
Using PSOMs to Learn Inverse Kinematics
Through Virtual Decomposition of the Robot

Vicente Ruiz de Angulo and Carme Torras

Institut de Robòtica i Informàtica Industrial (CSIC-UPC)
Llorens i Artigas 4-6, 08028-Barcelona, Spain.

{ruiz, torras}@iri.upc.es,
WWW home page: www-iri.upc.es

Abstract. We propose a technique to speed up the learning of the in-
verse kinematics of a robot manipulator by decomposing it into two or
more virtual robot arms. Unlike previous decomposition approaches, this
one does not place any requirement on the robot architecture and, thus,
it is completely general. Parametrized Self-Organizing Maps (PSOM) are
particularly adequate for this type of learning, and permit comparing re-
sults obtained directly and through the decomposition. Experimentation
shows that time reductions of up to two orders of magnitude are easily
attained.

1 Introduction

Neural networks have proved useful for learning the inverse kinematics of robot
manipulators, either lacking a well-defined model or needing on-line recalibration
while functioning. The main shortcoming is the large number of training samples
(i.e., robot movements) required to attain an acceptable precision [2, 3].

Several attempts have been made at reducing the number of required sam-
ples, among them the use of hierarchical networks [4, 10], the learning of only
the deviations from the nominal kinematics [5], and the use of a continuous
representation by associating a basis function to each knot [9].

In [6, 7] we proposed a practical trick that can be used in combination with
all the methods above. It consists in decomposing the learning of the inverse
kinematics into several independent and much simpler learning tasks. This was
done at the expense of sacrificing generality: the procedure works only for some
robot models subject to certain types of deformations. Specifically, the procedure
assumes that the last three robot joints cross at a point, a condition satisfied by
some classic robot architectures.

Here we present another decomposition technique for learning inverse kine-
matics that is not limited by the above assumption. While being more general,
it still retains the main advantage of the trick above: The input dimensionality
of each of the tasks resulting from the decomposition is half that of the origi-
nal one. Thus, for a given desired accuracy, if the number of training samples

II

required to learn inverse kinematics directly is O(nd), through the decomposi-
tion it reduces to O(nd/2). This yields an enormous reduction in the number of
samples required for high-precision applications.

The paper is structured as follows. In the next section we describe the pro-
posed decomposition of the inverse kinematics mapping. Section 3 explains how
the workings of two parameterized self-organizing maps (PSOMs) encoding the
kinematics of the component virtual robots can be combined to provide the in-
verse kinematics of the original robot. The following two sections are devoted
to the training scheme and the way to retrieve the kinematics from the compo-
nent PSOMs, respectively. In Section 6, some illustrative experimental results of
learning with and without the decomposition are presented, permitting to quan-
tify the savings obtained. Finally, some conclusions and prospects for future work
are put forth in Section 7.

2 Kinematics Decomposition

The technique described here is based on the idea of decomposing the kinematics
of a serial manipulator into those of several “virtual robots”. The advantage of
the approach is that, since the component robots are much simpler than the
original one, the learning of their inverse kinematics requires less sampling points
to be acquired.

We will explain the technique using only two virtual robots (see Fig. 1).
The extension to more virtual robots is straighforward. Let θ = (θ1, θ2...θn) and
T1, T2, ..., Tn be the joints and the associated transformation matrices, respec-
tively, of the real robot. To connect the two robots we select a reference frame
A rigidly linked to Ak, the reference frame of joint k. Thus, A = AkAc, where
Ac is a constant matrix. It can be, for example, a reference frame centered on
any point I of link k. Ideally k = n/2.

The first virtual robot, or robot A, has k joints ζ = (ζ1, ζ2, ..., ζk), and their
associated transformation matrices are T1, T2, ...Tk−1, TkAc. The second robot,
or robot B, is composed of n−k joints µ = (µ1, .., µn−k) with associated reference
matrices T−1

n , T−1
n−1, ...T

−1
k+2, (Tk+1Ac)−1.

We could consider that we have virtually broken the original robot into two
pieces, exactly at point I of link k. Robot A is the first piece of the robot and has
its end-effector at the extreme of the broken link. Robot B is the other piece of
the original robot, the base of robot B being the original end-effector (translated
and rotated to the origin of coordinates), and the end-effector of robot B, the
extreme of the other half of the broken link. The second robot can also be seen
as the remaining of the original robot, inverted and translated to the reference
frame.

