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Abstract This work presents two main contribu-
tions to achieve robust multiple-target tracking in
uncontrolled scenarios: a novel system which con-
sists on a modular and hierarchical architecture,
and tracking enhancements by on-line building and
updating multiple appearance models. Successful
experimental results are accomplished on complex
real sequences.
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1 Introduction

Multiple human-beings tracking has become an ac-
tive research field. This interest is motivated by an in-
creasing number of potential applications. However,
this still constitutes an open problem far from been
solved. People tracking involves dealing with non-
rigid targets whose dynamics are subject to sudden
changes. In open-world applications, the number of
agents within the scene may vary over time, and nei-
ther their appearance, nor their shape can be specified
in advance. In unconstrained environments, the illu-
mination and background-clutter distracters are un-
controlled, affecting the perceived appearance. Fi-
nally, agents interact among themselves, grouping or
causing occlusions.

Our goal is to implement and experimentally ver-
ify a novel approach which deals with the aforemen-
tioned difficulties. As a result, agents’ trajectories
will be obtained, as well as quantitative and qualita-
tive information about their state at any time. This
paper is organized as follows: section 2 covers the
most common current approaches; section 3 outlines
the proposal; section 4 describes the low-level mod-

ules, whereas section 5 details the high-level ones;
finally, section 6 shows some experimental results.

2 Related Work

Tracking can be carried out relying either on a
bottom-up or a top-down approach. The former con-
sists on foreground segmentation, and target associa-
tion, while the latter is based on complex shape and
motion modelling. Motion Segmentation can be per-
formed by means of optical flow, background sub-
traction, or frame differencing. Correspondences can
be accomplished using nearest neighbour techniques,
or by means of Data Association filters. A prediction
stage is usually incorporated, thereby providing bet-
ter chances of tracking success. Filters such as the
Kalman filter, or extensions such as the EKF or UKF
are commonly used. More general dynamics and
measurement functions can be dealt with by means
of Particle Filters (PF).

High-level approaches rely on accurate target
modelling. Thus, complex templates and high-level
motion patterns are a-priori learned, and used to re-
duce the state-space search region. Contour track-
ing have been widely explored, although this may
be inappropriate in crowded scenarios with multi-
ple target-occlusions. BraMBLe [3] is an interest-
ing approach to multiple-blob tracking which models
both background and foreground using MoG. How-
ever, no model update is performed, there is a com-
mon foreground model for all targets, and it may re-
quire an extremely large number of samples, since
one sample contains information about the state of
all targets. Nummiaro et al. [4] use a PF based on
colour-histogram cues. However, no multiple-target
tracking is considered, and it lacks from an indepen-



Figure 1: System architecture

dent observation process, since samples are evaluated
according to the predicted image region histograms.

3 Approach Outline

Non-supervised multiple-human tracking is a com-
plex task which demands a structured framework.
This work presents a hierarchical system whose lev-
els are devoted to the different functionalities to be
performed, see Fig. 1.

Reliable target segmentation is critical in order to
achieve an accurate feature extraction without con-
sidering prior knowledge about the potential targets.
However, multiple-people tracking in complex envi-
ronments require high-level reasoning. The lower
level performs target detection, that is, pixel seg-
mentation task, and object representations. Low-
level tracking sets correspondences between observa-
tions and trackers, and perform state filtering. Tracks
are finally managed. Confirmed low-level tracks are
associated to high-level trackers. Hence, tracking
events can be managed, and target tracking can be
achieved even when image segmentation is not fea-
sible, and low-level trackers are removed. There-
fore, whenever the track is stable, the target ap-
pearance is computed and updated; those high-level
trackers which remain orphans are processed to ob-
tain an appearance-based data association, thereby
establishing correspondences between lost high-level
trackers and new ones; finally, those targets which

have no correspondence are propagated according to
the learned motion model. The event module deter-
mines what is happening within the scene, such as
target grouping or entering the scene. These results
are fed back allowing low-/high-level tracker match-
ing.

4 Blob detection and Low-level
Tracking

The first level aims to detect targets within the
scene. Image segmentation is performed following
the method proposed by Horprasert et al. [2] which is
based on a colour background-subtraction approach.
Two distortion measures are established on bright-
ness and chromacity. Pixels are classified into five
categories: foreground, dark foreground (where no
chromacity cues can be used), shadows, highlights,
and background. Foreground blobs are subsequently
detected, and an ellipse representation is computed.

4.1 Background model

The background is statistically modelled on a pixel-
wise basis, using a window of N frames. During this
training period, the mean Ei and standard deviation
σi of each pixel RGB-colour channel.

