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Chapter 1

Introduction

1.1 Motivation

Artificial Intelligence (AI) is the branch of the Computer Science field that
tries to imbue intelligent behaviour in software systems. In the early years of
the field, those systems were limited to big computing units where researchers
built expert systems that exhibited some kind of intelligence. But with the
advent of different kinds of networks, which the more prominent of those is
the Internet, the field became interested in Distributed Artificial Intelligence
(DAI) as the normal move.

The field thus moved from monolithic software architectures for its AI sys-
tems to architectures where several pieces of software were trying to solve a
problem or had interests on their own. Those pieces of software were called
Agents and the architectures that allowed the interoperation of multiple agents
were called Multi-Agent Systems (MAS). The agents act as a metaphor that
tries to describe those software systems that are embodied in a given environ-
ment and that behave or react intelligently to events in the environment.

The AI mainstream was initially interested in systems that could be taught
to behave depending on the inputs perceived. However this rapidly showed
ineffective because the human or the expert acted as the knowledge bottleneck
for distilling useful and efficient rules. This was in best cases, in worst cases
the task of enumerating the rules was difficult or plainly not affordable. This
sparked the interest of another subfield, Machine Learning and its counter part
in a MAS, Distributed Machine Learning. If you can not code all the scenario
combinations, code within the agent the rules that allows it to learn from the
environment and the actions performed.

With this framework in mind, applications are endless. Agents can be used
to trade bonds or other financial derivatives without human intervention, or
they can be embedded in a robotics hardware and learn unseen map config-
uration in distant locations like distant planets. Agents are not restricted to
interactions with humans or the environment, they can also interact with other
agents themselves. For instance, agents can negotiate the quality of service of

5



6 CHAPTER 1. INTRODUCTION

a channel before establishing a communication or they can share information
about the environment in a cooperative setting like robot soccer players.

But there are some shortcomings that emerge in a MAS architecture. The
one related to this thesis is that partitioning the task at hand into agents
usually entails that agents have less memory or computing power. It is not
economically feasible to replicate the big computing unit on each separate
agent in our system. Thus we can say that we should think about our agents as
computationally bounded , that is, they have a limited amount of computing
power to learn from the environment. This has serious implications on the
algorithms that are commonly used for learning in these settings.

The classical approach for learning in MAS system is to use some variation
of a Reinforcement Learning (RL) algorithm [BT96, SB98]. The main idea
around those algorithms is that the agent has to maintain a table with the per-
ceived value of each action/state pair and through multiple iterations obtain a
set of decision rules that allows to take the best action for a given environment.
This approach has several flaws when the current action depends on a single
observation seen in the past (for instance, a warning sign that a robot per-
ceives). Several techniques has been proposed to alleviate those shortcomings.
For instance to avoid the combinatorial explosion of states and actions, instead
of storing a table with the value of the pairs an approximating function like a
neural network can be used instead. And for events in the past, we can extend
the state definition of the environment creating dummy states that correspond
to the N-tuple (stateN , stateN−1, . . . , stateN−t)

1.2 Problem definition and goals

Given the problems before mentioned this thesis studies the effect of using a
model based approach to learn in a competitive agent environment. In order
to model the environment, in this case, an opposing agent, probabilistic finite
state automata will be employed. This will limit the range of possible hypoth-
esis when searching the state space. For illustrative purpose, the environment
where our agents will live is an abstraction of a competitive setting modelled
as a game theoretic model.

In this thesis we are going to explore the following related issues:

1. Some state-of-the-art algorithms for learning probabilistic automata will
be presented and discussed. Comparison of the learning abilities of each
algorithm will be under study

2. Agents can be seen as highly complicated transducers. That is, they are
software artifacts that after receiving some sensory inputs react to the
environment performing some actions. How can the implicit transducer
that an agent hides within its machinery be inferred, will be researched.
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3. Finally, when a working hypothesis is obtained, this model must be ex-
ploited in order to take an advantage in this setup. But our agent has
to keep in mind that this hypothesis might not be the underlying trans-
ducer and that some inexactitudes may happen, both in the structure of
the model or in the current state. How different models of complexity
degrade over time will be studied because we are mainly interested on
winning the agent competition

This Master’s Thesis tries to explore beyond the point where the thesis
of David Carmel ended. In his thesis he tries to infer deterministic automata
restricted to an alphabet with only 2 symbols. In this work, the general frame-
work is extended by allowing arbitrary alphabet length and by trying to infer
stochastic deterministic transducers. We have not been able to find online
the before mentioned thesis but the main lines of research can be learned by
reading the references [CM96b, CM96a, CM98, CM99].

