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Abstract. A Reinforcement Learning problem is formulated as trying to find the action policy that maximizes the 
accumulated reward received by the agent through time. One of the most popular algorithms used in RL is Q-
Learning which uses an action-value function q(s,a) to evaluate the expectation of the maximum future cumulative 
reward that will be obtained from executing action a in situation s. Q-Learning, as well as conventional RL 
techniques, is defined for discrete environments with a finite set of states and actions. The action-value function is 
explicitly represented by storing values for each state-action (s,a) pair. In order to reach a good approximation of the 
value function all the (s,a) pairs must be experienced many times but in practical applications the amount of 
experience for learning to take place is unfeasible. Therefore, the value function must be generalized to infer in 
situations never experienced so far. The generalization problem has been widely treated in the field of machine 
learning. Supervised learning directly treats this issue and many generalization techniques have been developed in 
this field. Any of the representations used in supervised learning could, in principle, be applied to RL. But there are 
some important issues to take into account that make good generalization in RL very hard to achieve. One of the most 
remarkable is that the value function is learned while represented. In this work we propose a RL approach that uses a 
new function representation of the Q function that allows good generalization by capturing function regularities into 
decision rules. The representation is a kind of Decision List where each rule configures a subspace of the state-action 
space and provides an approximation of the Q function in its covered region. Rule selection for action evaluation is 
given by the rule with both, good accuracy in the estimation and high confidence in the related statistics. 

 

1. Introduction 
Task-achieving autonomous behaviour in an AI agent able to perceive its environment through 
sensors and execute actions requires it to be able to select an appropriate action in each situation 
it faces. A function that maps the situations perceived by the agent to a probability of selecting 
an action is called a policy.  

Specifying a policy for an agent to achieve a complex task may become very hard or almost 
impossible if it has to be done by the user. In these cases, a better approach may be to let the 
agent find a policy by itself by only receiving from the environment a reward signal that roughly 
indicates how the action results for the task, but does not indicate how good the action is with 
respect to the other possible actions. In order to decide which action to execute the problem is 
two fold; first, the agent must learn how good is each action for the task by means of the reward, 
and second, decide which action to execute by comparing the goodness of each action. This 
learning paradigm is called Reinforcement Learning [Sutton,98]. 

A RL problem is formulated as trying to find the policy that maximizes the accumulated reward 
received by the agent through time. One of the most popular algorithms used in RL is Q-
Learning [Watkins,92], which uses an action-value function q(s,a) to evaluate the expectation of 
the maximum future cumulative reward that will be obtained executing action a in situation s. 
The goal of Q-Learning is to incrementally approximate this action-value function through 
experience during the learning process. Given a good enough approximation of the action-value 
function, an optimal policy is obtained by selecting the action a that maximizes q(s, a) in the 
current situation s. 

Q-Learning, and conventional RL techniques, is formulated for discrete environments with a 
finite set of states and a finite set of actions [Sutton,98]. The action-value function is explicitly 
represented by storing values for each state-action (s,a) pair. In order to reach a good 



approximation of the value function all the (s,a) pairs must be experienced many times. But in 
practical application the number of (s,a) pairs is usually very large or even infinite (like in 
continuous environments), and learning by experience with conventional Q-learning is 
unfeasible. To make it applicable, the value function must be generalized to infer the values of 
those (s,a) never experienced using the values of the experienced (s,a) pairs. 

The generalization problem has been widely treated in the field of machine learning where 
inferences have to be done under a large domain [Mitchel,97]. Supervised learning directly treats 
this issue and many generalization techniques have been developed in this field. Learning a 
concept, learning to classify new examples, finding a suitable hypothesis, all refer to learn a 
description of a function that enables to infer values for given inputs. This description should be 
made with a compact representation that permits good approximation with low computational 
cost. Different learning techniques use different representations. Some of them are neural 
networks [Coulom,02], [Buck,02], induction trees [Quinlan,86], [McCallum,95], feature based 
[Aha,91], [Bloedorn,98], [Miyamoto, 99]. 

Any of the representations used in supervised learning could, in principle, be applied to RL. But 
there are some important issues to take into account. One of the most important is that the value 
function is learned while represented. This leads to many convergence problems and makes good 
generalization in RL very hard to achieve [Kaelbling, 96]. 

In this work we propose a RL approach that uses a new function representation of the action-
value function that allows good generalization by capturing the function regularities in a flexible 
and efficient way. 

2. New Representation – General Outlines 
The key idea of the proposed approach is to describe the function using the dependency with 
respect to its variables. After describing the proposed representation, we give some definitions 
that we later use in the explanation.  

