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Abstract

In many applications, it suffices to know a lower bound on the distance between
objects, instead of the exact distance itself, which may be more difficult to com-
pute. Such an easy-to-compute lower bound on the distance between two nonconvex
polyhedra is presented here, which doesn’t require a decomposition of the original
polyhedra into convex entities. Furthermore, a suitable preprocessing of the polyhe-
dra permits lowering the effort needed to compute this lower bound, and improves
its quality. Experimental evidence is presented of the promise of this approach for

assembly applications.



1 Introduction

Distance computation is a basic issue in many mechanical simulation and computer an-
imation applications. For example, knowing the distance and the relative velocities and
accelerations of objects allows to predict the instant where collision may take place be-
tween these objects. Exact and approximate distance computation belong, together with
collision detection and tolerance verification, to the so called proximity queries (see’ ™ for
surveys on the subject).

Very efficient algorithms exist for computing and updating the distance between two

L If the polyhedra are nonconvex, these algorithms can only be

convex polyhedra.*!
applied after a preprocessing step, consisting of a decomposition of the polyhedra into
smaller convex ones. The algorithm has to compute then the distance between every
pair resulting from this decomposition, and its minimum provides the distance between
the original polyhedra. Such decomposition introduces many ficticious features which
intervene in the distance computations.

Recently, also very fast algorithms have been devised for distance computation be-
tween nonconvex polyhedra with triangular faces.!>!5 Again, if the faces of the original
polyhedra are polygons of arbitrary complexity, they have to be triangulated, which can
be a costly operation. Triangulation constitutes obviously a preprocessing operation, and
therefore has to be performed only once, but the fictitious edges introduced by it have to
be considered each time the distance is computed.

In sum, computing the exact distance between two objects may be costly if the com-

plexity of the objects is high. However, it often suffices to compute a lower bound which,



together with bounds on the velocities, permits to set time bounds on collision instants,
which is enough in most collision detection contexts. This strategy, of course, makes only
sense if the lower bound is easier to compute than the distance itself. If the objects are
distant, such lower bound can be easily computed from simple enclosing volumes (boxes,

16 or other). Tighter bounds on the distance can be obtained

spheres, ellipsoids —like in,
by organizing such simple enclosing volumes in hierarchies that describe the object with
a progressive degree of accuracy (the root bounds the whole object, whereas the leaves
correspond to elemental features like triangles or polygonal faces in the case of polyhedra).
This allows to compute a distance bound up to a given tolerance (which may be dependent
on the available time for performing computations) or even to direct the search towards
the closest feature pair. Of course, major benefits are obtained from the situations where
the search can be interrupted in the first levels of the hierarchies (because the corre-
sponding tolerance is enough for the purposes) or if significant portions of the hierarchies
can be pruned away (because it can be decided that they cannot contain the solution).
This approach has inspired a large number of works.!”2?2 However, the efficiency of this
approach may be questionable if the objects are in close proximity, as may be the case of
assembly operations when the workpieces are close to their fitting (matching) positions.
In this paper, we present a theoretical curiosity that shows promise of having practical
interest. Extending the seminal ideas of Canny?® and Donald?* on interference detection
predicates, Thomas and Torras?® developed an interference test for nonconvex polyhedra
which doesn’t require decomposition into convex entities. Here we show that, by replacing
predicates by their corresponding continuous functions (as suggested in?®), a lower bound

on the distance between the polyhedra is readily obtained. These ideas are displayed and



discussed in Section 2, where a correctness proof is provided. The good news are that
these basic functions are simply computed from vertex coordinates, face normals, and
edge director vectors, and no auxiliary geometric constructs are needed.

The lower bound is obtained by computing the value of the function for all possible
pairings between the edges of one polyhedron and the faces of the other one, which means
quadratic complexity for the algorithm. It is possible to lower this computational effort
by discarding some edge-face pairs on the basis of their relative orientations, as shown
in Section 3. Experiments reported in Section 3.3 show that this pruning does not only
avoid unnecessary computations, but also enhances the quality of the lower bound.