Two distortion measures are established: α, the
brightness distortion, and CD, the chromacity distor-
tion. Once each colour-channel value is normalised
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Figure 2: Threshold computation. Thresholds are au-
tomatically computed by cumulating histogram val-
ues and applying a detection rate.

by their respective standard variation, the brightness
distortion is computed by minimising the distance
between the current pixel value and the chromacity
line. The variation over time of both distortions for
each pixel is subsequently computed by means of the
Root Mean Square. These values are used as normal-
ising factors so that a single threshold can be set for
the whole image, see [2] for details.

Fig 2 shows the normalised brightness distortion
histogram for a given frame, as well as the corre-
sponding thresholds.

4.2 Image segmentation

Pixels are classified into five categories, depending
on their chromacity and brightness distortion. For
each frame, both normalised pixel distortions are
computed. Those pixels whose chromacity distor-
tion is higher than expected (that is, over the chro-
macity threshold) are marked as foreground. Those
which are not, if the brightness distortion is more
negative than the dark threshold, are marked as dark
foreground. The rest are classified as highlight, if the
brightness distortion is higher that the upper distor-
tion threshold; or shadows, if the brightness distor-
tion is lower than the lower distortion threshold. If
none of these conditions hold, the pixel is classified
as normal background. An example of foreground
segmentation is show in Fig 3.(a).

(a)

(b)

Figure 3: Segmentation and detection examples.
(a) The segmented foreground pixels are painted on
white, while those ones classified as dark foreground
are painted on yellow. Shadows are painted on green
and highlights on red. (b) Detection example: red el-
lipses represent each target, and yellow lines denote
their contour.

4.3 Blob detection

Once the current image has been segmented into the
aforementioned five categories, blobs that may cor-
respond to agents are detected. First, both fore-
ground and dark-foreground maps are fused. Then,
majority, opening and closing morphological opera-
tions are applied. Finally, a minimum-area filter is
used. The surviving pixels are grouped into blobs.
Each blob is labelled, their contours are extracted
and an ellipse representation —which keeps the blob
first and second moments— is computed. Thus,
the j-observed blob at time t is given by the vector
zt

j =
(
xt

j, y
t
j , h

t
j , w

t
j , θ

t
j

)
, where xt

j, y
t
j represent the

ellipse centroid, ht
j , w

t
j are the major and minor axes,

respectively, and the θt
j gives the angle between the

abscissa axis and the ellipse major one. Fig 3.(b)
shows an example of target detection.
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Figure 4: Observation association.

4.4 Low-level blob tracker

The target state is then estimated by filtering the se-
quence of noisy measures. Since their long-run dy-
namics are hardly predictable, a first-order dynamic
model, where the acceleration is modelled as WAGN,
is adopted. This assumption holds in most HSE ap-
plications. In a multiple-target tracking scenario, nu-
merous observations may be obtained at every sam-
pling period. Thus, gates are set according to the in-
novation covariance matrix Sk, and a specific Ma-
halanobis Square Distance (MSD), thereby defining
an ellipsoid which encloses a probability mass given
by the confidence interval associated with the MSD.
Measures are associated to the nearest tracker in
whose gate they lie. A bank of Kalman filters es-
timates the state of all targets detected within the
scene. When no observation is associated to a par-
ticular target, its state is propagated according to the
dynamic model. Target tracks are instantiated, con-
firmed and removed according to Sk and the obser-
vation MSD.

4.5 Data Association and Filtering

Measures are associated to the nearest neighbour
tracker in whose gate they lie, see Fig 4. A more
complicated data association method, such as PDAF
or JPDAF, is not considered to be necessary since
observations are usually just within one target gate.
This is intrinsic to the segmentation method: if
two targets are so close in the observation space as
to introduce ambiguity in the data association pro-
cess, the segmentation module is likely to segment
just one blob corresponding to the group formed by
both targets. This issue is addressed at the event-
management section.

A bank of Kalman filters is implemented to esti-
mate the state of all targets detected within the scene.

As a special case, if no observation is associated to a
particular target, its state is estimated using a Kalman
Gain equal to zero, i.e. it is just propagated according
to the dynamic model.

5 High-level appearance tracker

The aforementioned bank of Kalman filters estimates
the state of multiple targets. However, it cannot
cope with those situations where segmentation fails.
These issues are addressed by implementing high-
level trackers which include information relative to
the target appearance and tracking events. Unfortu-
nately, the target appearance cannot be specified in
advance. In this work, the appearance-modelling ap-
proach presented by Collins et al. [1] is followed.
This uses multiple colour features, which are evalu-
ated and ranked. However, contrary to their method,
a pool of features is now maintained, and smoothed
characteristics are computed. Thus, the initialisation
is solved, and tracker association is feasible once the
event that caused the target loss is over.