1.3 Thesis overview

This thesis is organized as follows:

• Chapter 2 outlines the different areas this thesis relies on. A very simple
example of the steps and computations is used for illustrative purposes.

• Chapter 3 introduces the necessary automata concepts to understand
the building blocks of the methodology and exposes the algorithms used
to learn the PDFA.

• Chapter 4 presents the algorithmic theory that allows to infer trans-
ducers using automata. Once we have our working hypothesis of the
model our opponent is using for choosing movements, we should exploit
this knowledge. To that end we show how can transducers be translated
into and Markov Decision Processes.

• InChapter 5 we study how our setup is able to infer opponent strategies
and the rate and effectiveness of the learning process.

• Chapter 6 presents the conclusions derived from this study



8 CHAPTER 1. INTRODUCTION



Chapter 2

Problem Description

2.1 The Game Environment

In order to test our ideas we need an environment where two competing agents
interact with each other. Figure 2.1 illustrate all the elements that are involved
in the experimental setup.

Figure 2.1: Two opposing agents, one that learns and the other that has a
fixed strategy are competing playing the RoShamBo game

Let’s review the main components:

• Agents are playing a repeated game in the sense that is defined by the
Game Theory field. Players play simultaneous games emitting symbols,
and after seeing the pair of symbols, an external referee assigns payoffs to
each player. In the figure, agents are playing RoShamBo and the symbols
they can emit are either Paper, Rock or Scissors. The current movement

9



10 CHAPTER 2. PROBLEM DESCRIPTION

gives one point to our learning agent and -1 points to our fixed agent
because in RoShamBo, Paper wins Rock.

• There are two opposing agents. In the figure they are represented by
the letters A and B. The B -agent is the agent we are trying to model.
It has a probabilistic Moore Machine as its inner core strategy shown in
the upper right cloud. That strategy is fixed and will not change during
the game and is governed by the symbols that the A-agent sends.

• The A-agent is our learning agent. After some iterations with the B -
agent it creates a model hypothesis depicted in the upper-left cloud. This
automaton translates nicely to a transducer which this agent believes is
the strategy of the opposing agent. Once the agent has this hypothesis
it devises a counter strategy that is used to play the game until the end

The following sections address each element with more detail.

2.2 Interacting agents

One of the most interesting areas of the Artificial Intelligence field is Multi
Agent Systems (MAS). According to [Woo02],

Multiagent systems are systems composed of multiple interactingMAS
computing elements, known as agents.Agents are computer systems
with two important capabilities. First, they are at least to some ex-
tent capable of autonomous action of deciding for themselves what
they need to do in order to satisfy their design objectives. Second,
they are capable of interacting with other agents not simply by ex-
changing data, but by engaging in analogues of the kind of social
activity that we all engage in every day of our lives: cooperation,
coordination, negotiation, and the like.

Another definition about what an agent is can be found in [RN03]

An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that environment
through actuators

A rational agent is an agent that does the right thing according to a perfor-
mance measure that evaluates a given sequence of environment states. Note
that the performance measure evaluates environment states, not agent states.
We can thus define rationality as dependant on four things:

1. The performance measure that defines the criterion of success

2. The agent’s prior knowledge of the environment
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3. The actions that the agent can perform

4. The agent’s percept sequence to date

This again leads to the definition of a rational agent.

For each possible percept sequence, a rational agent should select
an action that is expected to maximize its performance measure,
given the evidence provided by the percept sequence and whatever
built-in knowledge the agent has [RN03]

The built-in knowledge is usually called the agent program. This program
guides how the agent picks actions based on the environment. Depending on
the procedures used by the agent, agent programs can be classified in four
basic kinds of agent programs:

1. Simple reactive agents

2. Model-based reactive agents

3. Goal-based agents

4. Utility-based agents

In this thesis we are going to explore Model-based reactive agents. For a
more exhaustive explanation of the different kinds of agent programs check
[PW04].

When an agent can be ascribed to the model-based reactive paradigm we
expect that the agent should maintain some sort of internal state that depends
on the percept history and thereby reflects at least some of the unobserved
aspects of the current environment state. In our case, the model of the world
will be an inferred transducer and the state our agent should maintain is in
which state our transducer currently is.

2.3 Repeated games

2.3.1 Games. Normal Form

A game [LR57] is a mathematical structure that comprises three elements:

1. A set of rules with the inner working of the game

2. A set of available moves to each player depending on the state of the
game

3. A function with the outcomes depending on the state of the game
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A game is usually used to represent a conflict between several contending play-
ers. This mathematical formulation allows the researcher to employ mathemat-
ics to study the outcome of several policies or strategies. In this thesis, moves
from each player do not depend on the game state, all movements are avail-
able in whichever instant of the game. Moreover, outcomes or payoffs are also
readily available when both players perform a move. These constraints allows
us to utilize in this thesis the normal form description of a game. When using
the normal form, games are described by using a matrix where the columns
show the available movements for one player and the rows the movements for
the other player. Cell intersections are used to represent the payoffs of each
player. When the payoff is different for each player, a tuple is used instead,
with the row player payoff as its first element and the column player payoff as
its second element.