It should be noted that the main contributions of this work are the proposal of a lower
distance bound computed from basic contact functions, which is valid for nonconvex faces,
as well as an orientation-based pruning strategy, complementary to the volume-based
approaches cited above. Actually, the two approaches (volume-based and orientation-
based) can be combined in order to exploit their respective pruning capabilities, as was
done in.'® This issue is discussed in Section 4.

Finally, some conclusions are drawn in Section 5.



2 Determining a lower bound on the distance be-

tween two general polyhedra

2.1 Basic functions

When determining the distance between two polyhedra, the immediate and most natural
approach consists in computing and comparing the distances between their boundary
features (vertices, edges, and faces). Vertex - vertex distances are simple point-to-point
distances, but in all other possible pairings a decision process is necessary to determine
which kind of elemental distance formula has to be applied: an edge-face distance, for
example, can be a point-to-point, a point-to-plane, or a line-to-line distance.

In our approach, we need to compute only two types of basic distance functions, which
we call type-A and type-B functions, following the well-established nomenclature of basic
contacts.?

A type-A function', associated with a vertex v of one polyhedron and a face f of

the other one, is a signed point-to-plane distance from v to the plane containing f:

Av,f:<fav_via>

where, in abuse of notation, vertices stand for their coordinates vectors and faces for their
normals, and v; is any vertex of f.

A type-B function, associated to edge e, of one polyhedron and edge e,, of the other

'In type-A and type-B functions, vertices, edges and faces are variables dependent on the relative pose
of the involved polyhedra.



one, is a signed line-to-line distance between the supporting lines of e,, and e,:

Bem,en = <em X €n, Uy — Uka)

where the edges stand for their director vectors, vy = 0"e,, and vy; = 07e, (07 and 0~
are the halfboundary operators — in this case, they refer to the endpoints of the edges).
These two basic functions are the elemental constituents of our lower distance bound,

as shown next.

2.2 The lower distance bound function

It was suggested in?® that the continuous version of the interference detection predicate
proposed therein, and experimentally validated in,2% could lead to a lower bound on the
distance between two polyhedra. This entails replacing basic predicates by basic functions,
AND by min, OR by maz and XOR by smin (signed minimum), leading to the following

composite function that has to be applied to every edge-face pair of two polyhedra:

De = min( smin(Ag+e,f, Ao-cf), "
s, eop (Min(smin(Agte; 1., Ao-es,1.) STIN(Ag-c; 1.5 Bee;)))),

where f, stands for an arbitrary plane containing e, and 0f is the set of edges bounding f.

The mazx and min operators have their usual meaning, whereas smin returns the lowest

absolute value of the operands, and its sign is positive if an odd number of operands is

positive, negative otherwise.

To ease notation, we will call:



[} ae,f = Smin(A3+e’f,Aa—e’f)
o co, = min(smin(Ag+e; f,s Ao-c;.1.), SMIN(Ad-c; fos Beyey))
o b= sminefeaf{cef}

Thus, D s = min(ae,r, be,f)-

Intuitively, —a, ; is a lower bound on the distance from e to the plane supporting f,
and —b,  is a lower bound on the distance between f and the line supporting e.

A lower bound on the distance (Idb) between two polyhedra P and @) is obtained by
evaluating D, s for all possible pairings between the edges of one polyhedron and the faces

of the other one:

ldb = —max (D, ), V(e, f) such that eithere € P and f € Q, ore€ @ and f € P. (2)

In,?® it was argued that a lower bound on the distance was obtained due to the fact
that type-A functions provide vertex-plane distances, which are lower bounds on vertex-
face distances (from 0"e and 0~ e to f) and on vertex-line distances (from 0*e; and 0~ e;
to the line supporting e); and type-B functions provide line-line distances, that is, lower
bounds on the line-edge distances (from the line [, supporting e to edges e;). There it
was also explained that the quality of the ldb could be improved by choosing f. (which is
needed to evaluate b f) to be a plane that maximizes the distance to the nearest vertex
of face f (instead of an arbitrary plane).

A formal proof of the correctness of the lower distance bound (2) is given in the next

section. The mentioned plane can be computed efficiently with a divide-and-conquer



algorithm that solves the equivalent 2D problem obtained by projecting the vertices of
the face on a plane perpendicular to the edge. Details on this algorithm are given in.2"
However, in practice an easy-to-compute plane, as the one containing the edge and the

origin of coordinates, works as well, provided there is some mechanism to avoid degenerate

situations, as shown in the experiments.

