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Abstract. In this article, scale and orientation invariant object detec-
tion is performed by matching intensity level histograms. Unlike other
global measurement methods, the present one uses a local feature de-
scription that allows small changes in the histogram signature, giving
robustness to partial occlusions. Local features over the object histogram
are extracted during a Boosting learning phase, selecting the most dis-
criminant features within a training histogram image set. The Integral

Histogram has been used to compute local histograms in constant time.

1 Introduction

Color histograms are often used as local features for object identification and
tracking [1, 2], specially, given its invariance to pose change. However its main
drawback is its sensitivity to illumination conditions. Schiele and Crowley [3]
have extended the idea of representing the object by histograms, incorporating
other local image features like the gradient magnitude, orientation and lapla-
cian, resulting in a multidimensional histogram representation. This approach
performs robust object recognition under different viewing conditions, such as,
orientation, scale and view points changes.

With the propose of attaining object detection for real time applications,
many methods have arisen that tackle the feature computation cost. One simple
and effective method is based on the use of integral images. Viola and Jones [4]
presented their integral image based on accumulation of pixel intensities over
the image axes. Other extensions have been proposed to calculate other local
properties efficiently. Villamizar et al [5] and Porikli [6] developed the Integral
Histogram, with which is possible to compute rapidly any local histogram inde-
pendently of its size and location.

2 Proposed Method

In this paper we combine the benefits of speed from the integral image compu-
tation with the invariant properties that color histograms give, and build on top



−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b)

0 5 10 15 20 25 30
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(c)

Fig. 1. Haar features a) sign + b) sign − c) Haar description

of our previous work on Boosting algorithms to produce a fast and robust object
recognition system. The major benefit of the proposed method relies on its ro-
bustness to partial occlusions, since the histogram matching is performed locally,
using a robust boosted classifier based on the combination of local features.

The work reported here introduces a novel multiscale unidimensional his-
togram representation based on a linear combination of Haar features, that fol-
lows the spirit of other typical feature sets learned via Boosting. These his-
tograms are efficiently computed using our previously reported integral his-
togram image [5] and we compare on its use for object detection against the
Swain and Ballard histogram intersection metric.

2.1 Local Features

We propose to describe objects by means of intensity level histograms, in order
to achieve viewpoint invariance [1, 3]. However, our similarity measurement relies
on a linear boosted classifier that uses Haar local features over the histogram
signature. Histogram matching is carried out locally.

Those local features that are more discriminant during the Boosting learning
phase are selected as weak hypothesis or classifiers, and their linear combination
gives a strong hypothesis, called strong classifier. The Haar local features showed
in Figure 1 represent a simple and suitable form to describe a histogram signal.
They encode the inflexions in the histogram at any location, width, and sign.
Consequently, the object can be modelled as a Haar decomposition of its his-
togram signature using the more relevant coefficients (see Figure 1c). Intensity
level histograms are computed from both the patch training images (30x30 pix-
els) for the Boosting stage, and patches extracted from test images.

2.2 Boosting Classifier

Feature selection is performed via AdaBoost [7]. AdaBoost extracts in each itera-
tion the weak classifier (feature width, location and sign) that best discriminates
objects from background training histogram images. A weak classifier can be ex-
pressed as

h(s) =

{

1 : s ∗ f > t

0 : otherwise
, (1)



where s is a training sample histogram, f is the feature being tested, with all
its parameters (width, location and sign), ∗ indicates the convolution operation,
and t is the response threshold. The algorithm selects the most discriminant
weak classifier h, as well as its contribution α in classifying the entire training
set, as a function of the classification error ǫ.

α =
1

2
ln

1 − ǫ

ǫ
(2)

At each iteration, the algorithm also updates a set of weights over the train-
ing set. Initially, all weights are set equally, but on each round, the weights of
missclassified samples are increased so that the algorithm is forced to focus on
such hard samples in the training set the previously chosen classifiers missed.
In a certain way, the technique is similar to a Support Vector Machine, in that
both search for a class separability hyperplane, although using different distance
norms, l2 for SVMs, and l1 for boosting [8]. The dimensionality of the separating
hyperplane in AdaBoost is given by the number N of weak classifiers that form
the strong classifier:

H(s) =

{

1 :
∑N

i=1
αihi(s) ≥

1

2

∑N

i=1
αi object

0 : otherwise no-object
. (3)

2.3 Integral Histogram

An integral image is a representation of the image that allows fast computation
of features because it does not work directly with the original image intensities.
Instead, it works over an incrementally built image that adds feature values
along rows and columns. Once computed this image representation, any one of
the local features can be computed at any location and scale in constant time
[4].

