
 Generalization in Reinforcement
Learning with a Task-Related World

Description using Rules

RRI I

Institut de Robòtica i Informàtica Industrial

Alejandro Agostini
Enric Celaya

 June 2006

IRI-TR-06-01

Technical Report

Generalization in Reinforcement Learning with a Task-
Related World Description using Rules

Alejandro Agostini and Enric Celaya

Abstract. A Reinforcement Learning problem is formulated as trying to find the action policy that maximizes the
accumulated reward received by the agent through time. One of the most popular algorithms used in RL is Q-
Learning which uses an action-value function q(s,a) to evaluate the expectation of the maximum future cumulative
reward that will be obtained from executing action a in situation s. Q-Learning, as well as conventional RL
techniques, is defined for discrete environments with a finite set of states and actions. The action-value function is
explicitly represented by storing values for each state-action (s,a) pair. In order to reach a good approximation of the
value function all the (s,a) pairs must be experienced many times but in practical applications the amount of
experience for learning to take place is unfeasible. Therefore, the value function must be generalized to infer in
situations never experienced so far. The generalization problem has been widely treated in the field of machine
learning. Supervised learning directly treats this issue and many generalization techniques have been developed in
this field. Any of the representations used in supervised learning could, in principle, be applied to RL. But there are
some important issues to take into account that make good generalization in RL very hard to achieve. One of the most
remarkable is that the value function is learned while represented. In this work we propose a RL approach that uses a
new function representation of the Q function that allows good generalization by capturing function regularities into
decision rules. The representation is a kind of Decision List where each rule configures a subspace of the state-action
space and provides an approximation of the Q function in its covered region. Rule selection for action evaluation is
given by the rule with both, good accuracy in the estimation and high confidence in the related statistics.

1. Introduction
Task-achieving autonomous behaviour in an AI agent able to perceive its environment through
sensors and execute actions requires it to be able to select an appropriate action in each situation
it faces. A function that maps the situations perceived by the agent to a probability of selecting
an action is called a policy.

Specifying a policy for an agent to achieve a complex task may become very hard or almost
impossible if it has to be done by the user. In these cases, a better approach may be to let the
agent find a policy by itself by only receiving from the environment a reward signal that roughly
indicates how the action results for the task, but does not indicate how good the action is with
respect to the other possible actions. In order to decide which action to execute the problem is
two fold; first, the agent must learn how good is each action for the task by means of the reward,
and second, decide which action to execute by comparing the goodness of each action. This
learning paradigm is called Reinforcement Learning [Sutton,98].

A RL problem is formulated as trying to find the policy that maximizes the accumulated reward
received by the agent through time. One of the most popular algorithms used in RL is Q-
Learning [Watkins,92], which uses an action-value function q(s,a) to evaluate the expectation of
the maximum future cumulative reward that will be obtained executing action a in situation s.
The goal of Q-Learning is to incrementally approximate this action-value function through
experience during the learning process. Given a good enough approximation of the action-value
function, an optimal policy is obtained by selecting the action a that maximizes q(s, a) in the
current situation s.

Q-Learning, and conventional RL techniques, is formulated for discrete environments with a
finite set of states and a finite set of actions [Sutton,98]. The action-value function is explicitly
represented by storing values for each state-action (s,a) pair. In order to reach a good

approximation of the value function all the (s,a) pairs must be experienced many times. But in
practical application the number of (s,a) pairs is usually very large or even infinite (like in
continuous environments), and learning by experience with conventional Q-learning is
unfeasible. To make it applicable, the value function must be generalized to infer the values of
those (s,a) never experienced using the values of the experienced (s,a) pairs.

The generalization problem has been widely treated in the field of machine learning where
inferences have to be done under a large domain [Mitchel,97]. Supervised learning directly treats
this issue and many generalization techniques have been developed in this field. Learning a
concept, learning to classify new examples, finding a suitable hypothesis, all refer to learn a
description of a function that enables to infer values for given inputs. This description should be
made with a compact representation that permits good approximation with low computational
cost. Different learning techniques use different representations. Some of them are neural
networks [Coulom,02], [Buck,02], induction trees [Quinlan,86], [McCallum,95], feature based
[Aha,91], [Bloedorn,98], [Miyamoto, 99].