The competitive interaction between agents can thus be formalized as a
repetition of a simple two-player game, where on each movement agents in-
teract with each other by simultaneously performing an action. The complete
set of pairs of actions can be aggregated to denote the history game. Let’s see
some examples of games.

Prisoner’s dilemma

Prisoner’s dilemma is a two-player game, where each player has two possible
actions A = {c, d} and the payoff for each player, p1, p2 is described in the
payoff matrix 2.1. For the Pirsoner’s Dilemma the game theoretical strategy

c d
c (3,3) (0,5)
d (5,0) (1,1)

Table 2.1: The payoff matrix for the Prisoner’s dilemma game

is to defect always. This is the optimal strategy for games that only involve
one interaction, but for repeated games, it is of the interest of the agents to
cooperate in the long run because this strategy rewards the agents the most.

RoShamBo

RoShamBo is a popular game that is seemingly used across cultures to diluci-
date minor conflicts or choices. Each player can perform one of three actions
A = {paper, stone, scissors} where each action beats or is beaten by the other
two actions. This can be explicitly shown in the payoff matrix 2.2.

RoShamBo has no stable strategy neither for the single interaction nor for
the repeated game interactions. It is also a zero sum game where what one
player wins, the other player loses.
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paper stone scissor
paper (0,0) (1,-1) (-1,1)
stone (-1,1) (0,0) (1,-1)

scissor (1,-1) (-1,1) (0,0)

Table 2.2: The payoff matrix for the RoShamBo game

2.4 Opponent Modelling

This thesis is mainly about learning the underlying strategy of an opposing
opponent. In game theoretic terms it is called opponent modelling. We want
to infer the most accurate model possible of our opponent because once we
have that picture we can create explicit strategies specially tailored to counter
act this opponent’s strategies.

2.4.1 Learning a model

Learning a model of an opponent is a kind of unsupervised learning environ-
ment. We do not have a set of labeled pairs of sensory input and opponent
state. Instead what we have is the sensory input, that is the set of actions
exchanged, and the game outcomes that are somehow related to the agent’s
state.

In opponent modelling we are trying to infer an abstracted description of
the player or the player’s behaviour during the game. Opponent modelling
is widely used in domains where the competitive nature of the agents are
central like in Poker. Opponent modelling techniques are employed there to
classify an opponent in an abstract sense as aggressive, rock or calling station
1. Alternatively, opponent modelling can go a step further in granularity and
try to predict whether a given player will call, check or raise in a Poker round.

For learning the opponent’s model, you usually have to employ some kind of
Reinforcement Learning algorithm (RL)[SB98]. RL algorithms are algorithms
that learn which actions our agent has to perform in a given environment to
accomplish a given goal usually modelled as a numerical reward. This fam-
ily of algorithms, amongst we can find TD-learning, Q-learning and SARSA
[BT96], try to infer a function that goes from the state of environment to
the actions that should be performed. This function can be as simple as a
table with pairs state/action or in cases where the combinatorial explosion of
states and actions make infeasible to store such tables, this function can be
approximated by an auxiliary function flexible enough to model those sub-
tleties. Those approximating functions are usually created by training neural
networks [Hay08].

1For a more comprehensive poker player descriptions check [Skl99]
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2.4.2 Model assumption

In this thesis, our main assumption is that our opposing agent has an algo-
rithmically encoded strategy to play the game. This algorithm belongs to
the family of functions that can be described as Stochastic Finite State Trans-
ducer (SFST). Basically the model we are assuming is that our opponent reacts
to our actions deterministically changing to another state in its automaton.
In order for the agent to generate its next action, each state has a discrete
probabilistic distribution where symbols will be generated according to that
distribution. It is also known as a Stochastic Moore Machine.

Moore machines can be directly translated into Mealy machines and the
other way around. For our learning purposes it is more convenient that this
Stochastic Moore Machine be described as a Stochastic Mealy Machine since
this translation allows us to use all the already known machinery to deal with
Markov Decision Processes. Transforming a Moore machine into its Mealy
counterpart can be easily accomplished by means of appending the symbol
emitted in the state to each of the incoming transitions. Since the Moore
machine is Stochastic, this propagation carries the probability associated and
generates in turn a Stochastic Mealy Machine.

