Consider a linear one-dimensional vehicle, i.e., a monobot. 
The evolution of the error covariance matrix is independent 
of the state input, and measurements throughout the run of 
the algorithm. For a monobot with perfect data association 
and constant motion and sensor uncertainty, the computation 
of the Kalman gain could even be performed offline. That is, 
the asymptotic (steady state) behavior of the filter, and its rate 
of convergence are always the same, regardless of the actual 
motions and measurements. 

Fig. I shows the steady state vehicle and landmark variances 
of the KF-SLAM algorithm applied to a monobot when 

'observations of I ,  2, 3, and 50 landmarks are available. The 
figure plots the influence of each of the noise variances V and 
W with respectto the final vehicle and landmark uncertainty. 

All final state estimates are bounded by below by the initial 
ve.hicle variance P,,olo = 1. Meaning one can never estimate 
the vehicle and landmark locations with more accuracy than 
what was available at the first sighting [2], but certainly can 
do worse; that being dictated by the values of V, W, and the 

111. -TOTAL FISHER'INFORMATION . .  
Under the Gaussian assumption for the vehicle and sensor 

noises, the Kalman filter is the optimal minimum mean square 
error estimator. And, as pointed %ut .in [4], minimizing the 

. ~ least squares criteria E [ i i k + l l k + l i i ~ + l l k + l ] :  is equiGalent to 
the maximization of-a likelihood function A(x) given the set 

'of ohservations~Zk; that is, the m.&mization of the joint prob- 
ability density function of the entire history of observations, 
A(x) = nf=, p(&-'), wheie x i s  the.augmented map state 
(vehicle and landmarkestimates), and zi the entire observation 

Given that the above pdfs are Gaussian, and that E [ 4  = 
H % I < + ~ ,  h e  pdf for each measurement in SLAM is 
p(zilZ"-') = N ( i & 1 ; O , S i ) ,  with Si = E[iili-li:i-l]. 

In practice however, it is more convenient to consider the 
log likelihood function lnA(x). The maximum of lnA(x)  is 

. at the value of the state x that most likely gave rise to the 

. . total number of landmarks n. 

.~ vector at time i. 

. .  . 

V 

with W = 1 

W 

W 

with v = 1 

Fig. I .  Find vehicle and landmark localization variances after 500 iterations 
of SLAM for a monobot with initial localilation variance Pl,olo 7 1. and 
various values for the plant and sensor noise variances. 

ohsenred data Zk ,  and is obtained by setting its derivative 
with respect to x equal to zero, which gives . . 

k 

V,InA(x) = CHTS;'iili-l (2) 
i=l  

An intuitive interpretation of the maximum of the log- 
likelihood is that the best estimate for the state x, in the 
least squares sense, is the one that makes the sum of the 
entire set of Mahalanobis distances E;=, Z~i-lS;lZi~,-l as 
small as possible. A measure that is consistent with the spatial 
compatibility test described in [7]. 

The Fisher information matrix, a quantification of the max- 
imum existing information in the observations about the state 
x, is defined in [41 as the expectation on the dyad of the gra- 
dient of InA(x), that is, J =~E[(V,I~A(X)) (V,I~A(X))~] .  
Taking the expectation on the innovation erior in the above 
formula gives the sum .. . . .  

li 

J = CH~(HPH~ + w)-" (3) 
,=1 

It is easy to verify that in the linear case, this expression for 
the total Fisher information is only a function of P,,olo. V, 
and W. If, on the other hand, the EKF is used, the Jacobian 
H in (3) should be evaluated at the tme value of the states 
xg ,  . . . Xk. Since these are not available, an approximation is 
obtained at the estimates x + ~ .  The pre and post multiplying 
H is, in this context, also known as the sensitivity matrix. 