Any of the representations used in supervised learning could, in principle, be applied to RL. But
there are some important issues to take into account. One of the most important is that the value
function is learned while represented. This leads to many convergence problems and makes good
generalization in RL very hard to achieve [Kaelbling, 96].

In this work we propose a RL approach that uses a new function representation of the action-
value function that allows good generalization by capturing the function regularities in a flexible
and efficient way.

2. New Representation – General Outlines
The key idea of the proposed approach is to describe the function using the dependency with
respect to its variables. After describing the proposed representation, we give some definitions
that we later use in the explanation.

Definition. δ-irrelevant variable for a function.

Given a function f: X→ℜ, with X defined by the Cartesian product X= V1×V2×…×Vn where the
set Vi ⊆ ℜ, i=1,..,n. We use the notation vi to indicate any particular element of Vi, and is said to
be a variable of the function f. Therefore, an element of the domain X is indicated as
x=(v1,v2,…,vn). We say that a variable vi of X is δ-irrelevant for the description of f (from now on
δ-irrelevant for f), if the function f has a variation less than δ (δ-invariance) with respect to that
variable, i.e.,

If ∀ v1,…,vi-1,vi+1,…,vn is |f(v1,…,vi-1,vi1,vi+1,…,vn) -f(v1,…,vi-1,vi2,vi+1,…,vn)|≤δ for any two
values vi1 and vi2 of the variable vi.

If vi is δ-irrelevant for f then it is possible to find a function g:X’→ℜ, with X’= V1×…×Vi-1×
Vi+1…×Vn, so that ∀ x∈X is |f(x)-g(x’)| ≤δ, where x’=(v1,…,vi-1,vi+1,…,vn).

Definition. δ-irrelevant variable in a region.

Given a function f: X→ℜ, we say that a variable vi of X is δ-irrelevant in a region, if the
function f is δ-invariant with respect to that variable in that region.

Definition. δ-approximation.

Given a function f: X→ℜ, with X ⊂ ℜn, and a function g: X→ℜ with X ⊂ ℜn, which
approximates f in X. We say that g δ-approximates f when |f(x)-g(x)| ≤δ, ∀ x∈X.

Definition. Rule.

 2

Given a set X defined by the Cartesian product X= V1×V2×…×Vn where the set Vi ⊆ ℜ, i=1,..,n.
We define a rule as a function r: Xr→ℜ where Xr⊆X. A rule is completely described by
specifying Xr and the function itself. We say that Xr is the represented region of r.

Definition. Rule Representation.

Given a set X defined by the Cartesian product X= V1×V2×…×Vn where the set Vi ⊆ ℜ, i=1,..,n.
We say that a set of rules R={r1, r2, …, r|R|} is a rule-based function representation, when the
regions represented by the rules determine a covering C={Xr1, Xr2,…,Xr|R|} of X, and when ∀i,j|
Xri∩Xrj≠Ø, x∈Xri∩Xrj⇒ ri(x)=rj(x).

3. Generalization using Rule Representation
This section introduces an approach that uses the rule representation of a function to perform
generalization taking benefits of the irrelevancies of the variables.

We begin by considering functions that are stationary and deterministic with finite discrete
domains, and we suppose that we have complete knowledge of the function. We consider a
function f: X→ℜ, with X= V1×V2×…×Vn where each set Vi, has a finite number of elements vij,
j=1,..,|Vi|, that we call features. We use the notation vi to indicate any particular element of Vi,
and is said to be a variable of the function f.

3.1. Rule description
In this approach we define a rule r: Xr→ℜ as a constant value function. The description of the
region Xr represented by a rule r is done using a subset of features Xr=(vij,...,vkl), where there are
no two features of the same variable.

In Figure 1 there is an illustrative example of three regions described using a subset of features
for a simple f. Note that, a variable is omitted in the description of a region when the region
involves all the values for that variable.

