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Abstract— This paper deals with the manipulation of planar
deformable objects for typical service robot applications. Specif-
ically, we present a system that straightens pieces of clothfrom
any arbitrary initial wrinkle condition using a robotic man ipu-
lator. The cloth is modeled with a Finite Element Method, and
its state is estimated with a physical-based implicit integration
scheme that computes particle velocities as a function of internal
and external forces acting on the object. The state of the object
is tracked with a stochastic observer, in which measurements
come from a stereo vision system. Manipulation actions are
chosen maximizing an a-optimal information measure.

To our knowledge, this is the first time that a stochastic state
estimator has been derived for an implicit integration model of
a deformable planar object, bridging the gap between computer
simulation and vision-based tracking of the state of deformable
planar objects for manipulation.

I. INTRODUCTION

Service robots, and in particular those aimed at helping
humans in daily tasks, are gaining a lot of attention. The
variability of tasks and environments in which they are to
operate pose new research problems not tackled within indus-
trial robotics. The non-repetitive manipulation of deformable
objects is one such problem, since these objects are plentiful
in homes and assistive environments.

While a lot of work has been devoted to grasping, motion
planning and manipulation of rigid objects [1], [2], similar
research for deformable objects is just starting. The European
Project PACO-PLUS [3] is addressing the grasping and
manipulation of both types of objects within a kitchen
environment. The long-term goal is to plan and execute
manipulation tasks with the fingered hands of the ARMAR
robot, but as a first step this paper deals with action selection
for cloth straightening with just one finger.

The existing work on manipulation of deformable objects
deals mainly with linear objects [4], [5], [6], such as ropes
threads and wires. These works usually rely on a Finite
Element Method (FEM) to model the objects, and make
use of knot topology to plan motions. Modelling deformable
planar objects –those of interest to us– in the same way
may be computationally costly, and the alternative of using
a Boundary Element Method (BEM) has been proposed [7],
where BEM differs from FEM in that only the contour
of the object needs to be meshed. However, BEM-based
simulation does not provide enough detail on cloth state
for our purposes, so we don’t adopt this method in the
present work. Other works focus on grasping skills for
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cloth manipulation [8], and on iterative learning of the force
required to lift a deformable object [9]. A compilation of
systems for the industrial manipulation of deformable objects
is discussed in [10], going from sewing systems to fish
manipulation processes.

For action planning, a physical-based simulation that ac-
curately predicts the outcome of actions is crucially needed.
In the Computer Graphics field, there are two approaches
to cloth simulation that use FEM to describe the particles
positions and velocities as a mesh of primitives such as tri-
angles and rectangles. One is the implicit integration scheme
[11], which at the expense of a high computational cost,
remains stable despite taking long time steps. The other is the
explicit integration scheme [12], with lower computational
burden, but restrained to take short time steps to assure
stable solutions. The reader is referred to [13] for a detailed
discussion of cloth simulation approaches, and to [14] for a
wider compilation of physical models of deformable objects.

In the current work we have adopted the implicit inte-
gration scheme, given its better accuracy in estimating the
state of the object over extended periods of time. In this
approach, a large sparse linear system is solved through
a preconditioned conjugate gradient (CG) iterative method.
The preconditions of the CG method permit imposing ex-
ternal constraints on the velocities of some particles, which
comes handy when we need to restrain the motion of the
particles fixed by the finger. State estimation techniques
are used to track the state of the cloth. In particular, an
Extended Kalman filter on the implicit integration scheme
has been implemented. The selection of the best next action
to straighten the cloth is then tackled using tools from
information theory. This approach to action selection has
previously been pursued by our group in the context of active
vision for Simultaneous Localization and Mapping (SLAM)
[15], and wire-based robot pose tracking [16]. Here, we
have adapted it to cope with the uncertainty inherent to the
manipulation of deformable objects.

