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Abstract—Flagged manipulators are of interest because they
are the only Stewart-Gough platforms for which a cell decom-
position of their singularity loci is available. Here we show
that the known family of such manipulators can be enlarged if
one allows robot designs that, for some particular parameter
values, become architecturally singular. Along this line, the
most general 6-6 flagged manipulator is derived by applying
a singularity-preserving transformation that leaves the relative
position between two lines invariant. This transformation opens
up the possibility of an “equal cross ratios” architectural
singularity, which is shown to appear clearly in the factorization
of the jacobian determinant. From the 6-6 flagged manipulator,
all the extended family of (possibly architecturally-singular)
flagged manipulators is derived.

Index Terms—Parallel manipulators, robot kinematics, ar-
chitecture singularities, kinematics singularities, manipulator
design.

I. INTRODUCTION

A great deal of research has been performed on the

singularity analysis of the Stewart-Gough platform and its

numerous specializations, but it was not until recently that

the analytic form of the six-dimensional singularity locus of

the general platform has been obtained [9]. This provides an

analytic characterization of singularities, but it does not say

much about their nature and the topology of their singularity

loci in the configuration space of the platform with respect

to the base.

While the nature of singularities for some specializations

(designs in which the endpoints of the legs merge into

multiple spherical pairs) has been successfully addressed by

using Grassmann line geometry [11], [15], their topological

study remains largely as an important open problem [4].

Only in the case of flagged manipulators, a cell decompo-

sition of their singularity loci has been derived [14], [1]. This

complete characterization of the arrangement of singularity

hypersurfaces in the configuration space permits identifying

the different nonsingular regions separated by singularities,

the maneuverability restriction occurring in each singular

region, as well as the adjacencies between all nonsingular

and singular regions. This is useful for manipulator design,

including the use of redundant actuators to eliminate certain

singularities [2], and also to plan trajectories away from

singularities.

Flagged parallel manipulators are characterized by the re-

lation between two flags adequately placed on their platform
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Fig. 1. The basic 3-3 flagged manipulator with the attached flags.

and base, a flag being a triple (point, line, plane) with the

point contained in the line which in turn lies on the plane.

Figure 1 shows the 3-3 basic flagged manipulator and its

attached flags. The key point about such manipulators is that

their singularity loci inherit a well-behaved structure from

the stratification of the flag manifold [14], which can be

described in terms of incidences between the elements (point,

line and plane) of the two flags.

With the aim of enlarging the set of manipulators sharing

the well-behaved topology of singularities characteristic of

flagged manipulators, in this paper we analyze manipulator

designs that, for some parameter values, become architec-

turally singular. These same designs, without such conjunc-

tion of values, are flagged manipulators. Thus, by opening

up the possibility of architecturally singular instances, the

previously derived family of flagged manipulators [1] is

considerably enlarged.

Architecture singularities of parallel manipulators were

introduced by Ma and Angeles [10]. Later, Husty and Karger

[6] showed that there are nine types of such singularities for

the general spatial Stewart-Gough platforms. In the special

case of manipulators with planar base and platform, there are

additional architecture singularities if a projectivity relating

both planes satisfies some conditions [7]. Examples are ma-

nipulators whose platform and base are affinely equivalent,

similar or even congruent, such as the Griffis-Duffy type

platform [5].

It is worth noting that manipulators having four points

aligned either in the platform or in the base have only the

architecture singularities of spatial manipulators and not the

additional singularities just mentioned, even if they have

planar platform and base [7]. This is the case of flagged

manipulators. Therefore, we will only need to consider the

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3844



nine types of architecture singularities mentioned above [6].

Furthermore, only two such types depend on metric condi-

tions (as opposed to leg endpoind junctions and alignments),

thus opening up the possibility of architecturally non-singular

designs, which are those of interest to us. One such type

requires the existence of a one-to-one mapping between

5 aligned endpoints in the platform and the conic section

uniquely defined by their corresponding endpoints lying

in general position in the base plane [6]. Since this last

condition cannot be satisfied by flagged manipulators, we

are left with only the other type, namely the ”equal cross

ratios” singularity.