2.3 Correctness

If there is no interference between the considered polyhedra, D, ; < 0 for all edge-face
pairs, and thus [db > 0. Moreover, ldb = min{|D, s|}. On the other hand, the minimum
distance between the two polyhedra dpg can be expressed as the minimum of all the
distances between edges and faces of the two polyhedra, dp o = min{d(e, f)}. Therefore,
it is necessary to prove that D, ; > —d(e, f), i.e., |D. | < d(e, f) for all edge-face pairs.

As D, s = min(ae,z, be,f), two situations have to be considered:

e Suppose D, s = a.y. It follows that a.; < 0 (as D,y < 0), i.e., edge e does not
intersect the plane supporting face f. The basic functions in a. s are vertex-plane
distances (from the endpoints of e to the plane supporting f), and that of minimum

norm is, in this case, a lower bound on the edge-face distance.

o If D,y = by, then b,y < 0. This means that the line /. supporting e does not
intersect f. In this case, d(e, f) > d(l., f) = mine,car{d(lc,ef)}. Thus, it must be
proven that |be | < mine,car{d(le,ef)}. Since |be | = mine car{|ce,|}, this reduces

to proving that |c,| < d(le, ef), for all e; in the boundary of f.

For any one of these boundary edges,



ce;| = |min(smin(Aa+ef’fe,Aa—efyfe),smz’n(Aa—ef,fe,Be,ef))\ = |min(smin;, sminy)|.

Consider the possible combinations of signs of the smin functions:

(i) smin; <0, sminy < 0. Then |c,| = maz(|smin,|, |sminy|). The two alterna-
tives are studied below.
(ii) sminy <0, sming > 0. Now [ce, | = [smini| = min(|Ag+e; 1., [Ao-e;, 1. ])-
(iii) sminy > 0, sminy < 0. In this case, |c.,| = |sming| = min([Ag-¢; 1|, [ Bee,|)-

(iv) sming > 0, sminy > 0. Here, \cef| = min(\A3+eI,fe|, |Aafef,fe|, \Be,ef\).

In case (i) with |sming| > |smin,|, as well as in cases (iii) and (iv), it holds that
[Ces| S [Bees| =dlle; le;) < d(le, e).

In the remaining cases, smin(Ag+, 1oder Ao, 1.) < 0, which means that the bound-
ary edge ey does not intersect the plane f.. This implies that the minimum distance
between e; and f, is realized at one of the endpoints of e;. This vertex - plane dis-
tance is a lower bound on the edge - plane distance, i.e., min(|Aa+e,, .|, [Ao-e;,1.|) <

d(fe,er) < d(le,ey), which completes the proof.

2.4 The degenerate case

Sometimes ldb is not a tight lower bound. Particularly, the case where it reports contact,
i.e. it is equal to zero, although the polyhedra are apart, is very undesireable. When can

this happen?



Suppose both polyhedra are separated and D, ; = min{a, s, be s} = 0. Two cases have

to be considered:

e a. ;=0 and b,y > 0, which corresponds to a real contact situation (Figure 1).

Figure 1: a.f = 0 and b,y > 0 implies a real contact.

® b,y =0 and a.y > 0. This means that de; s.t. Ce; = 0. We will distinguish two

main cases where this can happen, depending on the value of B, :

|Bee,| > 0 Necessarily either A+, s, =0 or Ayg—c, ;r, = 0 (not both simultaneously,
as this would mean coplanarity of e; and e, which is the other case). In
other words, the arbitrary plane containing edge e does also contain one of the
endpoints of e;. Any other plane f, can be chosen that avoids this circumstance
(Figure 2).

B.., =0 Edges e and e; are contained in the same plane. Consider the value of
Qe f:
a.,; > 0 Corresponds to a real contact (Figure 3).
ae,; = 0 There are two subcases:

— Either Ap+.,; = 0or Ay 5. = 0, but not both. This corresponds to a
real contact situation (Figure 4a).

10



— Apte s = Ap—e,y = 0 can either correspond to a real contact, as shown
in Figure 4b1, or we are facing the only degenerate case, where ldb = 0

while no real contact exists (Figure 4b2).