The paper is structured as follows. Section II details
the model used to predict the deformation of cloth under
the presence of three types of forces: i) internal forces
such as stretch, shear and bend, ii) the forces exerted by
our manipulation strategy, and iii) external forces such as
gravity and the collision with other objects. In Section III
the action selection strategy is described. The strategy has
the dual objective of straightening the cloth while at the
same time maintaining good estimation of its state. Section
IV presents both simulated and experimental results, and
Section V contains some concluding remarks. A short video



sequence accompanies the paper validating the approach both
in simulation and in a real robotic work-cell.

II. PHYSICAL MODEL OF CLOTH DEFORMATION

To model its deformation, a piece of cloth may be modeled
as a triangular mesh of particles. Each vertex of the triangular
mesh has coordinatespi, and moves with velocityvi. The
deformation of the entire mesh after a time steph is given
by the difference equation

[

p(t + h)
v(t + h)

]

=

[

p(t) + v(t)h
v(t) + ∆v

]

(1)

in which the vectorsp andv are vertical concatenations of
all the vertex locations and velocities, respectively.

The change in velocity for the interconnected particles,
∆v, follows the backward Euler method for implicit time
integration given in [11]. The method, in contrast to a more
simple forward Euler integration technique, finds an output
state whose time derivative is consistent with the initial state.
The method is used to simulate the effect of internal and
external forces applied to the cloth. These forces acting on
each particle are defined in terms of precondition functions
that permit to impose constraints on the velocities, effectively
allowing us to model the effect of motion commands on those
particles fixed by the manipulator gripper:

∆v =
hW

(

f0 + h ∂f
∂p

v0

)

+ u + δu
(

I− hW ∂f
∂v

− h2W ∂f
∂p

) (2)

The solution for∆v depends on the initial particle ve-
locities v0 ∈ IR3n, initial particle vector forcesf0 ∈ IR3n

(that may include external forces such as gravity, wind, etc),
the internal forcesf ∈ IR3n and the particle positions and
velocities. Particle internal forces are modeled as the sumof
resistance and damping effects on specific stretch, shear and
bend conditions

f = −k
∂C(p)

∂p
C(p) − d

∂C(p)

∂p
Ċ(p)

where

Ċ(p) =
∂C(p)

∂p
ṗ

andv = ṗ.

A. Internal Forces

In Baraff’s formulation [11],C(p) is a condition vector
which we want to be zero. Its associated energyE =
k
2C(p)⊤C(p) is used to derive simple stretch, shear and
bend conditions. So, for example ifwu(pi) and wv(pi)
are the vectors indicating the stretch or compression of a
particular triangle in the mesh, with unit length when the
material is unstretched, anda is the area of the triangle in
uv coordinates, the condition

C(pi) = a

(

‖wu(pi)‖ − 1
‖wv(pi)‖ − 1

)

TABLE I

SET OF POSSIBLEACTIONS TO STRAIGHTEN A PIECE OF CLOTH.

Action

drag-upright vx, vy > 0

drag-upleft vx < 0, vy > 0

drag-downright vx > 0, vy < 0

drag-downleft vx, vy < 0

can be used to model stretch energy. Similarly, by the small
angle approximation, shear can be measured as the inner
product betweenwu(pi) andwv(pi)

C(pi) = awu(pi)
⊤wv(pi) .

Finally, if we let ni andnj denote the unit normals of two
adjacent triangles, and lete be a common vector parallel to
the common edge, the angle between the two faces defined
by the relationssin θ = (ni ×nj)

⊤e andcos θ = n⊤
i nj , the

condition that counters bending along that edge is

C(pij) = θ .

B. Motion commands

Our cloth dynamics model, the time varying partial differ-
ential Equation (2), differs from the original equation in [11]
in that we have included a set of external induced velocities
u, representing the actions exerted by our manipulator. To ac-
count for the effects of linearization and unmodelled artifacts
we also add to each external action on the cloth a stochastic
term δu with zero mean white Gaussian distribution with
covarianceQ.

Input commands belong to a limited set of actions depend-
ing on the task to be performed. Table I shows, for example,
a set of possible actions for the straightening of a cloth on
the table. Each such action is intended to drag a corner in
the cloth at a constant speed and for a short period of time,
ui = (vx, vy, 0)⊤.