A necessary condition for the estimator (the Kalman filter) 
to be consistent in the mean square sense is that there must he 
an increasing amount of information about the state x in the 
measurements. That is, as k - CO, the Fisher information must 
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and the controllability matrix for such a plant is 

Q = [ I  O I F  O I . . . ) F d ' " x - l  0 I (8) 

~-p Consequently, the dimensionality of the controllable sub- 
space, spanned by the column space of Q, (ImQ), is rank Q = 
dimx,, regardless of the number of landmarks in the map. 

also tend to infinity. Fig. 2 shows this for the monobot with 
constant parameters P,,O10 = V = W = 1, and various sizes 
for the observation vector. Notice how, as the total number 
of landmarks grows, the total Fisher information also grows, 
directly relating the number of landmarks to the amount of 
information available for state estimation in SLAM. 

Solving for the k-th sum term in J for the monobot, 

(4) 

with ctJ the ij-th entry in Si1, and c = [E cl*,. . . , 
Citing Bar-Shalom et al. [4]: "a singular Fisher information 

matrix means total urtcertuinty in a subspace of the stare 
space, r h a  is, the irtfornurrion is insuflcientfiir the esrinlation 
problem at hand." Unfortunately, it can be easily shown, at 
least for the monobot case, that the first row (or column) of J 
is equivalent to the sum of the rest of the rows (or columns), 
producing a singular total Fisher information matrix. Thus, 
SLAM is unobservable. 

This is a consequence of the form of the Jacobian H, i.e, of 
the full correlation in SLAM. Zero eigenvalues of HTS-'H 
are an indicator of partial observability, and the corresponding 
vectors give the unobservable directions in state space. 

So for example, for a one-landmark monobot, the innovation 

H = [-1,1], the Fisher information matrix in (3) evaluates to 

4. 

., covariance is the scalars = a~-2p,fa7af+aq+a~. and since 

k 

J = [ - :  -:IC: i:l 

The unobservable direction of the state space is the eigen- 
vector associated to the null eigenvalue of J, we denote it for 
now E K ~ ~ R  (the name will be clear soon), and evaluates to 

IV. OBSERVABLE SUBSPACE 
To see what part of the state space is compromised by full 

correlation, we now develop closed form expressions for the 
bases of the observable and controllable subspaces in SLAM 
and relate them to the total number of landmarks used. 

The linearized state model is 

Xk+i  = F X k  f Vk (7a) 
Z k f l  Hxr+i  f Wk+i (7b) 

1 
The rank of R indicates the dimensionality of the observable 

subspace, which in turn, is spanned by the row space of R, 
(ImR'). rank R = d i m x - d i m x f r q .  

v. THE MONOBOT 
We return our attention now to the monobot. Consider the 

even more restrictive case in which only one landmark is 
available. By substituting the resulting expressions for the 
model Jacobians, the controllability and observability matrices 

The controllable subspace has a basis of the form [q, 01'. 
clearly indicating that the only dimension in the state space 
that can be controlled is the one associated with the motion 
of the robot. 

The observable subspace on the other hand, with basis 
[r, -TI', shows bow the observed robot and landmark loca- 
tions are fully correlated. The unobservable subspace is the 
orthogonal complement of ImRT, and has a basis [r, .IT. An 
expression for it was already derived from the analysis of the 
total Fisher information matrix and is given in (6). The name 
E K ~ ~ R  indicates that it is a basis for the null space of R. 

A measure of the error incurred while trying to reconstruct 
the state jC, from correlated ObseNatiOnS is given by the angle 
between these two subspaces. For the one landmark monobot, 
the angle is a = L ImQ ImR' = n/kad. 

There is one direction of the state space which is not 
observed, the one orthogonal to ImRT (along KerR). The 
information for the revision of i, and if along the direction 
orthogonal to ImRT is missing. The angle a indicates how 
close noise driven observations are from fully revising the 
robot part of the state space. 

What happens if we add more landmarks to the envi- 
ronment? will the vehicle and landmark location estimates 
improve or degrade? will we be able to achieve an uncoupled 
reconstruction of the entire state space? The answer to the 
above questions is "improve" but "no". 