Let’s see a concrete example. In Figure 2.2 we can see an example of such
Moore machines representing an agent that “almost” always emits the same
symbol that triggered the transition. After performing the output symbol

c = 0 . 9
d = 0 . 1

c

c = 0 . 1
d = 0 . 9

d

c

d

Figure 2.2: Stochastic Moore Machine

propagation on each step, we obtain the Stochastic Mealy machine that can
be seen in Figure 2.3.

Learning this kind of transducers that represent the computational strategy
of the opposing agent will be the objective of the learning agent.

2.5 Learning the opponent’s transducer

In order to learn the opponent transducer, rounds of the game will be played
and the results of each round will conform the training data for our PDFA
learning algorithms. After a PDFA has been obtained and using the GIATI
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q0 q1
d/d (0.45)

d/c (0.05)

d/c (0.05)

d/d (0.45)

c/c (0.45)

c/d (0.05)
c/d (0.05)

c/c (0.45)

Figure 2.3: Transformed Mealy machine from the original Moore machine

algorithm a transducer is also obtained. This transducer is similar to a Markov
Decision Process for which known algorithms for proper control exist.

This thesis is concerned with the comparison of different PDFA learning
algorithms and their effect on the competitive environment of the proposed
games. Two main algorithms are going to be studied, ALERGIA and MDI.

2.5.1 ALERGIA

The ALERGIA algorithm by Carrasco and Oncina [CO94] is an extension of
the non-stochastic algorithm RPNI presented in [Onc92].

2.5.2 MDI

The MDI algorithm ([Tho00]) is conceptually similar to the ALERGIA al-
gorithm but improves results by taking into account global features whereas
ALERGIA is concerned in local ones.

2.5.3 GIATI algorithm

After obtaining an automaton, we use the GIATI algorithm for obtaining the
transducer. In order to learn the Stochastic Finite State Transducer

SFST we employ the GIATI algorithm described in [CVP05]. Given an input
alphabet Σ and an output alphabet ∆ our training corpus consist of words
formed by (s,t) ∈ Σ+ ×∆+

1. Each training pair (s,t) is transformed into a string z from an extended
alphabet Γ (strings of Γ-symbols) yielding a sample S of strings Z ∈ Γ∗

2. A stochastic regular grammar G is inferred from S

3. The Γ-symbols of the grammar rules are transformed back into pairs of
source/target symbols/strings (from Σ∗ ×∆∗).

The main problem using the GIATI algorithm is that the mapping from
the training pairs to the new alphabet, the labeling function L : Σ∗×∆∗ → Γ∗
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and the inverse function are not specified and they must make sense in the
problem at hand. In our problem, we don’t have such nuances since, in the
games we are studying, both agents perform only one action on each turn and
thus, no problem of alignment between strings has to be inferred.

In Figure 2.4 we can see the machine presented in Section 2.4.2 transformed
into its equivalent Probabilistic Deterministic Finite State Machine over the
new vocabulary Γ : {cc, cd, dc, dd} ≡ {x, y, w, z}.

q0 q1
z (0.45)

w (0.05)

w (0.05)

z (0.45)

x (0.45)

y (0.05)
y (0.05)

x (0.45)

Figure 2.4: The Mealy Machine has been transformed into a Probabilistic DFA
with an extended alphabet

2.6 Defeating the opponent

Once we have an opponent’s model hypothesis, our task is to generate the
corresponding actions that helps us to govern the automaton. This is easily
accomplished given the fact that a Mealy Machine, a transducer, can be easily
converted to an equivalent Markov Decision Process. So our first step will
be to perform that conversion and after that use one of the algorithms for
inferring the best policy for the MDP.

2.6.1 Utility functions

In order to solve the best response problem we have to define the utility function
that our agent is going to use to evaluate a result. This utility function is
related to each of the payoffs on each game stage and to the remaining horizon
in the whole game.

There are several possible utility functions that drive the search of actions
in the MDP, here are a couple for illustrative purposes.

• The discounted-sum function:

Uds
i (s1, s2) = (1− γi)

∞
∑

t=0

γt
iui(s1(g(s1,s2)(t)), s2(g(s1,s2)(t)))

Where Ui is the utility function for player i when hi is playing according
to strategy s1 and his opponent is using strategy s2.



2.7. EXAMPLE 17

• The limit-of-the-means functions:

U lm
i (s1, s2) = lim

k→∞

inf
1

k

k
∑

t=0

ui(s1(g(s1,s2)(t)), s2(g(s1,s2)(t)))

Where again, Ui is the utility function for player i when he is playing
according to strategy s1 and his opponent is using strategy s2.

2.7 Example

To illustrate all the process involved, let’s develop an example. Each step will
be explained in further detail in next sections, this is a high level summary of
the info that has to come.