By θ = (ζ, µ) we mean

θi = ζi, ∀i = 1...k (1)
θi = µn−i+1, ∀i = k + 1...n (2)

III

θ1

Ι

θ2

θ3

θ4

θ5

θ6

ζ1

ζ2

ζ3

µ3

µ2

µ1

end-effector A

end-effector B

virtual robot A

virtual robot B

Fig. 1. Decomposing the robot manipulator (left) into two virtual robot arms (right).

We denote DKA(ζ) and DKB(µ) the direct kinematics of robots A and B,
respectively. It is easy to see that θ = (ζ, µ) is a valid inverse kinematics solution
for a given position X and orientation Ω of the real robot iff

DKA(ζ) = TR(X, Ω)DKB(µ), (3)

where TR(X, Ω) is the matrix transformation yielding a translation X and an
orientation Ω.

3 Kinematics Composition

The approach consists in creating two neural networks (or any other interpola-
tors) NA and NB approximating the functions DKA(ζ) and DKB(µ) (see Fig.
2). When the joint values of pose (X, Ω) are required, a search in the inputs of
the two networks is carried out to find values of ζ and µ satisfying (3) as much as
possible. This can be done by imposing a common cost function to be minimized
in (ζ, µ) such as

(NA(ζ)− TR(X, Ω)NB(µ))2, (4)

or by decomposing the output of the networks into two components: position
(NAp, NBp) and orientation (NAo, NBo), and then minimizing:

(NAp(ζ)− (X + NBp(µ)))2 + (NAo(ζ)− (Ω NBo(µ)))2. (5)

IV

Network NA Network NB

ζ1,ζ2,ζ3 µ1,µ2,µ3

–(NA p (ζ) (X + NB p (µ))) 2 + (NA o(ζ) – (Ω NB o(µ))) 2

NA p (ζ), NA o(ζ) NB p (µ), NB o(µ)

Fig. 2. The workings of the two networks are linked through the cost function at the
top.

To facilitate the search we require the output of the neural networks to be
differentiable with respect to the input. We consider that the memory-based
neural networks are especially well suited to our application, since they use
stored function points to build the approximation of the function. On the one
hand, they allow a quick search among the stored points to find a good starting
point for continuous minimization. On the other hand, we can apply TR(X, Ω)
to the stored points of network NB, so that the whole approximation of the
function gets translated and rotated, becoming NB′. In this way, the function
to be minimized becomes (NA(ζ)−NB′(µ))2, whose derivatives are more easily
obtained.

A Parametrized Self-Organized Map (PSOM) [9] is the type of network bet-
ter suited to our requisites. It approximates a function using a regular grid of
sampled points. Because of its excellent interpolation capabilities, the required
number of points is very small. Of particular interest to us is that PSOMs treat
input and output variables in the same way. This means that it is as natural
to ask which output corresponds to a given input as asking which input corre-
spond to a given output. Therefore, our search in the input variables is naturally
addressed and embedded in the framework of these networks.

4 Learning the Inverse Kinematics of the Virtual Robots

Usual inverse kinematics learning requires the capability to observe the position
and orientation of the robot end-effector, represented by the transformation ma-

V

trix M . Our method requires also knowing the position and orientation of the
point I, encapsulated in the transformation matrix MI .

Every time the robot performs a movement (even during working operation),
a sampling point for each of the virtual robots can be obtained. The learning
amounts to supplying virtual robot A with a sampling point consisting of an
input ζi = θi, i = 1...k and an output MI . For robot B the sampling point has
as input µi = θn−i+1, i = 1...n−k and as output M−1MI . We could understand
this as moving the whole robot B “freezed” in its current configuration to the
place it is supposed to be, before extracting its kinematics sample point.

When using PSOMs to learn the kinematics of the virtual robots, the move-
ments are generated following a regular grid in the space of joint angles.

5 Computing Kinematics with PSOMs

Once trained, a PSOM works by putting some constraints on a subset of the
variables of the system (input or output), for example fixing them to a desired
value. The system then carries out a quick optimization aimed to find a point of
the approximated input-output manifold satisfying the constraints or, if impos-
sible, the closest one to satisfying them. The starting point of the process is the
stored point that best satisfies the constraints. From it, an iterative minimization
procedure is launched, which finishes in a few steps.