Summarizing, the only situation where [db = 0 and no real contact is happening is the
case where e is coplanar to f and its supporting line cuts an edge ey € df at any point.
When this case is spotted (Ap+e s = Ag—e = Bee, = 0), an alternative, 2D version of

function (1) can be used to get a tighter lower bound:

D7j = —mage;cop(min(smin(Az2, ., Ae.,), smin(A5e o A%, o)), (3)

where Af}”é is a signed distance in the plane from vertex v to the supporting line of e. If

the sign reported by this function is negative, edge e actually intersects face f.

(b)
Figure 2: (a) A bad choice of plane f. contains one of the endpoints of an edge e of

f°.(b) A different choice of this plane avoids this problem. The edge ’e’ appears as a
continuous line over or on the supporting plane of ’f’, and discontinuous under this plane.

3 Lowering the computational effort

The search space attached to the evaluation of function (1) applied to all possible edge-face
pairings of two polyhedra can be represented as a tree, whose structure is quite similar

11



Figure 3: A real contact (highlighted with a circle) erists such that B, = 0 and a.,; > 0.

(a)

/ )
L—_—

(b1) (b2)

Figure 4: B.., = 0 and a5 = 0. (a) Only one of the endpoints of ’e’ touches the plane
'f’. Then, necessarily a real contact exists. (b) Both endpoints of ‘e’ are on ’f’, i.e., ‘e’

and ’f’ are coplanar. ldb = 0 reports either a real contact (b1), or corresponds to the
degenerate situation (b2).
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to a MIN - MAX tree. Thus, the well-known «-§ pruning strategy can be adapted to
cope with the particular structure of the MIN-MAX-SMIN tree. A detailed description,
as well as examples and experimental results, can be found in.?”

However, a-f pruning does not avoid having to compute at least two functions per
edge-face pair (in the best case, the computation of b, s can be skipped). It would be
desirable to avoid doing any computation at all for edge-face pairs that cannot possibly
realize the minimum distance. This can be achieved after a suitable preprocessing step,

as shown next.

3.1 Orientation-based pruning based on applicable contacts

Orientation-based pruning is a preprocessing which consists in eliminating a whole set
of edge-face pairings that cannot realize the minimum distance between the polyhedra.
This pruning is based on the so-called applicable contacts, and has been used previously
by the authors in the interference detection context.?6:28 Applicability refers to which
features of two translating polyhedra can be brought in contact. As we will see in the
next subsection, the minimum distance can only be realized by features whose contact
is applicable. Thus, only edge-face pairings involved in applicable contacts need to be
considered for computing function (2).

Every contact between the features of two polyhedra can be reduced to a basic vertex-
face or edge-edge contact. The two basic contacts are displayed in Figure 5, and the
corresponding applicability conditions allow one to determine which of these contacts are

applicable:?*

13



Type A applicability For a given relative orientation between two polyhedra, the con-
tact between a vertex v of one polyhedron and a face f of another polyhedron is

applicable iff Yv; adjacent to v, (v;, f) — (v, f) > 0.

Type B applicability For a given relative orientation between two polyhedra, the con-
tact between an edge e, of one polyhedron and an edge e, of another polyhe-
dron is applicable iff k, # k,, where k, = sign((T1, f,)) = sign((T, f,)), and
ky = sign((Ts, fp)) = sign({Ty, fp)), with T; = s; - (fi X em), fi adjacent to e,,, T; =
s;-(fjxen), f; adjacent to ey;s;,s; € {+1, —1} such that T is oriented towards the

interior of face f; (see Figure 5), and f, = e, X e, (or the opposite direction, the

choice is arbitrary).

(a) (b)

Figure 5: (a) Applicable vertex - face pairing. (b) Applicable edge - edge pairing.

Note the correspondence of these basic applicable contacts with the basic distance
functions in Section 2.1.

Our preprocessing? proceeds in two steps. In the first one, all basic applicable contacts

2The representation and algorithms developed to perform this orientation-based pruning efficiently
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are determined. In the second step, edge-face pairs related to these contacts are computed:
for a vertex-face contact, any one of the adjacent edges to the vertex and the face itself
are chosen, whereas for an edge-edge contact the choice falls on any one of the edges and
any one of the two faces that are adjacent to the other edge. These chosen edge-face pairs
provide a lower bound on the distance if function (2) is applied to them, as proven in
the next subsection. Moreover, the experiments show that the quality of the lower bound
improves in general with the preprocessing, i.e., gets closer to the actual shortest distance.