Let’s start assuming that our agents are competing in a Prisoner’s Dilemma
competition. The agent that has the fixed strategy is playing the probabilistic
Tit-For-Tat strategy. That means that this agent, almost always, repeats your
last move. This agent has been seen before in Figure 2.2 and we reproduce it
here for easiness in following the explanation (Figure 2.5).

q0 q1
d/d (0.45)

d/c (0.05)

d/c (0.05)

d/d (0.45)

c/c (0.45)

c/d (0.05)
c/d (0.05)

c/c (0.45)

Figure 2.5: Probabilistic transducer (Tit-for-Tat)

Since this is our first iteration, our learning agent has no information about
what is the structure of its opponent, so the best approach is to generate
movements at random. The initial structure can be seen in Figure 2.6. Keep in

q0

c (0.5)

d (0.5)

Figure 2.6: Random Automata

mind, that our random automaton is only a concise way to represent a uniform
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distribution of symbols. For our learning agent the model used to generate
movements can be whatever structure, automata, functions or a translation
table.

Let’s advance some terminology. Our objective, is that our learning agent
outperforms its opponent in a Game. A game is composed of several rounds.
Each round has a fixed number of matches with a fixed number of movements
for each match (Figure 2.7) where each agent picks a symbol, and a reward is
given as an answer of this action. For our example, the game will consist on
two rounds with 25 moves each distributed on 5 matches per round.

Figure 2.7: Decomposition of each game in several layers of detail

The history of the first 5 matches happens to be:

(d-d)

(c-d)

(c-c)

(c-c)

(d-d)

---------

(d-d)

(d-d)

(c-d)

(d-c)

(d-d)

---------

(d-d)

(d-d)

(c-d)

(d-d)

(d-d)



2.7. EXAMPLE 19

---------

(d-d)

(d-d)

(c-d)

(c-c)

(d-c)

---------

(c-d)

(c-c)

(d-c)

(d-d)

(d-d)

---------

where each tuple represents a simultaneous move of the agents. At this
moment, the game referee stops the exchange of movements, packs the history
obtained so far and notifies it to the learning Agent. Our learning, agent
performs the language transformation of the implicit transducer and groups
letters into words. The resulting word set is

zxwwz

zzxyz

zzxzz

zzxwy

xwyzz

Note, that the learning stage occurs over the extended alphabet.
When running the ALERGIA algorithm with parameter α = 0.7 over this

training set we obtain the PDFA in Figure 2.8

0

x [0.26]
z  [0 .47]

1
w [0 .16]

y [0 .053]

w [0 .091]
y [0.18]
z  [0 .36]

Figure 2.8: PDFA learned after the first 25 interactions

But don’t forget that this automaton is representing the Mealy machine
that can be seen in Figure 2.9

The cautious reader should have noticed that outgoing probability transi-
tions in this automaton do not add 1. This is so because algorithms learning
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0

c/d [0.26]
d/d [0.47]

1
c/c [0.16]

d/c [0.053]

c/c [0.091]
d/c [0.18]
d/d [0.36]

Figure 2.9: Mealy Machine derived from the learned PDFA

State Action

0 c
1 d

Table 2.3: Derived actions of each state given the Mealy-Machine of Figure
2.10

PDFA take into account a transition probability to hidden sink state used to
mark the end of the word. Since in our scenario there is no such concept word
we must smooth the obtained automata in order to normalize the outgoing
probabilities. The final Mealy machine can be seen in 2.10.

0

c/d [0.28]
d/d [0.50]

1
c/c [0.17]

d/c [0.05]

c/c [0.14]
d/c [0.29]
d/d [0.57]

Figure 2.10: Smoothed Mealy Machine derived from the learned PDFA

Later in this thesis 4.3.1 it is shown that this probabilistic Mealy Machine
corresponds with a Markov Decision Process for which algorithms exists that
allows us to govern it optimally. Applying a policy iteration algorithm to
infer our decision rules and using the discounted infinite reward function as
the accumulated reward function, we obtain that for this automaton the rules
governing the automaton are the ones in Table 2.3.



Chapter 3

Learning Probabilistic Finite

State Automata

3.1 Introduction

The fundamental mathematical object in this thesis is a Finite State Machine,
in its different flavors, deterministic, non-deterministic, probabilistic or an
extended version, the transducer. It is thus necessary to explain some related
concepts about languages and automata.

3.2 Symbols, Languages and Grammars

The field of Syntactic Pattern Recognition is concerned about finding structure
in a stream of discrete symbols. Symbols are the elements of a finite set. Those
elements are usually represented by letters and the set itself is called alphabet
and is usually represented by the symbol Σ.