Then, a transformation of parallel robot designs preserving

their singularity loci, but introducing the ”equal cross ratios”

singularity, permits deriving the (possibly architecturally-

singular) 6-6 flagged manipulator, from which other flagged

designs are afterwards obtained. In this way, we have en-

larged the family of robot designs for which a cell decom-

position of their singularity loci is available.

The paper is structured as follows. Section II describes

the above-mentioned kinematic transformation and its ap-

plication to the 3-3 flagged design to come up with the

most general 6-6 flagged manipulator. The following section

studies the forward kinematics and the singularities of this

6-6 manipulator. Then, in Section IV, the whole family of

flagged manipulators consisting of 39 instances is derived.

Finally, some conclusions and prospects for future research

are drawn in Section V.

II. FROM THE BASIC 3-3 FLAGGED DESIGN TO THE

GENERAL 6-6 FLAGGED MANIPULATOR

A parallel manipulator is flagged if, and only if, the

determinant of its jacobian can be factorized into three terms

whose geometric interpretation corresponds to incidences of

the kind point-plane, line-line, and plane-point in such a

way that all involved points, lines and planes form two flags

attached to the base and the platform (Figure 1).

In this section we will derive a 6-6 manipulator design

from the basic 3-3 flagged manipulator, and in the next

section we will show that it is indeed flagged.

A. Decomposing the basic flagged parallel manipulator into

components

To simplify the kinematic analysis of a Stewart-Gough

platform, we can always try to decompose it into independent

rigid components. This decomposition is of particular interest

when the joints, either on the base or the platform, merge into

multiple spherical joints [8]. For a component to be rigid, its

number of d.o.f. must equal the number of its actuators. Note

that the degrees of freedom of motion of a point relative to

a point, a line and a body are 1, 2, and 3, respectively; and

the degrees of freedom of a line relative to a line and a body

are 4, and 5, respectively. Then, the following five classes of

components can be considered:

PP : Point-point (a single leg);

PL: Point-line (two legs sharing a spherical joint);

PB: Point-body (three legs sharing a spherical joint);

LL: Line-line (four legs, their endpoints lying on two lines);

and

LB: Line-body (five legs, an endpoint from each lying on

a line).

A classification of all possible manipulators listed in terms

of combinations of the above components can be found in

[8].

The basic flagged manipulator can be seen as the combi-

nation of a component of type LL, and two components of

type PP (Figure 2). Next, we will show how it is possible

to move the joints along the two lines involved in the LL

component without modifying the kinematic properties of

the 3-3 basic flagged manipulator. This transformation will

allow us to pass from the basic 3-3 flagged manipulator to

a 6-6 flagged design.

q1

q2

q3

p1

p2

p3

LL

PPp1q1

PPp3q3

Fig. 2. The basic flagged manipulator can be seen as the combination of
a component of type LL, and two components of type PP .

B. The LL-transformation

In kinematic terms, a given line in three-dimensional

Euclidean space has four degrees of freedom of motion

with respect to any other arbitrary line. In other words, by

fixing the distances between four couples of points on two

lines, as shown in Figure 3, both lines remain rigidly linked.

As a consequence, the distance between any other couple

q1 q2 q3 q4

p1

p2

p3
p4

p + λv

(µ, 0, 0)

p

v

l1
l2 l3

l4
l

X

Y

Z

Line 1

Line 2

Fig. 3. Two lines are rigidly linked by fixing the distances between four
couples of points on them. Hence, the distance between any other couple
of points, one on each line, can be expressed as a function of these four
distances.
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of points, one on each line, can be expressed in terms of

these four distances. To realize this fact, take, without loss

of generality, the X axis of the reference frame coincident

with one of the two lines, and the other line defined as

p + λv, where p = (px, py, pz) is a point of the line
and v = (vx, vy, vz) is a unit vector along it. Then, the
coordinates of the four couples of points can be expressed as

qi = (µi, 0, 0), and pi = p+λiv, and the squared distances

between them as

l2i = (px + λivx − µi)
2 + (py + λivy)2 + (pz + λivz)