 0 4 5

 2 2 2 Xr1=(v12)

 0 5 4

 v21 v22 v23

v11 0 4 5 0 4 5

v12 2 2 2 2 2 2 Xr2=(v21)

v13 0 5 4 0 5 4

 0 4 5 Xr3=(v11, v22)

 2 2 2

 0 5 4
Figure 1. Three regions described using a subset of features for a simple f

 3

3.2. Rule Representation

A good approximation of a function f: X→ℜ is a necessary condition to perform generalization
but it is not sufficient. For instance, we can make an accurate approximation by representing
each point of the function with a rule, where the region represented is specified by the
coordinates of the point and the constant value approximation is the actual value of the function
for that point. This is the same case as the tabular representation of a function, where no
generalization at all takes place. In order to perform generalization we also have to describe f
using a reduced description.

Using rules a generalization of f could be done if the rule representation δ-approximates f in X
and the information needed to specify the regions represented by the rules is lesser than
considering a rule representation where each element of X is represented by a different rule. In
this first approach a rule r is the mean value of f in Xr.

Table 1A shows a rule representation of the example function that permits generalization. For
instance, the function could be represented by r4 in three points by the region described by Xr4.

There is another way of specifying the region represented by a rule that permits an important
reduction in the description of f. It consists in specifying the points represented by a rule using
other rules region description.

Suppose that we have a region XL that involves many points of the domain, where f presents a
dispersion greater than δ for some points Xhigh⊂ XL with respect to the mean value of f in XL.
Then, a rule can not make a δ-approximation of the function in XL and many rules should be
considered. But, we can reduce the number of rules needed and still use the description of XL
using a layered structure that permits an efficient specification of the region represented by a
rule. Each layer L contains a description of a region of the domain using a subset of features.
Each layer L has a rule r associated. The region Xr represented by a rule r is then determined by
the description of the region in the layer XL and the descriptions of the regions of the upper
layers in the structure. This is done by making that for a given point x the function f(x) is
approximated using the value of the rule r associated to the upper layer that contains x.
Therefore, given a set of rules in a layered structure where each layer position is specified using
natural numbers beginning with 1 from the upper layer, the points Xrj represented by a rule rj
associated to layer j are,

Xrj = XLj – XL(j+1) –…–XL1

In table 1B there is an example of rule representation with a layered regions description for the
exampled function. Note the reduction in the number of rules and in the rules region description
compared with a non layered description (Table 1A).

Finally, we can generalize even more with the rule description by specifying some δ>0. Table 1C
illustrates how a good generalization is reached by setting δ=0.5 in the exampled function.

 4

Table 1. Examples of a rule representation for the discrete function in Figure 1.

A- Not layered description δ=0 B- Layer with δ=0 C- Layer with δ=0.5

r Xr Points r XL Points r XL Points

r1(x)=0 (v11, v21) r1(x)=2 (v12) rB1(x)=2 (v12)

r2(x)=4 (v11, v22) r2(x)=0 (v21) r2(x)=0 (v21)

r3(x)=5 (v11, v23) r3(x)=4 (v11, v21) r3(x)=4.5 (Ø)

r4(x)=2 (v12) r4(x)=5 (v11)

r5(x)=0 (v13, v21) r5(x)=5 (v22)

r6(x)=5 (v13, v22) r6(x)=4 (v13)

r7(x)=4 (v13, v23)

4. Generating a Rule Representation by Sampling
We have already described a rule representation that permits generalization of a finite discrete
function assuming we have complete knowledge of it. However, RL is a paradigm that learns by
experience, learning the optimal value function using consecutive observations of its
approximation without considering any previous knowledge. Therefore, we will now make
another little step toward the applicability of RL. We present in this section an approach to build
a rule representation of a function f using consecutive sampling trying to reach a δ-
approximation with a reduced description of f, and without any previous knowledge.

The function considered is again deterministic and stationary with discrete finite domain f:
X→ℜ, with X= V1×V2×…×Vn where each Vi has elements vij, j=1,..,|Vi|.