For PSOMs trained on the kinematics of a robot, to get the inverse kinematics
we simply fix the position and orientation variables and we let the minimiza-
tion get the point in the interpolating surface with the desired pose values, the
remaining components of the point are taken to be the result. To obtain the
inverse of the real robot using the PSOMs for the virtual robots, we first trans-
form the points stored in NB with the desired pose, as explained in Section 3.
Afterwards, we look for a good starting point for the minimization by finding
the closest pair (in pose space) between the points stored in NA and the trans-
formed points in NB. Let (A0), B0)) be this closest pair. A minimization step
is then carried out in NA with B0) as target pose, and another step is done in
NB with A0) as desired pose. The result of the step in NA and NB are two
points whose pose components are A1), and B1), respectively. These points will
be the starting point for the following steps in which the desired poses for NA
and NB will be B1) and A1), respectively. More iterations are performed in the
same way, until Ai) and Bi) are closer than a certain threshold. Then we extract
the inverse kinematics of the real robot by concatenating the joint components
of the last obtained points.

6 Experiments

The experiments have been executed in a new general simulation environment
developed at our institute, which allows the visualization of any serial manip-
ulator. The only input needed for the simulator is a Denavit-Hartenberg table,

VI

from which the graphical model is created using a uniform link and joint repre-
sentation.

We used a PSOM variant known as LPSOM. This model builds a PSOM ex-
tracting for each query a subgrid of the sampling grid, which is centered on the
closest point to the query. The representation of pose orientation has been thor-
oughly studied and different alternatives have been compared experimentally [8].
There exist many possible representations, but none is completely satisfactory.
For example, the Euler representation is very compact, but lacks continuity. This
drawback affects also other in principle good candidate representations such as
quaternions. The classical 3× 3 rotation matrix is continuous but not compact.
The solution was to select a subset of elements of the standard rotation matrix
that determine it. The five elements in the last column and row are good in
general, although not perfect because the matrix is not determined in one point
(when the common element of the last row and last column takes a value of
0). Therefore, it is safer to use 6 elements, the last two columns of the rotation
matrix, which completely determine it.

We have chosen the well-known PUMA robot to validate our technique.
The experiments were carried out using a very large workspace, allowing ranges
for the six joints [1] as follows: [-150,-35],[-215,-100],[-35,80],[-110,5],[-100,15],[-
100,15]. We trained one LPSOM in a classical way, by generating samples of the
kinematics of the robot in a regular grid in the joint space covering the workspace
above. Then we moved the robot to the different configurations represented in
the grid to obtain the associated positions and orientations. Thus, each knot in
the grid requires one movement. The results are shown in Table 1. The units are
millimeters and radians.

Table 1. Classic algorithm.

number of position position orientation orientation
movements mean error stdev. error mean error stdev. error

64 476 229 0.927 0.635
729 46 21 0.101 0.049
4096 11 17 0.012 0.027

Table 2. Decomposition algorithm.

number of position position orientation orientation
movements mean error stdev. error mean error stdev. error

8 377 236 0.770 0.653

27 48 42 0.092 0.045

64 10 35 0.016 0.059

125 3.6 27 0.005 0.049

216 2.1 8.3 0.002 0.011

343 1.6 6.4 0.002 0.014

512 0.9 2.9 0.002 0.021

VII

In the experiment to test our decomposition approach, we used two smaller
PSOMs, one for each of the two virtual robots A and B. The corresponding
regular grids were also generated. In this case, with only one movement of the
robot, we get the required information for one knot of robot A and another knot
of robot B. Table 2 shows the results. The comparison of both tables reveals
that, for the only number of points in common (64), the averages in position
and orientation are around 50 times more precise for the decomposition algo-
rithm. We note also that the limits of physical accuracy of the manipulator are
approximately reached with 512 movements with the decomposition algorithm,
whereas it was impossible with our computer memory resources (allowing grids
of up to 262,144 points) to reach precisions under 1 mm and .01 radians with
the classic procedure.