Consider the two-landmark monobot case. A possible set of 
bases for the controllable and observable subspaces are 

EI,Q = (b> , E I ~ R T  = (-: "> (11) 
0 -1 
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Fig. 3. a) LR(Q)E(RT). Angle between the observable and canvollable 
subspaces. b) Reduction of the average monobot localiration error XF,k - 
x7,klk with respect to the number of landmarks used. The results correspond 
to a Montecarlo simulmion over IW SLAM runs. The dotted lines show the 
extent of the data far the entire set of runs, and the bores contain marks at 
the lower, median and upper quartile 

I . . . .  - .. 

- .a, .................... :B 

as the smaiiest non 
onhonormal bases [SI. a = L IrnQ ImRT = 163a/832rad. 
FOliOWinP this DrOCedWe we cornouted the value of a for 

singular value&of the product 
Fig. 4. Fullcovariance KF SLAM for a monobot in a sinusoidal path from 
x,,oIo, = -im to xlo0 = -im with IW iterations. The noise eompted 
sinusoidal vehicle uaiectcw is indicated by the darkest curve in the fint - . .  

a hee-landmark monobat model,'funher reducing a = column of plots. In  b e  same set of figures, and close to it is a lighter curve 
that shows the vehicle location estimate as computed by the filter. along with 
a oair of doned lines indieatins 20 bounds on such estimate. The dark svaieht Ahd, as we add Inore kUKharks to the map, the . ~ ~ ~~ ~~ ~ ~ ~ ~~~ ~~~ ~ ~~~~~~~~ ~~~~~~~~~~~~ 

between the observable and controllable subspaces reduces lines at the lm level indicate the landmark location estimates: and the light; 

............ r-.------ 
monotonic reduction in a suggests that our measurement noise covariance. also on the form of 20  dotted bounds. And. the lasi column 
driven corrections to the map~state estimate would'reconsuuct 
the vehicle localization estimate closer to the actual value of 
the vehicle pose. 

Theorem I (pmof in [SI): In the case of a linear one- 
dimensional mbot, the angle between the conrmllable and 
observable subspaces in the KF-SLAM algorithm depends only 
on the total number of landmnrkr used, n, and is given by 
a = arccos ,/&. 

gets closer to the controllable pan of the state space (the 
vehicle localization states). limn-- a = 0. 

It is unrealistic however, to have an infinite number of 
landmarks, and a compromise has to be made between the 
possibility of including as many landmarks as possible, and the 
amount of information that new observations give. Also one 
has to bear in mind that as we add more and more landmarks to 
the map, we will also introduce their associated measurement 
noise. 

It has been argued that the performance of any SLAM 
algorithm would be enhanced by concentrating on fewer, better 
landmark observations [3]. That is certainly m e ,  little gain 
(little reduction in a)  is attained when going from 25 to 125 
landmarks compared to the move from 1 to 5 or 5 to 25. 

In Fig. 4 we have plotted the results of using the original 
fully correlated KF approach to SLAM for a monobot that 
starts at location x , , ~ , ~  = -I?, and moves along a straight 
line with a temporal sinusoid trajectory returning to the same 
point after 100 iterations. Landmarks are located at xr~i ,  = 

As the number of landmarks grows, the observable subspace- 

: . 

shows the same far the landmark estimates 

l m .  A plant noise model proportional to the motion command, 
and a measurement noise model proportional to the distance 
from the sensor to the landmark are used. The dotted lines 
indicate Zu bounds on the state estimates. 

The effects of partial observability manifest the dependence 
on the initial conditions. Note how both the vehicle and 
landmark mean localization errors do not converge to zero. 
Their steady state value is subject to the error incurred at the 
first observation. That is, the filter is marginally stable (the 
matrix F - KHF has a pole in one [9]). 