At the beginning we are optimistic and we suppose that the function admits a rule representation
with δ-approximation by using a few layers with very simple region descriptions. Therefore, we

begin by considering ∑
=

=
n

i
iVk

1
 layers where each layer L describes a region represented by one

different feature. As there is no previous knowledge of f the layers are initially arranged in an
arbitrary order.

For every point x∈X there is a set of layers AL that involve x in their region description. We
denote AL as the active set of layers in x.

Each L has a rule associated rj with an estimation of the mean value mrj of f in x∈Xrj. In order to
permit a better evaluation of the approximation made, each rule has also associated an estimation
of the variance e2

rL of f in XrL. The number of samples nrL used to feed the estimations is also
stored. With these statistics it is possible to estimate the probability distribution of the value of f
in XrL. This probability is estimated using a normal probability distribution with mean mr and
variance e2

r.

4.1. Learning Approach
The information available to find a reduced rule representation with δ-approximation of f is only
given by the sampled values. The learning approach should try to refine the approximation for

 5

the current rule representation using the value f(xs) of the sampled point xs to update the statistics
associated to the rules, and evaluate if the rule structure would permit a δ-approximation. If it is
not possible, new layers should be generated.

4.1.1. Statistics Update
Every new sample f(xs), should be used to feed the upper rule in AL that represents f in xs.
Nevertheless, the initial set of layers is arbitrarily arranged and the approach attempts to find the
arrangement that permits the best approximation. It is expected that the rule that better
approximates the function in xs would finally represent f in xs. Then, the updating is performed
taking into account the approximation made by a rule rather than its position in the layered
arrangement.

The approximation made by a rule r in xs is calculated using the estimation of the probability
distribution of f in Xr. If the distribution is concentrated around f(xs) with a little dispersion, then
we consider that r represents f in xs with a good approximation. As the value δ determines the
desired accuracy in the approximation, the approximation made by the rule r is calculated using
the probability of r(x) in the interval of length 2δ centred in f(xs). This probability is denoted as
Pr[f(xs)]. The updating is then distributed among the rules in AL in a proportion to Pr[f(xs)].

We adopt the criterion that, if a rule has Pr∼1 then it should take almost all the updating because
it is expected to finally represent f in xs. One way of implementing this is by updating each rule r
in a proportion given by Pr’=1/(1 - Pr). Then, the proportion of updating considered for each rule
βr is,

[]
[]∑

∈∀

=

LAi
sri

sr
r xP

xP

r
'

'β

The indeterminacy of Pr’ when Pr=1 is solved by making βr=1 for the corresponding rule.

4.1.2. Updating Formula
The update formula we use for the estimations of the mean and variance is the cumulative
weighted formula,

)()1(srrrrrr xfmm βαβα +−=
222))(()1(rsrrrrrr mxfee −+−= βαβα

where αr is the updating coefficient. This formula requires an updating coefficient that decays
with the number of samples in order to converge to the actual estimated values. We use a simple
decay equation that fulfils this requirement: an inverse proportion with the number of samples nr.

),min(1
1

rc
r nn+
=α

where nc is a critic number of samples. The value nc prevents the updating coefficient from being
too small and permits a better adaptation when new layers generation affect point representation
changing the distribution of f in the Xr’s.

4.1.3. Layer Management
There is no clear criterion about how layers rearrangement and generation would favour the
learning algorithm to finally reach the desired convergence. For instance, layer management
changes the rule representation leading, perhaps, to a better approximation of the function for the

 6

sampled point, but the resulting structure could make difficult the algorithm convergence. There
are many other unsolved questions about layer management. Layer management must be
carefully studied before defining a method that permits efficient learning. In this section it is
described a method that constitutes a first attempt to perform layer management in the learning
process.