Definition. δ-irrelevant variable for a function. 

Given a function f: X→ℜ, with X defined by the Cartesian product X= V1×V2×…×Vn where the 
set Vi ⊆ ℜ, i=1,..,n. We use the notation vi to indicate any particular element of Vi, and is said to 
be a variable of the function f. Therefore, an element of the domain X is indicated as 
x=(v1,v2,…,vn). We say that a variable vi of X is δ-irrelevant for the description of f (from now on 
δ-irrelevant for f), if the function f has a variation less than δ (δ-invariance) with respect to that 
variable, i.e.,  

If ∀ v1,…,vi-1,vi+1,…,vn is |f(v1,…,vi-1,vi1,vi+1,…,vn) -f(v1,…,vi-1,vi2,vi+1,…,vn)|≤δ for any two 
values vi1 and vi2 of the variable vi. 

If vi is δ-irrelevant for f then it is possible to find a function g:X’→ℜ, with X’= V1×…×Vi-1× 
Vi+1…×Vn, so that ∀ x∈X is |f(x)-g(x’)| ≤δ, where x’=( v1,…,vi-1,vi+1,…,vn). 

Definition.  δ-irrelevant variable in a region. 

Given a function f: X→ℜ, we say that a variable vi of X is δ-irrelevant in a region, if the 
function f is δ-invariant with respect to that variable in that region.  

Definition. δ-approximation. 

Given a function f: X→ℜ, with X ⊂ ℜn, and a function g: X→ℜ with X ⊂ ℜn, which 
approximates f in X. We say that g δ-approximates f when |f(x)-g(x)| ≤δ, ∀ x∈X. 

Definition. Rule. 
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Given a set X defined by the Cartesian product X= V1×V2×…×Vn where the set Vi ⊆ ℜ, i=1,..,n. 
We define a rule as a function r: Xr→ℜ where Xr⊆X. A rule is completely described by 
specifying Xr and the function itself. We say that Xr is the represented region of r. 

Definition. Rule Representation. 

Given a set X defined by the Cartesian product X= V1×V2×…×Vn where the set Vi ⊆ ℜ, i=1,..,n. 
We say that a set of rules R={r1, r2, …, r|R|} is a rule-based function representation, when the 
regions represented by the rules determine a covering C={Xr1, Xr2,…,Xr|R|} of X, and when ∀i,j| 
Xri∩Xrj≠Ø,  x∈Xri∩Xrj⇒ ri(x)=rj(x). 

3. Generalization using Rule Representation  
This section introduces an approach that uses the rule representation of a function to perform 
generalization taking benefits of the irrelevancies of the variables. 

We begin by considering functions that are stationary and deterministic with finite discrete 
domains, and we suppose that we have complete knowledge of the function. We consider a 
function f: X→ℜ, with X= V1×V2×…×Vn where each set Vi, has a finite number of elements vij, 
j=1,..,|Vi|, that we call features. We use the notation vi to indicate any particular element of Vi, 
and is said to be a variable of the function f. 

3.1. Rule description 
In this approach we define a rule r: Xr→ℜ as a constant value function. The description of the 
region Xr represented by a rule r is done using a subset of features Xr=(vij,...,vkl), where there are 
no two features of the same variable.  

In Figure 1 there is an illustrative example of three regions described using a subset of features 
for a simple f. Note that, a variable is omitted in the description of a region when the region 
involves all the values for that variable. 

 

            

        0 4 5  

        2 2 2 Xr1=(v12) 

        0 5 4  

 v21 v22 v23         

v11 0 4 5     0 4 5  

v12 2 2 2     2 2 2 Xr2=(v21) 

v13 0 5 4     0 5 4  

            

        0 4 5 Xr3=(v11, v22) 

        2 2 2  

        0 5 4  
Figure 1. Three regions described using a subset of features for a simple f 
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3.2. Rule Representation 
 

A good approximation of a function f: X→ℜ is a necessary condition to perform generalization 
but it is not sufficient. For instance, we can make an accurate approximation by representing 
each point of the function with a rule, where the region represented is specified by the 
coordinates of the point and the constant value approximation is the actual value of the function 
for that point. This is the same case as the tabular representation of a function, where no 
generalization at all takes place. In order to perform generalization we also have to describe f 
using a reduced description.  

Using rules a generalization of f could be done if the rule representation δ-approximates f in X 
and the information needed to specify the regions represented by the rules is lesser than 
considering a rule representation where each element of X is represented by a different rule. In 
this first approach a rule r is the mean value of f in Xr. 