7 Concluding Remarks and Future Work

The purpose of this paper is to propose a technique to learn inverse kinematics
(IK) with a reasonable number of movements when high accuracy is required.

Unlike our previous work on IK learning through function decomposition [6,
7], the technique here proposed doesn’t place any restriction on the type of robot
architecture to which it can be applied. The kinematics of any serial manipulator
undergoing whatever deformation can be learned with this technique. However,
a new “sensorial” requisite must be fulfilled: the reference frame attached to a
point in an intermediate link of the robot must be known using some sensing
system. We think that this is not a shortcoming, since learning IK with any
procedure requires anyway a sensorial system to determine the position and
orientation of the gripper.

One of the most promising applications of our technique is to flexible robots.
Since it reduces the dimensionality of the functions to be learned from 6 to 3, it
is still affordable to include the load change as an extra variable and still have
quick learning.

In addition to learning efficiency, our technique has other advantages over
classic IK learning. For instance, it allows the robot to learn to move in the
complete workspace without actually moving everywhere, and to approach risk
zones only after learning has been successfully completed.

Among the tasks left for future work, we can mention testing the extension
of this framework to more than two virtual robots. Also, we think that appro-
priately weighting the learning of the position and orientation of the two virtual
robots can further improve the results. The inaccuracies in the interpolated po-
sition of the virtual subrobots are simply added (vectorially) in the composed
robot. Instead, inaccuracies in the orientation components of the subrobots re-
sult in orientation inaccuracies of the same order in the composed robot, but
also add a possibly large error component in position.

An open issue common to all the approaches to IK learning is the representa-
tion of orientation. We think that the goodness of representations for orientation
can be evaluated with respect to three criteria: 1) compactness, 2) continuity, and

VIII

3) whether interpolated representations are proper representations. Compact-
ness saves memory (especially in memory-based models) and should influence
positively generalization. But continuity (two close orientations in the represen-
tation space should also be close as regards to robot motion) has a more radical
influence in the quality of the interpolation. Finally, it is desirable that every in-
terpolated representation corresponds to a true orientation. Otherwise, one has
the problem of how to map interpolated values onto the representation space, as
it happens with rotation matrices. By choosing as representation six elements
of the rotation matrix, we have given priority to the continuity criterion, while
trying to maximize compactness. Interpolated representations do not correspond
necessarily to points inside the representation space, but this does not seem a
big problem in practice.

Acknowledgements: This work was supported by the I+D project DPI
2004–07358 of the Spanish Ministry of Education.

References

1. K.S. Fu, R.C. González and C.S.G. Lee: Robotics: Control, Sensing, Vision, and
Intelligence. New York: McGraw-Hill (1987)

2. B.J.A. Kröse and P.P. van der Smagt: An Introduction to Neural Networks (5th
edition), Chapter 7: “Robot Control”. University of Amsterdam (1993)

3. T.M. Martinetz, H.J. Ritter and K.J. Schulten: Three-dimensional neural net for
learning visuomotor coordination of a robot arm. IEEE Trans. on Neural Networks
1 (1990) 131–136

4. H. Ritter, T. Martinetz and K.J. Schulten: Neural Computation and Self-Organizing
Maps. New York: Addison Wesley (1992)

5. V. Ruiz de Angulo and Torras C.: Self-calibration of a space robot. IEEE Trans. on
Neural Networks (1997) 8 951-963

6. V. Ruiz de Angulo and C. Torras: Learning inverse kinematics via cross-point func-
tion decomposition. Proc. Intl. Conf. on Artificial Neural Networks (ICANN-02),
Lecture Notes in Computer Science (2002) 2415 856-861

7. V. Ruiz de Angulo and C. Torras: Speeding up the learning of robot kinematics
through function decomposition. IEEE Trans. on Neural Networks (to appear)

8. D. Saune Sánchez: Recalibración de un brazo robot mediante técnicas de descom-
posición de la cinemática. Proyecto final de carrera, Departament LSI, Universitat
Politècnica de Catalunya (2003)

9. J. Walter and H. Ritter: Rapid learning with parametrized self-organizing maps.
Neurocomputing (1996) 12 131-153

10. J. Walter and K.J. Schulten: Implementation of self-organizing neural networks for
visuo-motor control of an industrial arm. IEEE Trans. on Neural Networks (1993) 4

