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Abstract

Structural graph matching methods often fail when
trying to match graphs which are small and present low
structural constraints. An extra source of information is
needed in order to eliminate the ambiguities produced
by the lack of structural information. In this paper we
introduce positional information into the cliques model
in order to enhance the matching criterion. Procrustes
methods provide a proper framework to do statistics
with coordinate positions. Results show that our model
significantly improves the matching capability in graphs
generated from shapes (handwritten capital letters).
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1. Introduction

Structural graph matching techniques exploit struc-
tural constraints provided by graphs, in order to find an
optimum matching [2] [3] [4].

The model presented in [4] (Section 3) provides a
good means of matching graphs with high or even mod-
erate structural constraints. It has demonstrated to be
powerful when applied to the matching of large graphs
of road maps and also Delaunay graphs.

Almost any object can be represented by a graph. In
the case of shapes, we can obtain a graph representa-
tion via the skeletonization of an input image and by
placing the nodes at the end points, junction points and
high curvature points of the skeleton. Graphs gener-
ated from shapes are typically small and they present

low structural constraints. In these cases, a purely struc-
tural criterion often leads to ambiguities and therefore,
an extra source of information is needed. Information of
point positions is traditionally used in Statistical Shape
Analysis [1]. With the use of Procrustes methods (Sec-
tion 2), we are able to make the comparisons of such
point-sets invariant to Euclidean similarity transforma-
tions. Our aim here is to use such techniques to enhance
the matching criterion.

In Section 2 Procrustes distance is described. In Sec-
tion 3 the cliques model by Wilson and Hancock [4] is
introduced. In Section 4 our contribution to the cliques
model is defined in order to improve the matching of
graphs generated from shapes. In Section 5 results are
presented. Finally, in Section 6 some conclusions are
given.

2. Procrustes distance

Consider two point-sets X1 and X2 arranged in k ×
m matrices of cartesian coordinates of k points in m

dimensions. The Procrustes distance d (X1, X2) is the
closest Euclidean distance between X1 and X2 over the
Euclidean similarity transformations of X1.

Given the above definition, the Procrustes distance
between X1 and X2 is defined as:

d (X1, X2) = inf
Γ,β,γ

‖ X2 − βX1Γ − 1kγT ‖ , (1)

where ‖ X ‖= trace
(

XT X
)

1
2 is the Euclidean

norm, β ∈ ℜ+ is a positive scaling factor, Γ ∈ SO(m)
is a m × m rotation matrix and γ ∈ ℜm is a translation
m-vector.

Following Dryden and Mardia [1] we obtain the Pro-
crustes distance first by substituting X1, X2 into (1) by
their centered versions normalized to unit size Z1 =

CX1

‖CX1‖
and Z2 = CX2

‖CX2‖
, where C = Ik −

1
k
1k1T

k is the
centring matrix which applies a translation that brings
the centroids of X1 and X2 to the origin.
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Afterwards, the minimizing parameters are found at

γ̂ = 0, β̂ =
trace(ZT

2 Z1)
trace(ZT

1 Z1)
and Γ̂ = UV T , where

V ΛUT = svd
(

ZT
2 Z1

)

is the singular value decom-
position of ZT

2 Z1.

3. Clique-based MAP formulation

The aim of graph matching is to associate nodes in
a data-graph G1 = (V1, E1, A1), where V1 is a set of

nodes, E1 is a set of arcs and A1 =
{

x
(1)
u , ∀u ∈ V1

}

is a set of symbols associated with the nodes, against
those in a model-graph G2 = (V2, E2, A2), where

A2 =
{

x
(2)
v , ∀v ∈ V2

}

. The matching is represented

by a function f : V1 → V2 ∪ φ for the nodes in the data
graph G1 to those in the model graph G2 augmented
with a null-label.

In [4] the graphs are matched using cliques. For
a given node indexed  from G1, the clique C =
{

u1, . . . , u|C|

}

is defined as C =  ∪ {ı| (ı, ) ∈ E1}.
The matched realization of the clique C ⊆ V1 is de-
noted as

Γ =
{

f(u1), . . . , f(u|C|)
}

. (2)

For each clique on the model graph Sı, a set of
structure-preserving mappings (SPMs) are generated in
order to obtain a dictionary Θ =

{

Sk
ı

}

where to eval-
uate each data graph clique C.

The final decision rule to update the matching con-
figuration according with the MAP criterion [4] is:

f(u) = argmax
v(2)∈V2∪φ

P
(

f(u(1)) = v(2)|xu, xv

)

P (f) ,

(3)
where P

(

f(u(1)) = v(2)|xu, xv

)

is the probability
of match between nodes u(1) ∈ V1 and v(2) ∈ V2 given
measurements only relative to the nodes under match,
and P (f) is the joint prior which gauges the overall
consistency of the matching configuration. Next, the
developement of this structural consistency measure is
described.