2 (1)

for i = 1, ..., 4.
Then, by subtracting l2i , i = 2, 3, 4, from l2

1
, quadratic

terms cancel yielding the linear system




λ2µ2 − λ1µ1 µ2 − µ1 λ1 − λ2

λ3µ3 − λ1µ1 µ3 − µ1 λ1 − λ3

λ4µ4 − λ1µ1 µ4 − µ1 λ1 − λ4









px

vx

w



 =





l2
1
− l2

2
− µ2

1
+ µ2

2
− λ2

1
+ λ2

2

l2
1
− l2

3
− µ2

1
+ µ2

3
− λ2

1
+ λ2

3

l2
1
− l2

4
− µ2

1
+ µ2

4
− λ2

1
+ λ2

4



 ,

(2)

where w = p ·v. Then, there is a single solution for px, vx,

and w, if, and only if,

∣

∣

∣

∣

∣

∣

λ2µ2 − λ1µ1 µ2 − µ1 λ1 − λ2

λ3µ3 − λ1µ1 µ3 − µ1 λ1 − λ3

λ4µ4 − λ1µ1 µ4 − µ1 λ1 − λ4

∣

∣

∣

∣

∣

∣

6= 0. (3)

The above condition can be rewritten as:

(λ1 − λ3)(λ2 − λ4)

(λ1 − λ4)(λ2 − λ3)
6=

(µ1 − µ3)(µ2 − µ4)

(µ1 − µ4)(µ2 − µ3)
. (4)

In other words, the cross-ratios [3] of the four points on both

lines must be different.

The squared distance between any other couple of points

on both lines, say q = (µ, 0, 0) and p+λv (Figure 3), when

subtracted from l2
1
, yields

l2 = λ2 + µ2 − 2µpx − 2λµvx + 2λw + l2
1

(5)

Then, the value for l2 is unique if, and only if, (4) is satis-

fied. We can substitute any of the four distance constraints by

another distance constraint between another couple of points

on both lines so that they remain rigidly linked. Note that

this substitution, which we call LL-transformation, defines

a one-to-one transformation.

C. Applying the LL-transformation to the basic 3-3 flagged

design

By repeating the LL-transformation four times, the basic

3-3 flagged parallel manipulator can be transformed into the

6-6 parallel manipulator shown in Figure 4.

Since the LL-transformation is one-to-one, the resulting 6-

6 design should have the same number of forward kinematic

solutions and the same kind of singularities than the basic 3-

3 flagged manipulator. This is verified in the next section by

showing that this assertion is true if, and only if, the resulting

6-6 design does not satisfy the cross-ratio condition.

X

Y

Z
X ′

Y ′

Z ′

q1

q2 q3 q4 q5 q6

p1

p2

p3

p4

p5

p6

o

Fig. 4. The 6-6 design resulting from applying four times the LL-
transformation to the 3-3 basic flagged manipulator.

III. ANALYSIS OF THE OBTAINED 6-6 DESIGN

A. Forward kinematics

The forward kinematics of the obtained 6-6 design was

already solved in [16], but no singularity analysis was pro-

vided. As an alternative, we can solve the forward kinematics

by applying the just introduced LL-transformation to pass

from the 6-6 design to the 3-3 flagged manipulator, whose

forward kinematics can be straightforwardly solved by a

sequence of three trilateration as shown in Figure 5 (see [1]

and [13] for details).

q1

q2

q3

p1

p2

p3

q1

q2

q3

p1

p2

p3

q1

q2

q3

p1

p2

p3

Fig. 5. The forward kinematics of the 3-3 flagged manipulator can be
solved by a sequence of three trilaterations.