A word is a finite sequence of symbols in a given alphabet. For convenience
the empty word is also defined and is usually represented by the greek symbol
λ. The set of all the words that can be composed by a given alphabet is called
the universal language of Σ. This language Σ∗ also includes the empty word.
So for example, given the alphabet consisting of a single letter Σ = {a}, the
universal language that can be constructed is:

Σ∗ = {λ, a, aa, aaa, · · · }

Let’s call language over the alphabet Σ to a subset of the universal language
of Σ.

L ∈ Σ∗

We call probabilistic or stochastic language to the pair of a language and a
function that assigns probabilities to each word of the language

{L, PL(·)}

21



22CHAPTER 3. LEARNING PROBABILISTIC FINITE STATE AUTOMATA

3.3 Finite State Automaton

A finite state automaton (FSA) [HMU01, ASMO97], is defined by a five-tuple
(Q,Σ, δ, q0, F ) where:

• Q is a finite set of states

• Σ is an alphabet

• q0 is the initial state

• F ⊆ Q is the set of final states

• δ : Q× Σ→ 2Q is a partial function

We say that q is a successor of p if p ∈ δ(q, a). We call our automaton
deterministic if for all q ∈ Q and for all a ∈ Σ, the transition δ(q, a) has at
most one element.

3.3.1 Quotient Automaton

Let A be a FSA and π a partition of Q, we denote by B(q, π) as the only block
that contains q and we denote the quotient set {B(q, π)|q ∈ Q} as Q/π. Given
a FSA A and a partition π over Q we define the quotient automaton A/π as:

A/π = (Q/π,Σ, δ′, B(q0, π), {B ∈ Q/π|B ∩ F 6=})

where δ′ is defined as:

∀B,B′ ∈ Q/π, ∀a ∈ Σ, B′ ∈ δ′(B, a) if ∃q, q′ ∈ Q, q ∈ B, q′ ∈ B′ : q′ ∈ δ(q, a)

Given the automaton A and the partition π over Q, we have that the language
defined by the quotient automaton satisfies L(A) ⊆ L(A/π).

3.3.2 Probabilistic Automata

All the concepts explained for simple automata can be extended to the prob-
abilistic case. A stochastic finite automaton (SFA), A = (Σ, Q, P, q0), consists
of an alphabet Σ, a finite set of nodes Q = {q0, q1, . . . , qn} with q0 the initial
node, and a set P of probability matrices pij(a) giving the probability of a
transition from node qi to node qj led by the symbol a in the alphabet. If we
call pif the probability that the string ends at node qi, the following constraint
applies:

pif +
∑

qj∈Q

∑

a∈A

pij(a) = 1
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The probability p(w) for the string w to be generated by A is defined by:

p(w) =
∑

qj∈Q

p0j(w)pjf

pij(w) =
∑

qk∈Q

∑

a∈A

pik(wa
−1)pkj(a)

and the language generated by the automaton A is defined as:

L = {w ∈ Σ∗ : p(w) 6= 0}

Those languages generated by means of a SFA are called stochastic regular
laguages. In case the SFA contains no useless nodes1, it generates a probability
distribution for the strings in Σ∗:

∑

w∈Σ∗

p(w) = 1

The algorithms that we are going to use to infer the probabilistic automata,
are restricted to learn probabilistic deterministic finite automata (PDFA). This
means that for every node qi ∈ Q and symbol a ∈ A there exists at most one
node such pij 6= 0. In such cases a transition function h = δ(i, a) can be
defined.

3.4 Algorithms

3.4.1 Identifying regular languages

Here we present some concepts that will be useful when developing later the
automata algorithms.

A prefix tree acceptor (PTA) is a tree-like DFA built from the learning
sample by taking all the prefixes in the sample as states and constructing the
smallest DFA which is a tree. A formal algorithm buildPrefixTree can be seen
in Algorithm 1. Note that we can also build a PTA from a set of positive
strings only. This corresponds to building the PTA(〈S+, ∅〉).

The algorithm we are going to study takes the PTA as a starting point and
tries to generalise from it by merging states. In order not to get lost in the
process it will be interesting to divide the states into three categories:

1. The RED states which correspond to states that have been analysed and
which will not be revisited; they will be the states of the final automaton

2. The BLUE states which are the candidate states: they have not been
analysed yet and it should be from this set that a state is drawn in order
to consider merging it with a RED state

1A node qi is useless if there are no strings x, y ∈ Σ∗ such that
∑

j p1i(x)pij(y)pjf 6= 0
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Algorithm 1 buildPrefixTree

Input: A sample 〈S+, S−〉
Output: A = PTA(〈S+, S−〉) = 〈Σ, Q, qλ, FA, FR, δ〉
FA ← ∅
FR ← ∅
Q← {qu : u ∈ PREF (S+ ∪ S−)}
for qu·a ∈ Q do