A Montecarlo simulation over I00 SLAM runs showed 
however filter unbiasedness, a property of optimal stochastic 
state estimation (Kalman filter). That is, the average landmark 
localization error over the entire set of simulations was still 
zero, thanks to the independence of the initial landmark 
measurement errors at each test run. 

The steady state error for the robot and landmark localiza- 
tion is less sensitive to the initial conditions when a large num- 
ber of landmarks are used. The reason is the same as for the 
Montecarlo simulation, the observations are independent, and 
their conhibution averages at each iteration in the computation 
of the localization estimate. The results of the Montecarlo 
simulation are shown in Fig. 3b depicting the effect of the 
increase in the number of landmarks on the average vehicle 
localization error. 
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Fig. 5 .  Two-dimensional mobile robot motion model. 

VI. THE P L A N A R  ROBOT 

The reconstructibdity issues presented for the linear and 
one-dimensional robot of the previous section, nicely extend 
when studying more complicated platforms. Consider the 
planar robot shown in Fig. 5 ,  a nonlinear wheeled vehicle 
with three degrees of freedom, and an environment consisting 
of two-dimensional point landmarks located on the floor. 

The dimensionality of the controllable 'subspace is dim xr = 
3, and for the specific case in which only one landmark is 
available, a basis for the controllable subspace is simply 

The dimensionality of the observable subspace is, for this 
panicular configuration, rank R = 3. This last result is easily 
verified with simple symbolic manipulation of the specific 
expression for the state model in [ 5 ] .  Possible bases for ImRT, 
and for the null space of R (the unobservable subspace) are 

/ 1  o \  

\ o - i n /  
The only independently observable state is the one asso- 

ciated to the robot orientation 9. The other four states, the 
Cartesian coordinates of the robot and landmark locations span 
a space of dimension 2. Even when ImQ and ImRT both 
span B3, we see that the inequality I m Q  # ImRT still holds, 
as in the case of the monobot. That is, the observable and 
controllable subspaces for the one-landmark 3dof-robot SLAM 
problem correspond to different three-dimensional subspaces 
in B5; and, their intersection represents the only fully con- 
trollable and Observable state, i.e., the robot orientation. Once 
more, a measure of the reconsuuction error incurred when 
estimating the vehicle pose from correlated observations is 
given by the angle between these two subspaces. 

Resorting again to a singular value decomposition for the 
computation of a pair of orthonormal bases for ImQ and 
ImRT, we have that for the one-landmark planar robot case, 
a = ?r/4rad. For a two-landmark map, a = 163~/832rad,  
for a three-landmark model, a = x / 6 ,  and as we add more 
and more landmarks to the environment, the angle between the 

controllable and observable subspaces reduces monotonically, 
in exactly the same manner as in the case of the monobot. 

Theorem 2 (proof ulso in 151): In the cuse of U nonlinear 
plunur mbot with 3 degrees of freedom, the angle between 
the contmlluble und observable subspaces in the EKF-SLAM 
algorithm depends only on the total number of landmarks 
used, n, and is given by oi = arccos fi. 

VII. COMPLETE OBSERVABILITY 
In Section III we characterized the unobservable subspace 

in SLAM as the subspace spanned by the null eigenvectors of 
the total Fisher information matrix. Furthermore, we showed 
in Sections N-VI  how the unobservable part of the state space 
is precisely a linear combination of the landmark and robot 
pose estimates. 

In order to gain full observability we propose to extend the 
measurement model doing away with the constraint imposed 
by full correlation. We present two techniques to achieve this. 
One is to let one landmark serve as a fixed global reference, 
with its localization uncertainty independent of the vehicle 
pose. 

The second proposed technique is the addition of a fixed 
external sensor, such as a camera, a GPS, or a compass, that 
can measure all or part of the vehicle location state at all times, 
independent of the landmark estimates. 

Both techniques are based essentially on the same principle. 
Full observability requires an uncorrelated measurement Jaco- 
bian, or equivalently, a full rank Fisher information mamx. 