C. Managing External Collisions

Collision of the deformable planar object with external
rigid objects is handled with the help of a particle constrainer
matrix W, whose block diagonal elements are defined as
Wi = 1

mi

Si, wheremi is the mass of thei-th particle, and
Si is a 3 × 3 matrix used to constraint the three degrees of
freedom affecting the particle mass at any given location.
Our approach does not handle yet internal cloth collisions.
This is a topic of further research.

III. ACTION SELECTION

A. Predicting the Outcome of Actions

To estimate the state of the deformable planar object
after an action is executed, particle positions and velocities
are considerd as a Gaussian random vector, with an initial
covarianceP0|0. A Kalman filter is then used to track the
state of the deformable planar object. For every possible
action, the state mean can be obtained from Eqs. (1) and



(2) with δu = 0, and an estimated change in covariance can
be computed with the linearized expression

Pt+h|t = APt|tA
⊤ + BQB⊤

where the JacobianA takes the form

A =

[

I hI
∂v
∂p

I

]

in which the partial derivative of a particle velocity with
respect to its position is

∂v

∂p
= (AB − CD)(B⊤B)−1

A = h2W
∂2f

∂p∂p
v0

B = I − hW
∂f

∂v
− h2W

∂f

∂p

C = hW(f0 + h
∂f

∂p
v0) + u + δu

D = −hW
∂2f

∂v∂p
− h2W

∂2f

∂p∂p

and the JacobianB is

B =

[

0

(I − hW ∂f
∂v

− h2W ∂f
∂p

)
−1

]

.

The state of the object can then be revised from the
observation of some points as measured by our stereo vision
system. Assuming that the error from our sensorδzi is
also zero mean Gaussian with covarianceR, each particle
observed, whereas it is a corner or not, contributes to revise
the state estimate with

[

pt+h|t+h

vt+h|t+h

]

=

[

pt+h|t

vt+h|t

]

+ K(zi − pi) .

If using sequential innovation for each particle, the mea-
surement Jacobian is a row block of zeros, only with a
selective3 × 3 identity matrix at thei-th block cell, and
the Kalman gain becomes the6n × 3 matrix

K = Pt+h|t,i(Pt+h|t,ii + R)−1

wherePt+h|t,ii is the position covariance for thei-th particle,
and Pt+h|t,i represents thei-th column block of the full
state covariance matrix. The update of the state covariance
becomes

Pt+h|t+h = (I−[ 06n×3i−1 K 06n×3(2n−i)−2 ])Pt+h|t .

TABLE II

PARAMETER VALUES FOR IMPLEMENTATION.

Parameter Symbol Value

Stretch resistance kst 5000

Shear resistance ksr 500

Bend resistance kb 0.00001

Stretch damping dst 1000

Shear damping dsr 100

Bend damping db 2× 10
−6

Gravity 9.81

B. Action Selection

A strategy is developed to straighten the cloth by choosing
from a limited set of possible actions, the one that maximises
the information gain for our state estimate. The set of
actions under inspection are: one possible motion command
from Table I for each corner of the object. The commands
evaluated are those that drive the cloth corners away from
the center. In essence, the strategy is aimed at choosing, from
four possible choices, which corner is to be dragged next,
based on the current estimate that we have about its location.

A classic approach would be to chose the action that
maximizes the relative entropy between prior and posterior
covariance estimates [15], [16], [17], that for our multivariate
Gaussian case reduces to computing the expression

I =
1

2
(log |Pt+h|t| − log |Pt+h|t+h|) .

A D-optimality measure of information gain however may
become unreliable when one or more of the state space
directions is constrained, since it is computed from the prod-
uct of the eigenvalues ofP. The conditions that constraint
the motion of particles include contact with an obstacle, or
the mere dragging action. In such cases, there is absolute
information about some components of the location (and/or
velocity) of such particle, with the consequence of semi-
definteness on the estimation covariance. For this reason, we
use an A-optimality meause of information instead [18] to
minimize the squared error of the model, which uses the
sum of the eigenvalues (instead of their product), given by
the trace of the covariance matrix.