Table 1A shows a rule representation of the example function that permits generalization. For 
instance, the function could be represented by r4 in three points by the region described by Xr4. 

There is another way of specifying the region represented by a rule that permits an important 
reduction in the description of f. It consists in specifying the points represented by a rule using 
other rules region description.  

Suppose that we have a region XL that involves many points of the domain, where f presents a 
dispersion greater than δ for some points Xhigh⊂ XL with respect to the mean value of f in XL. 
Then, a rule can not make a δ-approximation of the function in XL and many rules should be 
considered. But, we can reduce the number of rules needed and still use the description of XL 
using a layered structure that permits an efficient specification of the region represented by a 
rule. Each layer L contains a description of a region of the domain using a subset of features. 
Each layer L has a rule r associated. The region Xr represented by a rule r is then determined by 
the description of the region in the layer XL and the descriptions of the regions of the upper 
layers in the structure. This is done by making that for a given point x the function f(x) is 
approximated using the value of the rule r associated to the upper layer that contains x. 
Therefore, given a set of rules in a layered structure where each layer position is specified using 
natural numbers beginning with 1 from the upper layer, the points Xrj represented by a rule rj 
associated to layer j are, 

 

Xrj = XLj – XL(j+1 ) –…–XL1

 

In table 1B there is an example of rule representation with a layered regions description for the 
exampled function. Note the reduction in the number of rules and in the rules region description 
compared with a non layered description (Table 1A). 

Finally, we can generalize even more with the rule description by specifying some δ>0. Table 1C 
illustrates how a good generalization is reached by setting δ=0.5 in the exampled function. 
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Table 1. Examples of a rule representation for the discrete function in Figure 1. 

A- Not layered description δ=0 B- Layer with δ=0 C- Layer with δ=0.5 

r Xr Points r XL Points r XL Points 

r1(x)=0 (v11, v21)  r1(x)=2 (v12)  rB1(x)=2 (v12)  

r2(x)=4 (v11, v22)  r2(x)=0 (v21)  r2(x)=0 (v21)  

r3(x)=5 (v11, v23)  r3(x)=4 (v11, v21)  r3(x)=4.5 (Ø)  

r4(x)=2 (v12)  r4(x)=5 (v11)     

r5(x)=0 (v13, v21)  r5(x)=5 (v22)     

r6(x)=5 (v13, v22)  r6(x)=4 (v13)     

r7(x)=4 (v13, v23)        

 

4. Generating a Rule Representation by Sampling 
We have already described a rule representation that permits generalization of a finite discrete 
function assuming we have complete knowledge of it. However, RL is a paradigm that learns by 
experience, learning the optimal value function using consecutive observations of its 
approximation without considering any previous knowledge. Therefore, we will now make 
another little step toward the applicability of RL. We present in this section an approach to build 
a rule representation of a function f using consecutive sampling trying to reach a δ-
approximation with a reduced description of f, and without any previous knowledge.  

The function considered is again deterministic and stationary with discrete finite domain f: 
X→ℜ, with X= V1×V2×…×Vn where each Vi has elements vij, j=1,..,|Vi|.  

At the beginning we are optimistic and we suppose that the function admits a rule representation 
with δ-approximation by using a few layers with very simple region descriptions. Therefore, we 

begin by considering ∑
=

=
n

i
iVk

1
 layers where each layer L describes a region represented by one 

different feature. As there is no previous knowledge of f the layers are initially arranged in an 
arbitrary order.  

For every point x∈X there is a set of layers AL that involve x in their region description. We 
denote AL as the active set of layers in x. 

Each L has a rule associated rj with an estimation of the mean value mrj of f in x∈Xrj. In order to 
permit a better evaluation of the approximation made, each rule has also associated an estimation 
of the variance e2

rL of f in XrL. The number of samples nrL used to feed the estimations is also 
stored. With these statistics it is possible to estimate the probability distribution of the value of f 
in XrL. This probability is estimated using a normal probability distribution with mean mr and 
variance e2

r.  

4.1. Learning Approach 
The information available to find a reduced rule representation with δ-approximation of f is only 
given by the sampled values. The learning approach should try to refine the approximation for 
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the current rule representation using the value f(xs) of the sampled point xs to update the statistics 
associated to the rules, and evaluate if the rule structure would permit a δ-approximation. If it is 
not possible, new layers should be generated. 