The first tetrahedron yields two positions for p1. The

second trilateration gives other two solutions for point p2 and

finally the last tetrahedron provides two more solutions for

p3, so that the eight solutions for the position and orientation

of the platform are determined.
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B. Singularities

The analysis of the singularities can be carried out by

analyzing the determinant of the jacobian matrix whose

columns are the Plücker coordinates of the leg lines [11].

The Plücker coordinates of a line can be expressed as

PlL = (d,d × p), where p is a vector pointing to a point

on the line and d a unit vector along it (see [12], page 140).

According to the notation used in Figure 4, the platform

mobile reference frame has its origin at o = (xo, yo, zo) with
respect to the base fixed reference frame, with orientation

matrix R = (i, j,k). Local coordinates of platform points
are pi = (λi, 0, 0) for i = 1...5, and p6 = (λ11, λ12, 0).
Base points are q1 = (µ11, µ12, 0) and qi = (µi, 0, 0) for
i = 2...6.
Referring all points to the fixed reference frame X,Y,Z,

the Plücker coordinates of the six leg lines are:

PlL1 =















ixλ1 + xo − µ11

iyλ1 + yo − µ12

izλ1 + zo

−(izλ1 + zo)µ12

(izλ1 + zo)µ11

(ixλ1 + xo − µ11)µ12 − (iyλ1 + yo − µ12)µ11















,

P lL2 =















ixλ2 + xo − µ2

iyλ2 + yo

izλ2 + zo

0
(izλ2 + zo)µ2

−(iyλ2 + yo)µ2















, P lL3 =















ixλ3 + xo − µ3

iyλ3 + yo

izλ3 + zo

0
(izλ3 + zo)µ3

−(iyλ3 + yo)µ3















,

P lL4 =















ixλ4 + xo − µ4

iyλ4 + yo

izλ4 + zo

0
(izλ4 + zo)µ4

−(iyλ4 + yo)µ4















, P lL5 =















ixλ5 + xo − µ5

iyλ5 + yo

izλ5 + zo

0
(izλ5 + zo)µ5

−(iyλ5 + yo)µ5















,

P lL6 =















ixλ61 + jxλ62 + xo − µ6

iyλ61 + jyλ62 + yo

izλ61 + jzλ62 + zo

0
(izλ61 + jzλ62 + zo)µ6

−(iyλ61 + jyλ62 + yo)µ6















.

Then, the outcome of factorizing the determinant of the

jacobian is:

det(Jf ) = λ62µ12

(xoiyjz − xoizjy + µ6izjy − µ6iyjz+

yoizjx − yoixjz + zoixjy − zoiyjx)

(iyzo − yoiz)

(izλ1 + zo)

((λ2 − λ4)(λ3 − λ5)(µ2 − µ5)(µ3 − µ4)−

(µ2 − µ4)(µ3 − µ5)(λ2 − λ5)(λ3 − λ4))

(6)

Notice that, if λ62 = 0, or µ12 = 0, the six joints on
the platform, or on the base, are aligned. In both cases

the platform becomes architecturally singular. Next, the

remaining non-trivial factors are interpreted geometrically in

terms of incidences between points, lines, and planes.

The first non-trivial factor is

JF1 =xo(iyjz − izjy) − µ6(iyjz − izjy)+

yo(izjx − ixjz) + zo(ixjy − iyjx),
(7)

which can be rewritten as

JF1 =

∣

∣

∣

∣

∣

∣

ix jx xo − µ6

iy jy yo

iz jz zo

∣

∣

∣

∣

∣

∣

, (8)

where (ix, iy, iz) and (jx, jy, jz) are two vectors spanning
the platform plane, and (xo−µ6, yo, zo) is the vector (o−q6)
in the base reference frame.

Conclusion 1 The first non-trivial factor in (6) is zero if,

and only if, q6 lies on the platform plane.