δ(qu, a)← qua
end for

for qu ∈ Q do

if u ∈ S+ then

FA ← FA ∪ qu
end if

if u ∈ S− then

FR ← FR ∪ qu
end if

end for

return A

3. The WHITE states, which are all the others. They will in turn become
BLUE and then RED

The basic operations that allow the manipulation of the PTA are compat-

ible, merge and promote.

compatible: deciding equivalence between states

The question here is of deciding if two states are compatible or not, that is, if
merging these two states will not result in creating confusion between accepting
and rejecting states. Typically the compatibility might be tested by:

q ≃A q′ ⇐⇒ LFA
(Aq) ∩ LFR

(Aq′) = ∅ and LFR
(Aq) ∩ LFA

(Aq′) = ∅

But it happens that the formula above is not sufficient to merge two states
and there are situations in which more operations like merging, folding and
then testing consistency are needed.

merge: merging two states

The merging operation takes two states from an automaton and merges them
into a single state. It should be noted that the effect of the merge is that a
deterministic automaton will probably lose the determinism property through
this operation, and thus we will attempt to avoid having to use these automata.
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promote: promoting a state

Promotion is another deterministic and greedy decision. The idea here is that
having decided that a state in the PTA that is a candidate for merging with
the final automata state, this state should finally become a final state of the
resulting automata and should not be merged.

3.4.2 RPNI

Although not an algorithm to learn Probabilistic DFAs but regular Determin-
istic Finite Automata, the algorithm RPNI [Onc92] is the base for the Alergia
(3.4.3) and subsequently the MDI algorithm (3.4.4). It is thus interesting to
briefly review how it works.

Although its similarities with its probabilistic derivations, this algorithm
needs both a sample of positive attributes (S+) belonging to the language we
are trying to learn and a set of negative examples (S−) that do not belong
to the intended language. Obviously, the more examples both positive and
negative, the more is covered the language and thus the easier to learn exactly.

This algorithm starts by building the prefix tree acceptor of the positive
instances of the training sample (S+) and then proceeds by iteratively choosing
possible merges, checks if a given merge is correct and is made between two
compatible states, makes the merge if admissible and promotes the state if no
merge is possible.

The algorithm has as a starting point the PTA, which is a deterministic
finite automaton. In order to avoid problems with non-determinism, the merge
of two states is immediately followed by a folding operation: the merge in
RPNI always occurs between a state already selected as final and a state that
is considered in the iteration.

At the end of the process we expect the obtained automaton to accept the
strings present in the training sample and to reject the negative ones.

Algorithm 2 RPNI-PROMOTE

Input: a DFA A = 〈Σ, Q, qλ, FA, FR, δ〉, sets Red,Blue ⊆ Q, qu ∈ Blue

Output: A, Red, Blue updated
Red← Red ∪ {qu}
Blue← Blue ∪ {δ(qu, a), a ∈ Σ}
return A, Red,Blue

Example

Here we show how a PTA is built from a set of examples. For this dataset we
have that S+ = {011, 101} and S− = {1, 01}. So the PTA obtained from the
set of positive examples can be seen in Figure 3.1.
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Algorithm 3 RPNI-COMPATIBLE
Input: A, S−

Output: a Boolean, indicating if A is consistent with S−

for w ∈ S− do

if δA(qλ, w) ∩ FA 6= ∅ then
return False

end if

end for

return True

Algorithm 4 RPNI-MERGE

Input: a DFA A, states q ∈ Red, q′ ∈ Blue

Output: A updated
Let (qf , a) be such that δA(qf , a) = q′

δA(qf , a)← q
return RPNI-FOLD(A, q, q′)

Algorithm 5 RPNI-FOLD

Input: a DFA A, states q, q′ ∈ Q q’ being the root of a tree
Output: A updated, where subtree q′ is folded into q
if q′ ∈ FA then

FA ← FA ∪ {q}
end if

for a ∈ Σ do

if δA(q
′, a) is defined then

if δA(q, a) is defined then

A← RPNI-FOLD(A, δA(q, a), δA(q
′, a))

else

δA(q, a)← δA(q
′, a)

end if

end if

end for
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Algorithm 6 RPNI

Input: a sample S = 〈S+, S−〉, functions COMPATIBLE, CHOOSE
Output: a DFA A = 〈Σ, Q, qλ, FA, FR, δ〉
A← BUILD-PTA(S+)
Red← {qλ}
Blue← {qa : a ∈ Σ ∩ Pref(S+)}
while Blue 6= ∅ do
CHOOSE(qb ∈ Blue)
Blue← Blue \ {qb}
if ∃qr ∈ Red such that RPNI-COMPATIBLE(RPNI-MERGE(A, qr, qb), S−)
then