4.1.1. Statistics Update 
Every new sample f(xs), should be used to feed the upper rule in AL that represents f in xs. 
Nevertheless, the initial set of layers is arbitrarily arranged and the approach attempts to find the 
arrangement that permits the best approximation. It is expected that the rule that better 
approximates the function in xs would finally represent f in xs. Then, the updating is performed 
taking into account the approximation made by a rule rather than its position in the layered 
arrangement.  

The approximation made by a rule r in xs is calculated using the estimation of the probability 
distribution of f in Xr. If the distribution is concentrated around f(xs) with a little dispersion, then 
we consider that r represents f in xs with a good approximation. As the value δ determines the 
desired accuracy in the approximation, the approximation made by the rule r is calculated using 
the probability of r(x) in the interval of length 2δ centred in f(xs). This probability is denoted as 
Pr[f(xs)]. The updating is then distributed among the rules in AL in a proportion to Pr[f(xs)]. 

We adopt the criterion that, if a rule has Pr∼1 then it should take almost all the updating because 
it is expected to finally represent f in xs. One way of implementing this is by updating each rule r 
in a proportion given by Pr’=1/(1 - Pr). Then, the proportion of updating considered for each rule 
βr is, 

[ ]
[ ]∑

∈∀

=

LAi
sri

sr
r xP

xP

r
'

'β  

The indeterminacy of Pr’ when Pr=1 is solved by making βr=1 for the corresponding rule. 

4.1.2. Updating Formula 
The update formula we use for the estimations of the mean and variance is the cumulative 
weighted formula, 

)()1( srrrrrr xfmm βαβα +−=  
222 ))(()1( rsrrrrrr mxfee −+−= βαβα  

where αr is the updating coefficient. This formula requires an updating coefficient that decays 
with the number of samples in order to converge to the actual estimated values. We use a simple 
decay equation that fulfils this requirement: an inverse proportion with the number of samples nr. 

),min(1
1

rc
r nn+
=α  

where nc is a critic number of samples. The value nc prevents the updating coefficient from being 
too small and permits a better adaptation when new layers generation affect point representation 
changing the distribution of f in the Xr’s. 

4.1.3. Layer Management 
There is no clear criterion about how layers rearrangement and generation would favour the 
learning algorithm to finally reach the desired convergence. For instance, layer management 
changes the rule representation leading, perhaps, to a better approximation of the function for the 
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sampled point, but the resulting structure could make difficult the algorithm convergence. There 
are many other unsolved questions about layer management. Layer management must be 
carefully studied before defining a method that permits efficient learning. In this section it is 
described a method that constitutes a first attempt to perform layer management in the learning 
process. 

As mentioned before, the upper rule rup in AL gives the approximation of the function for a given 
sampled point xs. If rup has a probability Prup[f(xs)] over a predefined value Pc then we consider 
that the rule representation makes a good approximation of f in xs, and we say that the 
approximation is a δ-approximation with probability Pc (Pcδ-approximation). On the other hand, 
when Prup<Pc we consider that the approximation made is bad when there is high confidence in 
the statistics associated to rup, and that the approximation is weak when there is low confidence 
in those estimations. The confidence in the estimations is given by the number of samples nr 
used to update them. Therefore, we consider a bad approximation when Prup<Pc and nr>nc, and a 
weak approximation when Prup<Pc and nr<nc. 

If the approximation made by the rule representation is bad or weak, a first attempt to improve 
the approximation is made by trying to arrange the layers by the Pr[f(xs)] of the associated rules, 
trying to prevent a damage of other well represented regions. We suppose that a potential 
damage could occur when the reordering of a layer modifies the description of a region Xr for a 
rule r that has low dispersion of the represented values of f. It is considered that a rule r has low 
dispersion when the probability calculated in an interval of 2δ centred in mr is greater than Pc. 

4.1.3.1. Layer Generation 
If the approximation made by rup is bad and there is no possible reordering of the active layers a 
new layer must be generated and placed above the upper active layer. This new layer should 
permit to reach a Pcδ-approximation of the function with the shortest possible description.  

In the proposed approach a new layer is generated by combining the features of the region 
descriptions of two active layers randomly selected from AL. This selection is made preferring 
those whose combination leads to a covered region with the smallest intersection with those 
regions represented by rules with low dispersion placed in lower layers. As in the rearrangement 
case, this is done to prevent potential damage of the other well represented regions. 

4.1.3.2. Layer Elimination 
During the learning process some rules could be generated that finally may result useless for the 
representation and could be eliminated. These rules are those whose regions are completely 
represented by the above rules. 
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