The applicability conditions were originally developed for convex polyhedra. In the
nonconvex case they constitute necessary but not sufficient conditions for contact. Thus,
they give rise to a conservative strategy, i.e., some pairings which could never realize
the minimum distance may not be eliminated. However, in practice this preprocessing

permits reducing the computational effort significantly.

3.2 Correctness of the lower distance bound after orientation-
based pruning

The key idea is to consider the different types of closest features between the polyhedra.
For each case, we prove that there exists an applicable contact and that the correspond-
ing edge-face pairing realizes the minimum distance (i.e., it contains the closest features
between the polyhedra). Obviously, function (1) applied to such edge-face pairs provides
a lower bound on the actual distance.

The four cases of closest features depicted in Figure 6 are considered:

are described in detail elsewhere.26-28
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e Vertex-face. Clearly, v and f are applicable, and any edge-face pair arising from

this applicable contact realizes the minimum distance.

e Edge-edge. The same applies to this case: the closest edges are necessarily appli-

cable, and any choice of edge-face pair will realize the minimum distance.

e Vertex-edge. Consider the case where v is neither applicable to f; nor to fo. It
has to be proven that edge e is applicable to at least one of the adjacent edges of v.
This can be shown by projecting these features onto a plane perpendicular to e. The
line that joins v and the closest point on e is parallel to such a plane (see Figure 7).
Any of the edges adjacent to v that are on the boundary of the projection (e; or
e;) can be brought into contact with e by performing a translation, i.e., they are
applicable to e. Conversely, if e is not applicable to any edge adjacent to v, then v
is necessarily applicable to f; or fo, as can be seen by projecting on the same plane.
In both cases, any edge-face pair derived from these applicable contacts contains

the closest features v and e.

e Vertex-vertex. Figure 8 depicts a situation where neither v; is applicable to any
adjacent face of vy, nor vice versa. If these polyhedra are brought into contact by
a translation, in the neighborhood of v; and vy the contact will clearly be of edge -
edge type, which means that these edges are applicable. Whether this is the case, or
one of the vertices is applicable to an adjacent face of the other vertex, the derived

edge-face pairs clearly will always contain v; and vs.
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© (d)

Figure 6: Closest features: (a) vertez-face, (b) edge-edge, (c) vertez-edge, (d) vertez-
vertez.

Figure 7: Closest vertex - edge pair. The verter v is not applicable to f1 nor to fy, but
the contacts of e; and e; with e are clearly applicable.

17



Figure 8: Closest vertex - vertex pair. If no face is applicable to vy nor to ve, then
applicable contacts must exist between the adjacent edges.

3.3 Experimental results: Enhancement of the lower distance

bound

Applicability pruning relies on the geometry and relative orientation of the polyhedra,
whereas the lower bound depends also on their relative position. As positional information
is not taken into account in the pruning step, nothing can be said in general about the
quality of the resulting lower bound. Obviously, pruning might eliminate those edge-
face pairings that lead to very bad lower bounds, so that in any case the resulting lower
bound will not be worse than before pruning, but the extent of the improvement cannot
be quantified theoretically. Therefore, experiments have been undertaken in order to
evaluate this improvement.

Experiments carried out on a set of different polyhedra (ranging from the simple tetra-
hedron to a polyhedral approximation of the sphere with 256 triangular faces) show both

an improvement on the computational effort needed to compute the lower distance bound,

18



as well as the attainment of a better quality in the distance bound (see Figures 9, 10 and
11). The polyhedra have been located at different positions, with diverse relative orien-
tations, thus attaining slightly different performances. However, the results concerning

execution time (Figure 10) have been averaged.

Applicability pruning on the max—min-smin tree
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Figure 9: The number of executions of the elementary edge-face ldb-function for all edge-
face pairings (o) and for those pairings resulting from applicable contacts (+). Note that
in this, and in the two subsequent figures, a logarithmic scale is used.