Extending the idea of having cumulative data at each pixel in the integral
image, we have proposed to store on it the histogram data instead of intensity
sums [5]. The integral histogram stores intensity level histograms which, once
constructed, allow for the computation of histogram within a rectangular area
in constant time.

The value of the integral histogram s at coordinates u, v contains the intensity
histogram of the region above and to the left of u, v, inclusive,

s(u, v) =
∑

i≤u,j≤v

s(i, j) . (4)

then, it is possible to compute for example, the intensity histogram in a rect-
angular region, called Area, simply by adding and subtracting the cumulative
histograms at its four corners in the integral histogram representation (see figure
2),

histogram(Area) = s(A) + s(D) − s(B) − s(C) (5)



Fig. 2. The integral histogram.

Furthermore, the construction of the integral histogram is computed iteratively
with

s(u, v, bin) = bin(I(u, v))+ s(u− 1, v, bin)+ s(u, v− 1, bin)− s(u− 1, v− 1, bin)
(6)

where

bin(I(u, v)) =

{

1 : I(u, v) ∈ bin

0 : otherwise
(7)

3 Object Detection

We have decided to compare our proposed method with the known Swain and
Ballard method [1] in terms of classification. The tests are based on patch images
of both object and background outdoor scenes. The Swain and Ballard color
intersection metric is defined as

⋂

(H, T ) =
m

∑

i=1

min(H(i), T (i)) (8)

where H(i) is the new class test histogram, T (i) the reference histogram asso-
ciated to the object image and m the number of bins. This method makes the
comparison with such specific object histogram H(i), that is, it only uses one
canonical image to perform object detection.

Conversely, our method performs a object detection in a local manner, taking
into account possible changes in the histograms, due to small object translation,
non uniform illumination, scale and partial occlusions. As the learning process is
carried out over a set of training histogram images, the selected weak classifiers
become robust to small image transformations present in the training set. Some
of the training histogram images that have been used for our proposed method
are shown in the Figure 3a-l.
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Fig. 3. Training set images. a-f) Object g-l) Background m-r) Occluded object

The first experiment consists in applying the measurement over a validation
set of 30 object patch images. In the proposed method, we required a training
set of 50 object images and 100 background images. The number of bins selected
was of 12 as tradeoff between reliability and computation burden. The results
appear in table.

The second experiment is carried over 300 background patch images, ex-
tracted from outdoor and indoor scenes, (none with the object). This test is
performed to show the method performance to background scenes and its dis-
crimination. One false positive is detected for our method (figure 4).

The third experiment was aimed at evaluating the descriptor robustness to
mild occlusions. The table shows the results for the occluded object shown in
Figure 3(m-r). Thanks to the local matching property of the proposed method,
the correct detection is high.

Method Correct False negatives False positives Test
Proposed method 96% 4% 0% Validation
Swain & Ballard 93% 6% 0%
Proposed method 99% 0% 1% Background
Swain & Ballard 85% 0% 15%
Proposed method 90% 10% 0% Occlusions
Swain & Ballard 73% 27% 0%

The detection is performed by applying the strong classifier H(s) over the
entire test image, at every location and scale. Therefore the use of the integral
histogram is of utmost importance in this hard task.

Some detection results are shown in Figure 5. We can appreciate that the
detection is achieved even when the object presents several scales, locations and
rotations in the plane.
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Fig. 4. False positive a) Object image b) Object histogram c) False positive patch d)
False positive histogram
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Fig. 5. Object detection a) Box object b-e) Object detection



4 Conclusions

We have presented an appearance method to perform object detection invariant
to object scale and orientation changes, and robust under partial occlusions. The
classification rule is based on Haar local features extracted during a Boosting
training phase, giving a local measurement that accounts for small changes in
the object histogram signature. In order to reduce the computational cost of
performing object detection, the integral histogram has been incorporated.
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