As mentioned before, the upper rule rup in AL gives the approximation of the function for a given
sampled point xs. If rup has a probability Prup[f(xs)] over a predefined value Pc then we consider
that the rule representation makes a good approximation of f in xs, and we say that the
approximation is a δ-approximation with probability Pc (Pcδ-approximation). On the other hand,
when Prup<Pc we consider that the approximation made is bad when there is high confidence in
the statistics associated to rup, and that the approximation is weak when there is low confidence
in those estimations. The confidence in the estimations is given by the number of samples nr
used to update them. Therefore, we consider a bad approximation when Prup<Pc and nr>nc, and a
weak approximation when Prup<Pc and nr<nc.

If the approximation made by the rule representation is bad or weak, a first attempt to improve
the approximation is made by trying to arrange the layers by the Pr[f(xs)] of the associated rules,
trying to prevent a damage of other well represented regions. We suppose that a potential
damage could occur when the reordering of a layer modifies the description of a region Xr for a
rule r that has low dispersion of the represented values of f. It is considered that a rule r has low
dispersion when the probability calculated in an interval of 2δ centred in mr is greater than Pc.

4.1.3.1. Layer Generation
If the approximation made by rup is bad and there is no possible reordering of the active layers a
new layer must be generated and placed above the upper active layer. This new layer should
permit to reach a Pcδ-approximation of the function with the shortest possible description.

In the proposed approach a new layer is generated by combining the features of the region
descriptions of two active layers randomly selected from AL. This selection is made preferring
those whose combination leads to a covered region with the smallest intersection with those
regions represented by rules with low dispersion placed in lower layers. As in the rearrangement
case, this is done to prevent potential damage of the other well represented regions.

4.1.3.2. Layer Elimination
During the learning process some rules could be generated that finally may result useless for the
representation and could be eliminated. These rules are those whose regions are completely
represented by the above rules.

5. References
[Aha,91] Aha D. Incremental constructive induction: An instance-based approach. Proceedings
of the Eighth International Workshop on Machine Learning. Evanston, IL. In Lawrence
Birnbaum and Gregg Collins, editors. pp. 117-121. 1991.

[Bloedorn,98] Bloedorn E, Michalski R. Data-Driven Constructive Induction. IEEE Intelligent
Systems 13(2): 30-37. 1998.

[Buck,02] Buck S, Beetz M, and Schmitt T. Approximating the Value Function for Continuous
Space Reinforcement Learning in Robot Control. Proceedings of the IEEE/RSJ IROS 2002.
Lausanne, Switzerland. 2002.

 7

[Coulom,02] Coulom R. Feedforward Neural Networks in Reinforcement Learning Applied to
High-Dimensional Motor Control. ALT 2002: 403-414.
[Kaelbling,96] Kaelbling L, Littman M. and Moore A. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research 4:237–285, 1996.

[McCallum,95] McCallum A. Reinforcement Learning with Selective Perception and Hidden
State. Phd. thesis, Department of Computer Science, University of Rochester, Rochester, NY,
1995.

[Mitchel,97] Mitchel T. Machine Learning. McGraw-Hill, 1997.

[Miyamoto,99] Miyamoto Y. and Uehara K. Improving the Effectiveness of Q-Learning by
Using Feature Construction. IPSJ Transactions on Mathematical Modeling and Its Applications,
Vol. 40, No. SIG9 (TOM2), pp. 62-71. 1999.

[Quinlan,86] Quinlan J.R. Induction of Decision Trees. Machine Learning. 1(1), 81-106. 1986.
[Sutton,98] Sutton R, Barto A. Reinforcement Learning: An Introduction, "A Bradford Book",
MIT Press, 1998.
[Watkins,92] Watkins C, Dayan P. Q-Learning. Machine Learning, 8:279-292, 1992.

 8

	1. Introduction
	2. New Representation – General Outlines
	3. Generalization using Rule Representation
	3.1. Rule description
	3.2. Rule Representation
	4. Generating a Rule Representation by Sampling
	4.1. Learning Approach
	4.1.1. Statistics Update
	4.1.2. Updating Formula
	4.1.3. Layer Management
	4.1.3.1. Layer Generation
	4.1.3.2. Layer Elimination

	5. References