4 Future work: Integration with volumetric and spa-

tial strategies

We have tested the potential of our orientation strategy by comparing its performance

with that of a standard distance computation package like PQP. Note that the comparison
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Execution time (with and without preprocessing) (microsec)

Applicability pruning on the max-min-smin tree
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Figure 10: Comparison of execution times of the algorithms that determine the lower
distance bound when only the a-f pruning strategy is applied (o) and when also an ap-
plicability pruning preprocessing is performed (both total time (+) and time excluding
preprocessing (¢) are displayed). Note that, even including the time needed for prepro-
cessing, the perfomance is much better if applicability pruning is performed. Experiments
were carried out on a Sun Ultra 80 workstation.

20



Applicability pruning: influence on the lower distance bound
1 T T T

Distance bound

(oe]

| | | | |
0 2 4 6 8 10 12
True distance

Figure 11: Comparison of the lower distance bound vs. the real distance between the
solids. Although the quality of the distance bound depends mainly on the geometry of the
objects, it is also clear that, in general, the closer the objects are, the better the quality
of the distance bound obtained. In some cases, the lower distance bounds obtained with
(+) and without (o) applicability pruning coincide, but the general tendency is a much
better performance in the former case. The mean improvement on distance estimation s
of 22.4% in the considered distance range. The continuous line has been drawn to show
where the bound would coincide with the true distance.
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is very unbalanced in the sense that our algorithm doesn’t benefit from the bounding
volume hierarchy (this is the goal of future work, as described in subsection 4.2), while
PQP takes full advantage of it. The aim of these preliminary experiments is to assess the
promise of our proposed strategy: if its efficiency falls orders of magnitude below PQP,
then there is no point in combining it with bounding volume hierarchies, but if their costs
are comparable, then it makes sense to try to combine our algorithm with such hierarchies
in order to yield a competitive lower distance bound algorithm. In the second subsection,

we provide some hints on how we plan to address such integration.

4.1 Promise assessment: experiments in isolation

The potential of the proposed strategy becomes evident when we compare the perfor-
mance of our algorithm with a state-of-the-art publicly available distance computation
package, PQP v1.2,'? in a setting that involves many nearly touching features. In par-
ticular, we have tested the distance computation part of both algorithms (i.e., without
considering neither the preprocess of applicability pruning performed in our algorithm,
nor the triangulation and the bounding volume hierarchy construction needed in PQP)
in the case where polyhedron A shown in Figure 12 is inserted in polyhedron B, without
touching it.

Table 1 shows the runtimes of both algorithms for different complexities (the number
of protuberances of A and holes in B), where A and B are almost aligned and at different
relative positions. It also displays the lower distance bound obtained at each position
and the real distance computed by PQP. Despite the unfairness of the comparison, as

mentioned above, the runtimes are slightly favourable to our algorithm, although of course
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only a lower bound instead of the true distance is obtained.

Note the high stability in execution time of our algorithm for each polyhedra complex-
ity, whereas that for PQP shows larger variations, due to its dependence on the portion of
the hierarchy that needs to be traversed. These experiments do also illustrate that (db is a
better bound the closer the objects are, as already mentioned in discussing Figure 11. An
explanation is that, in certain positions, some very low basic type-A or type-B functions
may determine the value of the lower bound, and the distortion becomes more relevant if
the objects are distant. This also enforces the interest of combining our approach with a
bounding volume hierarchical strategy.

PQP offers the possibility of computing whether the minimum distance falls above a
given tolerance or not. If it does, the computation can generally stop without having to
traverse the whole hierarchy up to the leaves: if the minimum distance computed between
two nodes at a given level exceeds the tolerance, the corresponding subhierarchies that
lie below those nodes can be discarded, as the minimum distance between two bounding
volumes is always greater or equal than the minimum distance between the enclosed
primitives. However, as shown by the experimental results in Table 2, this pruning effect
is not attained in these settings where objects are in close proximity: distances between
the bounding volumes along the hierarchy are lower than the tolerance, in general, as
there are many features that are fairly close between the two polyhedra. By looking at
the central column in Table 1, one can observe that, in these settings, a major pruning is
obtained when the tolerance is larger than the minimum distance, as very soon two leaves
(two triangles) can be found that are closer than the tolerance and this result is exploited

to cut off whole subtrees in the hierarchy search recursion process. But in this case the
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tolerance acts as an upper bound: it can be ensured (possibly very fast) that the distance
is below the tolerance, but not to which extent (the objects may even be colliding, in the
extreme case). On the contrary, our distance bound is always a lower bound (although
sometimes not a very tight one), naturally leading to a conservative strategy if used in a

collision detection context.