Now, let PlL = (l, l) be the Plücker coordinates of line
L. Then, given two lines, G = (g, g) and H = (h, h), the
bilinear form Ω defined by

Ω(G,H) = g · h + g · h (9)

is zero if, and only if, G and H are coplanar (see [12], p.

140).

The Plücker coordinates of the two lines defining the LL-

component are

PlB = (q2 − q4, (q2 − q4) × q2) =















µ2 − µ4

0
0
0
0
0















,

P lP = (p2−p4, (p2−p4)×p2) =















(λ2 − λ4)ix
(λ2 − λ4)iy
(λ2 − λ4)iz

(λ2 − λ4)(iyzo − izyo)
(λ2 − λ4)(izxo − ixzo)
(λ2 − λ4)(ixyo − iyxo)















Then, substituting them in (9), we obtain

Ω(PlB , P lP ) = (µ2 − µ4)(λ2 − λ4)(iyzo − yoiz), (10)

which is zero if, and only if, the second non-trivial factor in

(6),

JF2 = iyzo − yoiz, (11)

is zero. Notice that if µ2 − µ4 = 0 or λ2 − λ4 = 0 the lines
of the LL-component are not well-defined so different points

must be chosen to define PlB or PlP .

Conclusion 2 The second non-trivial factor in (6) is zero if,

and only if, the LL component is planar.

The third non-trivial factor in (6) is

JF3 = izλ1 + zo, (12)

which clearly corresponds to the z coordinate of point p1 in

the base reference frame.
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Conclusion 3 The third non-trivial factor in (6) is zero if,

and only if, p1 lies on the base plane

The last factor is

JF4 =(λ2 − λ4)(λ3 − λ5)(µ2 − µ5)(µ3 − µ4)−

(µ2 − µ4)(µ3 − µ5)(λ2 − λ5)(λ3 − λ4)
(13)

which is exactly the expression of the cross-ratio relation in

(4), for points (p2,p3,p4,p5) and (q2,q3,q4,q5).

Conclusion 4 The fourth factor is zero if, and only if, the

cross-ratio relation between the joints in the LL component

is satisfied.

Recalling the definition of flagged manipulator at the

beginning of Section II, we can say that the obtained 6-

6 design is a flagged manipulator, the only difference with

respect to all other flagged parallel manipulators presented

to date being the possibility that it becomes architecturally

singular when the cross-ratio condition is satisfied.

IV. DERIVING MORE FLAGGED MANIPULATORS

A. The two transformations applied

In the previous work [1], the family of flagged designs

which are not architecturally singular for any parameter

values was derived. This was attained by repeatedly applying

the transformation shown in Figure 6 to the basic 3-3 flagged

manipulator. Such transformation can be applied to any pair

of legs sharing an endpoint, and it consists in moving one of

the nonshared endpoints along the line passing through the

other nonshared endpoint (see [1] for details). The interest

of this transformation is that it leaves invariant the relative

position between a point and a line, and, therefore, preserves

the forward kinematics of any parallel platform containing a

PL (Point-Line) component (Section II-A).

Fig. 6. PL-transformation preserving the kinematics of a PL component.

Similarly, the LL-transformation presented in Section II-

B leaves invariant the relative position between two lines

and, therefore, preserves the forward kinematics of any

parallel platform containing a LL (Line-Line) component.

The important difference between both transformations is

that, whereas the former doesn’t introduce any architecture

singularity -except for the trivial overlapping of the two legs-,

the latter may introduce the “equal cross ratios” singularity.

Let us study the possible topologically-distinct outcomes

of this second transformation. Table I shows the eight possi-

ble arrangements of four legs with their endpoints aligned

both in the base and the platform. Of them, five cases

are never architecturally singular (i.e., the cross ratios of

points in the base and the platform are necessarily different),

two more cases are always singular, and only one case —

that with no shared endpoints between the legs— may be

architecturally singular (when the cross ratios of points in

the base and the platform are equal). This can be easily

proved by realizing that the cross ratio of arrangements with

coincident points is 0, 1 or∞ depending on the cases, while

the cross ratio of four distinct points never takes these values.