Commencing by modelling the consistency of match
of an individual clique as demanded by the Bayes rule:

P (Γ) =
∑

Sk
ı ∈Θ

P
(

Γ|S
k
ı

)

P
(

Sk
ı

)

. (4)

Assuming independence in the matching errors be-
tween adjacent nodes of the same clique, the conditional
probabilities become

P
(

Γ|S
k
ı

)

=

|Sk
ı |

∏

r=1

P (f(ur)|vr) . (5)

Matching errors and structural errors are assumed
to occur with uniform probabilities Pe and Pφ respec-
tively. Under these assumptions, the distribution rule
under the product of (5) is

P (f(ur)|vr) =






Pφ if f(ur) = φ ∨ vr = dummy
(1 − Pe) (1 − Pφ) if f(ur) = vr

Pe (1 − Pφ) if f(ur) 6= vr

(6)
Combining (6) and (5) and assuming that each of the

SPMs is equi-probable, i.e. P
(

Sk
ı

)

= 1
|Θ|

, the final
model for the clique matching probabilities expressed
in the natural exponential form is

P (Γ) = 1
|Θ|

∑

Sk
ı ∈Θ

exp
[

−kerH
(

Γ, S
k
ı

)

−

−keqE
(

Γ, S
k
ı

)

− kφN
(

Γ, S
k
ı

)]

,
(7)

where N
(

Γ, S
k
ı

)

is the number of dummy nodes
in Sk

ı plus the number of nodes assigned to the null
label in Γ, H

(

Γ, S
k
ı

)

is the Hamming distance be-
tween non-null elements of Γ and non-dummy nodes
of Sk

ı , and E
(

Γ, S
k
ı

)

is the number of coincidences
between non-null elements of Γ and non-dummy nodes

of Sk
ı , kφ = log

[

1
Pφ

]

, ker = log
[

1
(1−Pφ)Pe

]

and

keq = log
[

1
(1−Pφ)(1−Pe)

]

.

Finally, the joint prior is computed by averaging the
clique matching probabilities over the nodes of the data
graph, i.e.

P (f) =
1

|V1|

∑

∈V1

P (Γ) . (8)

The matching configuration is updated using the
MAP decision rule given in (3) and according to a Dis-
crete Relaxation scheme [4]. The strategy is to set Pe

to an initial high value to reflect a poor labelling, and
reduce it through iterations.

In the next section we describe our contributions to
the model above, aimed to improve the matching of
graphs generated from shapes.

4. Introducing Procrustes distances into the
cliques model

Graphs generated from shapes are typically small
and they present low structural constraints. These two



facts together are a potential source of ambiguity for
purely structural matching methods. Our aim is to ap-
ply Procrustes methods to the point-sets extracted from
the shapes in order to enhance the matching criterion.
Procrustes methods provide a proper framework to do
statistics with point positions. To that end, we aug-
ment the set of unary measurements associated with the
nodes with the coordinates of the feature points. Hence,
A = {(xi,

−→ρi ) , ∀i ∈ V }, where −→ρi = (p1, . . . , pm) is
an m-vector of cartesian coordinates in m dimensions,
associated with each node.

The idea underpinning this work is to weight the con-
tributions of the consistently mapped nodes (i.e, those
such that f(u) = v) with a gaussian probability density
of the Procrustes alignment error. By introducing the
alignment errors, different cliques with the same car-
dinality on a given graph are no longer susceptible to
contribute the same amount to the energy functional.

Hence, the marginal probabilities of (6) become

P (f(ur)|vr) =






Pφ if f(ur) = φ ∨ vr = d
(1 − Pe) (1 − Pφ)Pm if f(ur) = vr

Pe (1 − Pφ) if f(ur) 6= vr

.

(9)
In our model Pm is the probability of match between

two consistently mapped nodes u
(1)
r and v

(2)
r , taking

into account the whole set of consistently mapped nodes
on that clique. Thus,

Pm

(−→
ρ′ur

,−→ρvr

)

=

exp

[

− 1
2

(

−→ρvr
−

−→
ρ′ur

)T

Σ−1
(

−→ρvr
−

−→
ρ′ur

)

]

,
(10)

which is the probability of matching nodes u
(1)
r with

v
(2)
r according with the Procrustes distances of the coor-

dinates, and the expected variance-covariance Σ of the
data-graph node positions around the model-graph.

In the computation of Pmatch

(−→
ρ′ur

,−→ρvr

)

, the trans-

formed coordinates
−→
ρ′ur

resulting from the alignment
process are used. As said before, the whole set of
correctly mapped nodes on a given clique are taken
into account in order to do the alignment. There-
fore, a point-set X1 is built from the cartesian coor-
dinates of the data graph nodes that have been cor-
rectly assigned in the current mapping Si of the match-
ing conditional P (Γj |Si) (i.e. the data graph nodes
ur under the circumstance f(ur) = vr). Thus,
X1 = {−→ρur

|f(ur) = vr, r = 1, . . . , |Si|, f(ur) ∈ Γj}
is a k × m matrix of cartesian coordinates of k

points in m dimensions. Equivalently, a point set

X2 is built from the cartesian coordinates of the
model graph nodes on which the data graph nodes
have been correctly mapped to. Thus, X2 =
{−→ρvr

|f(ur) = vr, r = 1, . . . , |Si|, vr ∈ Si} is a k × m

matrix as well.
Finally, the new coordinates of the data graph

−→
ρ′ur

are taken from the transformed matrix XP
1 = βX1Γ −

1kγT , after being aligned with X2 using the method in
Section 2.