Figure 12: Polyhedron A with 616 protuberances is tested against polyhedron B (66 holes)
in an insertion position. The polyhedra are displayed after the triangulation® that has to
be performed as a preprocess in order for the polyhedra to be a suitable input for PQP,
which is not necessary in our algorithm. Observe that this generic triangulation algorithm
creates very narrow triangles in this particular setting.

These results show that the performance of LDB is comparable to standard volumetric
hierarchy based packages, even if the newest ones, like SWIFT++,® may increase effi-

ciency by one order of magnitude. Thus, LDB is a good candidate for integration with

volume bounding approaches.

4.2 Some hints on a possible integration

Bounding volume hierarchies may incorporate information about the face normals in order

to speed up proximity queries. In,'® the geometry at each node in a standard bounding
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LDB PQP PQP PQP PQP

complexities (Distance) || (Tol=1.01d) | (Collision) || (Tol=0.99d)
3x3 8 (0.0250) || 14.4 (0.0388) 0.9 9.2 13.7
4x4 .0 (0.0320) || 30.1 (0.0378) 3.1 19.7 29.3
5%5 10.3 (0.0320) | 58.1 (0.0371) 7.5 39.3 56.8
6x6 20.3 (0.0118) || 95.0 (0.0367) 3.1 63.9 93.6
3x3 1.8 (0.0298) | 14.3 (0.0433) 0.8 9.2 13.9
4x4 8 (0.0310) | 30.1 (0.0423) 3.1 19.4 28.8
5xH 10.4 (0.0309) || 60.2 (0.0416) 2.0 38.6 59.4
6x6 20.2 (0.0231) | 92.4 (0.0412) 3.0 63.0 90.8
3x3 1.8 (0.0724) | 14.8 (0.0859) 0.9 9.1 14.3
4x4 .9 (0.0209) || 30.5 (0.0849) 1.3 19.8 29.5
)&} 10.5 (0.0049) || 59.5 (0.0842) 2.0 38.3 56.9
6x6 19.9 (0.0005) || 95.8 (0.0838) 3.1 62.3 93.5
3x3 1.8 (0.0073) || 16.0 (0.1569) 1.0 9.0 15.4
4x4 9 (0.0039) | 33.5 (0.1559) 1.4 19.1 31.9
55 10.3 (0.0071) | 65.5 (0.1552) 2.1 37.7 62.9
6x6 19.5 (0.0073) || 101.4 (0.1548) 3.1 61.7 99.5

Table 1: Runtimes (in milliseconds) and distances (between parentheses) of our lower
distance bound computation algorithm (LDB) and PQP 1.2 exact distance computation
algorithm, plus execution times of two tolerance verifications, where the first one corre-
sponds to a tolerance of 1% over the real distance (thus also collision detection times are
shown, see the text) and the second to 1% below. The algorithms have been executed on
a Sun Ultra 80 workstation (2 ULTRASPARC II processors at 450 MHz, 1Gb RAM),
for different complexities of the polyhedra, at four different positions. Only the distance
computation part is taken into account, i.e., neither the orientation-based preprocessing,
nor the triangulation and building up of the hierarchical representations are included. A
standard generic triangulation® has been employed for the polyhedra in PQP.