TABLE I

POSSIBLE OUTCOMES OF THE LL-TRANSFORMATION

Never Singular Always Singular Sometimes singular

B. The enlarged family of flagged manipulators

By applying the two transformations above, the extended

family of possibly architecturally-singular flagged manipu-

lators is derived from the 6-6 flagged manipulator (refer to

Table II). Let us describe how the family is generated. Start-

ing from the five “never singular” and the one “sometimes

singular” LL-components in Table I, two additional legs are

added to every component designs in all possible manners,

so that each leg has an endpoint in either the upper or lower

line, and the other endpoint in general position. From the

upmost “never singular” design in Table I, 3 topologically

different manipulators are obtained. Likewise, the remaining

four “never singular” designs give rise to 7, 5, 10 and 10

different manipulators, respectively. These 35 flagged manip-

ulators are free of architecture singularities. Now, from the

“sometimes singular” design in Table I, 4 additional flagged

manipulators are obtained, which are prone to the “equal
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TABLE II

EXPANDED FAMILY OF FLAGGED PARALLEL MANIPULATORS

6-6

p1 p2 p3 p4 p5
p6

q1
q2 q3 q4 q5 q6

5-6

p1 p4 p5
p6

q1
q2 q3 q4 q5 q6

{p2p3} p3 p4 p5
p6

q1 q2
q3 q4 q5 q6

{p1p2}

5-5

p1 p2 p5
p6

q1
q4 q5 q6

{p3p4}

{q2q3}

p3 p4 p5
p6

q1
q4 q5 q6

{p1p2}

{q2q3}

p3 p4 p5
p6

q1
q3 q4 q5

{p1p2}

{q2q6}

p3 p4 p5
p6

q1 q2
q3 q6

{p1p2}

{q4q5}

p3 p4
p5 p6

q1 q2
q3 q4

{p1p2}

{q5q6}

4-6

p1
p6

q1
q2 q3 q4 q5 q6

{p2p3} {p4p5} p3
p6

q1 q2
q3 q4 q5 q6

{p1p2} {p4p5} p4 p5
p6

q1 q2 q3
q4 q5 q6

{p1p2p3}

4-5

p1
p6

q1
q2 q5 q6

{p2p3} {p4p5}

{q3q4}

p5
p6

q1
q4 q5 q6

{p1p2} {p3p4}

{q2q3}

p5 p6

q1 q2
q3 q4

{p1p2} {p3p4}

{q5q6}

p4 p5
p6

q1 q2
q5 q6

{p1p2p3}

{q3q4}

p4

p5 p6

q1 q2 q3

q4

{p1p2p3}

{q5q6}

p5
p6

q1
q3 q4 q5

{p1p2} {p3p4}

{q2q6}

p3
p6

q1
q2 q3 q6

{p1p2} {p4p5}

{q4q5}

p3
p6

q1 q2
q5 q6

{p1p2} {p4p5}

{q3q4}

p4 p5
p6

q1 q2
q4 q5

{p1p2p3}

{q3q6}

p3
p6

q1 q2
q3 q6

{p1p2} {p4p5}

{q4q5}

4-4

p3
p6

q1
q5

{p1p2} {p4p5}

{q3q4}{q2q6}

p4 p5
p6

q1
q5

{p1p2p3}

{q3q4}{q2q6}

p5 p6

q1

q4

{p1p2} {p3p4}

{q2q3} {q5q6}

p4

p5 p6

q1 q2

{p1p2p3}

{q3q4} {q5q6}

p5
p6

q1
q6

{p1p2} {p3p4}

{q2q3}{q4q5}

p4p5
p6

q1
q6

{p1p2p3}

{q3q4}{q2q5}

p1
p6

q1
q6

{p2p3} {p4p5}

{q2q4} {q3q5}

p4

p5p6

q1 q2
q4

{p1p2p3}

{q3q5q6}

p5
p6

q1
q5

{p1p2} {p3p4}

{q2q3}{q4q6}

3-6

p6

q1 q2 q3
q4 q5 q6

{p4p5}{p1p2p3}

3-5

p6

q1 q2

q4 q5

{p4p5}{p1p2p3}

{q3q6}

p6

q1 q2

q5 q6

{p4p5}{p1p2p3}

{q3q4}

p6

q1 q2 q3

q4

{p4p5}{p1p2p3}

{q5q6}

3-4

p6

q1
q5

{p4p5}{p1p2p3}

{q3q4}{q2q6}

p6

q1 q2

{p4p5}{p1p2p3}

{q3q4} {q5q6}

p6

q1 q2

q5

{p4p5}{p1p2p3}

{q3q4q6}

p6

q1

q6

{p4p5}{p1p2p3}

{q2q4} {q3q5}

3-3

p6

q1

{p4p5}{p1p2p3}

{q2q4} {q3q5q6}
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cross ratios” singularity, and, thus, become architecturally

singular for some specific conjunction of parameter values.

The 39 manipulators thus obtained have four endpoints

aligned both in the base and the platform, and they can be

thought of as resulting from applying the LL-transformation

to the 6-6 flagged manipulator. Then, by applying the PL-