5.1 Tracker Matching

This module performs the matching between low-
and high-level trackers. Whenever a low-level
tracker is confirmed, a high-level tracker is instanti-
ated and associated. In case that the new-born tracker
does not collide with two or more existing trackers,
the target appearance will be computed (see Fig 1).
In other case, it is marked as a group tracker. In
subsequent tracker matchings, high-level tracker pa-
rameters relative to the target position and shape are
updated. Further, while the track is still confirmed,
appearances will also be updated. Low-level track-
ers are removed during long-duration segmentation
failures. Then, the system tries to associate it to new-
born ones, presumably created once the event is over.
If there are no tracker candidates, or they are not sim-
ilar enough, their state is propagated.

5.2 Feature Selection

The target appearance is represented using colour
histograms. Features are selected from a set of
independent linear combinations of RGB channels.
The i−feature target histogram is given by pi ={
pi

k; k = 1 : K
}

, where K is the number of bins.
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Then, log-likelihood ratios of each feature are com-
puted as:

Li (k) = log
max

(
pi

k, ε
)

max
(
qi
k, ε

) . (1)

Features are evaluated according to the variance-
ratio of the log-likelihood which maximises the inter-
class variance, while minimising the intra-class vari-
ance. Thus, features can now be ranked.

5.3 Appearance Computation

Contrary to the work of Collins, long-run features are
kept and smoothed. These will be crucial for target
loss recovery. Further, by smoothing the histograms,
the representation is less sensitive to possible local-
isation errors, and sudden appearance changes. A
pool of M + N features is kept. These are the best
M features at time t, and the best N long-run fea-
tures. Mean appearance histograms are recursively
computed:

mi
t = mi

t−1 +
1
ni

(
pi

t − mi
t

)
. (2)

Similarity between two histograms is computed
using a metric dB based on Bhattacharyya coefficient
ρ =

∑K

k=1

√
pkqk. Target similarity is decided ac-

cording to this metric and its statistics:

μi
t = μi

t−1 +
1

n − 1

(
di

B,t − μi
t

)
, (3)

σ2
t =

n − 3
n − 2

σ2
t−1 + (n − 1)

(
μi

t − μi
t−1

)
. (4)

5.4 Appearance Association

Low-level trackers lost their track during long-
duration segmentation failures. Once the target is
re-detected, a new tracker is instantiated. When this
track become stable, it is confirmed and a high-level
tracker is created. The former tracker were propa-
gated. A tracker association process is performed,
and the system concludes that both trackers are in
fact representing the same target.

The Bhattacharyya distance between the his-
tograms of each coincident feature is evaluated.
Those which correspond to the the lost tracker are

in fact smoothed models computed while the seg-
mentation was reliable. Features are gated using the
previously calculated mean and variance of the Bhat-
tacharyya distance. Finally, the tracker is associated
to the nearest one, according to the Bhattacharyya
distance, within the gate. If none of the features is
within the gate of the lost tracker, a new association
process is tried at the next time step.

6 Experimental Results

The approach performance has been tested using
the CAVIAR database. Two targets are tracked si-
multaneously, despite their being articulated and de-
formable objects whose dynamics are highly non-
linear. One of them performs a rotation in depth
and heads towards the second one, eventually occlud-
ing it. The background colour constitutes a strong
source of clutter. Furthermore, the illuminant de-
pends on both position and orientation. Significant
speed, size, shape and appearance changes can be
observed, jointly with events such as grouping or oc-
clusions. Detection results are shown in Fig. 5, and
tracking ones in Fig. 6.

7 Conclusions

In this work a principle and structured system is pre-
sented in an attempt to take a step towards solving the
numerous difficulties which appear in unconstrained
tracking applications. It take advantages of both
bottom-up and top-down approaches. A robust and
accurate tracking is achieved in a non-friendly envi-
ronment with several non-white light sources, high
appearance and shape target variability, and group-
ing, occlusion and splitting. Both targets are success-
fully tracked despite no a-priori knowledge is used.
The system adapts itself depending on the number
of targets, the best local features, or which events
are taking place. Future research will be focused
on developing a method to perform target localisa-
tion within a group region, once the best features for
disambiguating targets from background are already
computed and smoothed.
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Figure 5: (a) Segmented frame. (b) Detected objects.
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