Collecting terms and using the natural exponential
form, our model for the clique matching probabilities is

P (Γ) = 1
|Θ|

∑

Sı∈Θ

exp [−kerH − keqE − kφN−

− 1
2 trace

((

X2 − XP
1

)

Σ−1
(

X2 − XP
1

))]

,
(11)

where kφ = log
[

1
Pφ

]

, ker = log
[

1
(1−Pφ)Pe

]

and

keq = log
[

1
(1−Pφ)(1−Pe)

]

.

The joint prior is computed as in Equation (8) by av-
eraging the clique matching probabilities over the nodes
of the data graph.

A relaxation scheme similar than the one in Sec-
tion 3, is implemented in order to iteratively update the
matching configuration.

5. Results

We have evaluated our model under two different
sources of noise: initial matching errors and positional
disturbance on the feature points. The methods imple-
mented in the experiments are: Gold and Rangarajan’s
graduated assignment [2], Luo and Hancock’s struc-
tural matching using the EM algorithm [3] and, Wil-
son and Hancock’s structural matching by discrete re-
laxation [4] (Section 3).

We have used 84 graphs extracted from handwritten
capital letters. The mean and s.d of the number of nodes
of the graphs are 5.8 and 2.1, respectively. The mean
and s.d of the number of arcs are 4.9 and 2.2, respec-
tively. Samples present moderate levels of structural
corruption consisting of a few added extra nodes and
extra arcs (notice that we are not evaluating our model
under severe structural corruption). The data graphs of
each class are matched against a prototypical graph of
that class.

In the first experiment (Figure 1) we have tested
the ability of recovering from initial matching corrup-
tion. The degree of corruption ranges from zero (ini-
tial matching 100% correct) to 1 (initial matching com-
pletely corrupted). Since the graduated assignment
method does not require any initialization, we have plot-
ted the mean correct matching rate.
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Figure 1. Final correct fraction versus ini-
tial corrupted fraction

Results show a significant improvement of our
model in the ability to recover from corrupted match-
ing configurations, specifically under severe corruption
conditions. The EM-based method and the graduated
assignment present a poor performance. Although these
methods usually obtain good results when aplied to
more sophisticated graphs, their criteria has demon-
strated to be too weak when applied to the type of
graphs adressed here.

The second experiment (Figure 2) evaluates the tol-
erance of our method to severe noise in the coordinates
of the nodes. We have applied gaussian white noise to
the (x,y) coordinates of the point positions associated
with the nodes. The variance of the noise ranges from
zero to the total variance of the data. Hence, in the ex-
treme case the variance due to noise is the same amount
than the variance due to data. We have run three exe-
cutions corresponding to three different fractions of ini-
tial corruption in the matching configuration. These are
0.5, 0.7 and 0.9 respectively. Since our method is the
only one sensitive to this kind of noise, we have plotted
comparative results of the cliques method [4] under the
same levels of corruption.

Results show that our method improves cliques
method while noise fraction is under 17% approxi-
mately, when corrupted fractions are 0.5 and 0.7. When
corruption fraction is 0.9, our method is better for any
noise value. It is interesting to note that positional noise
degrades the effectiveness of our method just until a
given threshold (approximately 25% of total variance).
After that threshold, it stabilizes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

positional noise variance rate

fin
al

 c
or

re
ct

 fr
ac

tio
n

 

 

cliques + procrustes (corrupt 0.5)

cliques + procrustes (corrupt 0.7)

cliques + procrustes (corrupt 0.9)

cliques (corrupt 0.5)

cliques (corrupt 0.7)

cliques (corrupt 0.9)

Figure 2. Final correct fraction rate versus
positional disturbance

6. Conclusions

We have presented a method for improving the
matching of graphs that are small and present low struc-
tural constraints, such as those obtained from shapes
(e.g. letters). We enhance the matching criterion by
the use of Procrustes methods on the coordinates of
the nodes. Although we have evaluated our method
with shapes it is applicable to any kind of object on
which meaningful positional information can be ex-
tracted. The model presented integrates perfectly into
the cliques framework and represents a negligible ex-
tra computational cost (for the graphs used in our ex-
periments). Results show a significant improvement in
recuperation ability of our model, specifically under se-
vere corruption conditions where the recuperation rate
is near 200% with respect to the cliques model. Posi-
tional disturbance does not degrade too much the per-
formance of our model, getting results comparable to
those obtained with the original cliques model.
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