transformation, some of these manipulator designs can be

made more general by misaligning some of their endpoints.

The resulting manipulators conform the enlarged family of

flagged parallel manipulators displayed in Table II.

The interesting point is that the previously-known set

of flagged manipulators [1] has been enlarged with the 4

new manipulator designs stemming from the “sometimes

singular” LL-component, highlighted in grey in Table II,

which incidentally are among the less specialized ones (i.e.,

they have fewest endpoint merges).

Note that every manipulator in Table II has its endpoints

labelled so that the analysis carried out for the 6-6 design

in Section III-B becomes applicable to them all. In fact, the

factorization of the Jacobian for all instances contains the

factors JF1, JF2 and JF3 in Section III-B in exactly the

same form. The architecture singularity factor JF4 appears

only for the four manipulators highlighted in grey, and its

expression varies depending on the design. This is due to

the disalignments introduced by the PL-transformation. For

instance, the cross ratio in the lower line of the 2nd 5-6

design involves, as fourth point, that at the intersection of

the base line with the line of the PL-component. Similarly,

for the 5th 5-5 design, both cross ratios involve intersections

with PL-component lines.

It is worth noting that the endpoints that do not appear

aligned in Table II are assumed to be in general position.

If they were not, some other architecture singularities could

either appear or disappear. For example, the alignment of the

three endpoints of a tripod leads always to an architecture

singularity. On the contrary, the alignment of endpoints q1,

q2 and q3 in the 2nd 5-6 design removes the architecture

singularity. Coherently, this design and the 5th 5-5 one ap-

peared with additional alignments in the set of architecture-

singularity-free flagged manipulators derived in [1].

V. CONCLUSIONS AND FURTHER RESEARCH

In this paper, the nice properties of flagged manipulators

have been extended to four additional designs, namely, one

6-6, one 5-6 and two 5-5 manipulators. Moreover, it has

been shown that the family of such manipulators is now

complete, in the sense that no other Stewart-Gough parallel

platforms can have singularity loci with the well-behaved

structure of flagged manipulators. This nice structure allows a

decomposition of the singularity loci with a unique topology

irrespective of the metrics of each particular design. The

family completeness follows from an analysis of the metric

architecture singularities that may arise for flagged designs,

the only one being the “equal cross ratios” singularity (refer

to the Introduction). Thus, the only kinematic transformation

that could enlarge the family at the expense of introducing

designs prone to this architecture singularity is the LL-

trasformation considered in this work.

As for the envisaged future work, we are studying other

families of parallel manipulators having singularity spaces

with a topology as close as possible to that of flagged

manipulators. This is addressed from both geometric and

algebraic viewpoints, the latter entailing finding invariant

factorizations of the jacobian determinant.
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