25



PQP PQP PQP PQP PQP

complexities || (Tol=0.90d) | (Tol=0.50d) || (Tol=0.10d) | (Tol=0.01d) || (Tol=0.001d)
&) 56.6 95.7 95.2 95.0 54.9

6x6 93.3 91.3 86.7 85.5 85.0

5x5 99.0 58.0 97.3 27.0 97.0

6x6 90.8 88.6 86.1 85.5 85.5
1)) 58.1 54.6 53.3 03.3 52.8

6x6 93.5 88.1 85.0 84.6 84.4

)&} 62.7 57.9 53.4 53.4 53.0

6x6 98.5 90.3 84.5 84.2 83.9

Table 2: Runtimes (in milliseconds) of PQP 1.2 tolerance verification algorithm, for dif-
ferent tolerances. Observe that in this particular setting execution times are very similar,
due to very small distances between bounding volumes down to the leaves of the hierarchy.

volume hierarchy (that in the PQP library) is bounded by a sphere, and a spatialized
normal cone is computed for each node (the axis is set to the average normal, and the
cone angle is equal to the maximum angle between the axis and the normals of the faces
contained in the node). The spheres are used at runtime to compute the dual view cone
between two given nodes, and the corresponding normal cones are tested for overlap
with the dual view cone: if no overlap exists, the corresponding portions of the solids
cannot realize a local minimum distance. This information allows to prune away entire
subtrees from further consideration, which may not have been possible using only spatial
information.

This strategy inspires a possible integration scheme of applicability constraints into
a bounding volume hierarchy, by associating feature normals to each node in a straight-

forward way (i.e., a face of a polyhedron is represented by its normal, or a point on the
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unit sphere of orientations, an edge by an arc, and a vertex by a spherical region, again
see?®28 for details). However, some important differences exist between normal cones and
applicability constraints, which have to be taken into account. The first one concerns
complexity: whereas the spatialized normal cones approach involves all the time the same
number of entities (two cones and two spheres), the applicability constraints approach
implies that the deeper the nodes lie in the hierarchy, the less feature normals have to be
tested for intersection (dot-region and arc-arc intersections, involving the feature normals
of the two considered nodes in the hierarchies). Another difference is that the applicability
constraints remain constant as long as the relative orientation of the polyhedra does not
change (and even for slight changes in the orientation, more on this later), whereas the
dual view cones have to be recomputed also if the relative position changes. This suggests
two possible strategies: to compute all feature normal intersections at the root nodes and
then propagate the results (i.e., discarding pairings between nodes of the hierarchies that
are not linked to common intersections), or to compute these intersections only at the
deeper levels of the hierarchies, where only few feature normals are involved. The first
option entails the burden of updating the information concerning applicability of con-
tacts along the entire hierarchy when significant orientation changes occur, whereas the
second implies to determine at which depth the tradeoff between the cost of determining
applicable constraints and the possible pruning of nodes will maximize the savings.
Another possibility consists in integrating the orientation-based pruning in a spatial

30-32 Further subdivisions of given regions, and

partition scheme, like octrees or BSP-trees.
the corresponding proximity queries, can be avoided if the portions of the objects that are

inside these regions display no applicable contacts. Again, to determine at which level of
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space subdivision (probably dependent on the involved sizes of the remaining portions of
the polyhedra) it is worthwile to consider applicability constraints is not a trivial issue and
deserves further research. The widely used concepts of spatial and temporal coherence
should also be considered when designing a smart procedure for updating the applicable

constraints.

5 Conclusions

A well-established interference detection predicate has been turned into a lower distance
bound by just replacing basic predicates and boolean connectors by corresponding con-
tinuous functions. The correctness of this bound has been proven both with and without
a preprocessing step to lower the cost of computing it.

The preprocessing exploits the relative orientation of the polyhedra to discard features
which cannot realize the minimum distance. Thus, it is complementary to the usual
approaches based on bounding volume hierarchies.

Experimental results have shown that the mentioned orientation-based preprocessing
not only speeds up the computation, but also improves the result, i.e. a tighter lower
bound is obtained.

The results of the preprocessing are valid for a given relative orientation of the poly-
hedra. If for some reason the lower distance bound has to be recomputed after a period
of time where the orientations may have changed, the preprocessing has to be performed
again. This limitation may be overcome by further research. If the movements’ law is

known in advance, this can be done by determining a good parameterization of the ro-
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tational part. Then, an efficient way to subdivide the domain of this parameter has to
be found, such that the set of applicable contacts remains unchanged in each one of the
intervals resulting from the subdivision.

The possibility of combining an orientation-based strategy like the one presented here
with a hierarchy of bounding volumes, like in PQP or SWIFT++, or a spatial partition
scheme, exploiting their benefits both in distant as well as in nearly touching situations,

deserves further research.
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