A. A frred global reference 

The plant model is left untouched, i.e., 

x k + l  = X k  f Uk + Vk (12) 

The measurement model takes now the form 

One of the observed landmarks is to be taken as a global 
reference at the world origin. No map state is needed for it. 
The zero-th superscript in the measurement vector is used for 
the consistent indexing of landmarks and observations with 
respect to the original model. It can be easily shown that the 
observability matrix for this new model is full rank. 

The innovation covariance matrix for the augmented system 
 SO,^ is of size (n + 1) x (n + l), and its inverse can be 
decomposed in 

TO."" co,01-. .~".0. ,  
CO.01 

s,: = [ 5;' ] (14) 
CO.0.' 

with s0,ij the ij-th entry in s~f, ,  5 0  = 

[ ~ F O J ~ , .  . . , ~ F O J , ] ,  and 6;' its submatrix associated to 
the landmarks that are under estimation (excluding the anchor 
observation). 
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The k-th element of the Fisher information matrix sum in 

Unlike in (4). this form.of the Fisher information matrix 
is full rank. Moreover, from the properties of positive definite 
matrices, if Jo,r is positive definite, the entire sum that builds 
up Jo is also positive definite. 

Fig. 6 shows the results of applying full observability to 
the same monohot model as the one portrayed in Fig. 4. Note 
how the steady state-(robot pose and landmark locations) is 
now unbiased with respect to the initial state estimates. State 
covariances are also smaller than those in Fig. 4. 

B. .An externnl sensor 

Instead of using one of the landmarks as a global reference, 
one could also use a fixed sensor to measure the position of the 
robot. For example, by positioning a camera that observes the 
vehicle at all times. For such cases, the monobot measurement 
model may take the form 

,~ The characteristics of the Observability matrix, and the 
Fisher information matrix, are exactly-the same as for the 
previous Sase. This new model is once more, fully observable. 
The results are theoretically .equivalent to the previous case. 
The choice of one technique over the other would depend on 
the availability of such external sensor, and on its measurement 

The key point here is that we have proved that full observa- 
bility, i.e., zero mean state convergence, is indeed possible in 
SLAM without the. need of an oracle (an external sensor), but 
by simply anchoring the first observed landmark to the global 
reference frame. 

C. Planar vehicle 
The results from the previous section are easily extensible to 

more complicated vehicle models. provided the linearization 
technique chosen is sufficiently accurate. For example, the 
measurement model of a global reference fixed .at the origin, 

- for the nonlinear vehicle from Fig. 5 is 

. noise covariance characteristics. 

. ’ 

h(0) = -RTt + w(o) (17) 

and its corresddndina Jacobian is 

4 @ -- P - 3- m-m 

- - -~ 
Rob, and landmark laalization Vehicle em7 landmak ladimion nmr 

Fig. 6. Full-covariance fully observable KF SLAM for a manobat’in a 
sinusoidal path fmm xr,qO = -1m to xmo = -1m with 100 iterations. 
The global reference is observed at the origin. 

VIII. CONCLUSION 

We have shown-how full correlation of the map model 
in KF-SLAM hinders full observability of the state estimate. 
Partial observability makes the final map dependant on the 
initial observations,-and does not guarantee convergence to a 
positive definite covariance matrix. This situation can easily 
be remedied either by anchoring the map to the first landmark 
observed, or by having an external sensor that sees the vehicle 
at all times. 
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(1% 
(20) 

both cases, the symbolic manipulation of (18) and 
algebra package, pmdnced full rank 

Observability .matrices. That is, for the p l i a r  mobile robot 
reference, or 

the use of a sensor that .can measure the xy position of the 

- . ’ .h(O) = ,t fW(0)  . - 

[ I  02x(2n+l)  1 HL0) = 

.’ (20) with a 

used, only one 

robot, are sufficient to attain full Observability in SLAM. . .  
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