I = tr (Pt+h|t) − tr (Pt+h|t+h) (3)

IV. IMPLEMENTATION AND RESULTS

In our experiment setup, our workcell is composed of a
robotic manipulatorSẗaubli RX-60with a FTC-Schunkforce
sensor attached to the end-effector, and aBumblebeestereo
camera. The force sensor is used to ensure that a sufficiently
large perpendicular force is maintained while dragging a
piece of cloth against a table.

To measure the state of the cloth at any given instance,
a set of feature points must be observed. One possiblity
is to select scale invariant salient features on the object
and match them against a previously trained dataset [19].
The experiments reported here are less complex in terms of



Fig. 1. Computer simulation of action selection of planar deformable obejcts. Time goes from left to right, then from topto bottom. The hyperellipsoids
on the corners indicate surfaces of equal probability for the corner location estimates.
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Fig. 2. Evolution of the trace of the covariance at each particle for the same simulation, as well as a history of the chosenmotion commands

the computer vision tools used. For the porpouses of our
straightening task, we are content with tracking the four
corners of the cloth piece binarizing the image of the object,
and detecting the corners by selecting the discontinuitiesof
the 1-D signal along the object contour using multiresolution
and non-maximum supression [20]. Once the corner points
are located, their location with respect to the camera is
computed with stereo triangulation. Given that the camera
location is calibrated with respect to the robot workcell, the
measurement of the corner points can be given in world
coordinates.

To constraint the velocity of the particles during manipu-
lation, a velocity profile must be generated for each possible
action command. The set of possible actions is restricted
to the actions in Table I. For the simulations however, an
extra motiontwist has been implemented, which drags
two center particles to emulate a wrinkling effect to restart
the simulation.

The cloth parameters used are given in Table II. Fig. 1
shows a simulated manipuation sequence. Each frame in
the sequence represents the current state of the deformable
object. The ellipsoids drawn at the corners represent surfaces



of equal probability at one-standard deviation, and are used to
indicate the value of the estimation covariance at that point.
To easy their visibility, these ellipsoids have been magnified
by a factor of ten. The sequence shows two instances of the
evolution of the cloth straightening task. The cone pointing
to each of the corners emulates the manipulator end-effector.
Figure 2 contains the evolution of the trace of the covariance
at each particle for the same simulation, as well as a history
of the chosen motion commands.

Finally, Fig. 3 presents a sequence with a real straightening
task on our robotic workcell. These images, as well as the
video accompanying this paper illustrate the feasibility of
the presented approach for the information-oriented action
selection for the manipulation of planar deformable objects
for simple household applications.

V. CONCLUSIONS AND FUTURE WORK

If the adaptive robot manipulation of rigid objects is
already a challenging research topic, the manipulation of de-
formable objects poses additional difficulties. An important
one is the representation of the state of such objects. For
the rigid ones, once a CAD model of the object is available,
its state at a given time is uniquely determined by the six
parameters of its pose. Contrarily, flexible objects require
models that accommodate their possible deformations as a
result of their manipulation or other external causes. In this
work we have coupled a stochastic state estimator with a
physical-based implicit integration model of a deformable
planar object (a cloth). This model has then been used to
predict the effect of manipulation actions on the cloth, a
critical feature for planning sequences of such actions. Here,
as a first step to test state estimation, only the best next action
to achieve a given goal is determined. The particular goal
pursued has been a weighted combination of two objectives,
namely, straightening the cloth while at the same time
maintaining a good estimation of its state. Action selection
relies on a maximization information criterion. The obtained
results, both in simulation and in a real robotic work-cell,
have been satisfactory. In sum, we are proposing a framework
for goal-driven manipulation of deformable planar objects.

Envisaged future work will be along three lines. First, we
would like to incorporate detection of self-collisions into the
FEM model of cloth [21]. Second, we aim to come up with a
characterization of qualitative-different states of deformable
planar objects (e.g., foldings), in a similar way as knots
describe states of deformable linear objects. And third, we
like to go beyond single action selection to develop planning
strategies for manipulating pieces of cloth, more specifically,
for unfolding and then folding them in prescribed ways.
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Fig. 3. A view of the workcell setup. Time goes from left to right, then from top to bottom