A← RPNI-MERGE(A, qr, qb)
Blue← Blue ∪ {δ(q, a) : q ∈ Red ∧ a ∈ Σ ∧ δ(q, a) /∈ Red}

else

A← RPNI-PROMOTE(qb, A)
end if

end while

for qr ∈ Red do

if λ ∈ (L(Aqr)
−1S− then

FR ← FR ∪ {qr}
end if

end for

λ

0 01 011

1 10 101

0
1 1

1
0 1

Figure 3.1: Prefix tree of the positive training sample

3.4.3 ALERGIA

The ALERGIA algorithm [CO94] for learning PDFAs follows the same princi-
ples than the RPNI algorithm seen in Section 3.4.2. First begins by building
the Prefix Tree Acceptor (PTA) from the training sample and evaluates at
every node the relative probabilities of the transitions coming out from the
node. Next it tries to merge couples of nodes following a well defined order
(essentially, that of the levels in the PTA or lexicographical order). Merging is
performed if the resulting automaton is, within statistical uncertainty, equiva-
lent to the PTA. The process ends when further merging is not possible. The
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algorithm can be seen in Algorithm 9

Algorithm 7 ALERGIA-TEST

Input: an FFA A, f1, n1, f2, n2, α > 0
Output: a Boolean indicating if the frecuencies f1

n1
and f2

n2
are sufficiently

close
γ ← f1

n1
− f2

n2

return
(

γ <
(√

1
n1

+
√

1
n2

)

·
√

1
2
ln 2

α

)

The compatibility test makes use of the Hoeffding bounds. The algorithm
ALERGIA-COMPATIBLE (8) calls the ALERGIA-TEST (7) as many times
as needed, this number being finite due to the fact that the recursive calls visit
a tree.

The basic function CHOOSE is as follows: take the smallest state in an
ordering that has been done at the beginning (on the PTA). The test that is
used to decide if the states are to be merged or not (function COMPATIBLE)
is based on the Hoeffding test made on the relative frequencies of the empty
string and of each prefix.

Algorithm 8 ALERGIA-COMPATIBLE
Input: an FFA A, two states qu, qv, α > 0
Output: qu and qv compatible?
Correct← True
if ALERGIA-TEST(FP A(qu),FREQA(qu), FP A(qv), α) then
Correct← False

end if

for a ∈ Σ do

if ALERGIA-TEST(δfr(qu, a),FREQA(qu), δfr(qv, a),FREQA(qv), α)
then

Correct← False
end if

end for

3.4.4 MDI

Algorithm ALERGIA decided upon merging (and thus generalisation) through
a local test: substring frequencies are compared and if it is not unreasonable
to merge, then merging takes place. A more pragmatic point of view could
be to merge whenever doing so is going to give us an advantage. The goal
is of course to reduce the size of the hypothesis while keeping the predictive
qualities of the hypothesis (at least with respect to the learning sample) as
good as possible. For this we can use the likelihood of each string. The goal is
to obtain a good balance between the gain in size and the loss in perplexity.
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Algorithm 9 ALERGIA

Input: a sample S, α > 0
Output: an FFA A
Compute t0, threshold on the size of the multiset needed for the test to be
statistically significant
A← PTA(S)
Red← {qλ}
Blue← {qa : a ∈ Σ ∩ Pref(S)}
while CHOOSE(qb) from Blue such that FREQ(qb) ≥ t0 do

if ∃qr ∈ Red : ALERGIA-COMPATIBLE(A, qr, qb, α) then
A← STOCHASTIC-MERGE(A, qr, qb)

else

Red← Red ∪ {qb}
end if

Blue← {qua : ua ∈ Pref(S) ∧ qu ∈ Red} \Red

end while

return A

Attempting to find a good compromise between these two values is the
main idea of algorithm MDI (Minimum Divergence Inference).

Algorithm 10 MDI-COMPATIBLE

Input: an FFA A, two states q and q′, S, α > 0
Output: a Boolean indicating if q and q′ are compatible
B ← STOCHASTIC-MERGE(A, q, q′)
return (score(S,B) < α)

The key difference is that the recursive merges are made inside Algorithm
MDI-COMPATIBLE (3.4.4) and before the new score is computed instead of
in the main algorithm.

Like in the ALERGIA algorithm, a difficult question to answer is that of
setting the tuning parameter (α): if set too high, merges will take place early,
which will perhaps include a wrong merge, prohibiting later necessary merges,
and the result can be bad. On the contrary, a small α will block all merges,
including those that should take place, at least until there is little data left.
This is the safe option, which leads in most cases to very little generalization.
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Algorithm 11 MDI

Input: a sample S, α > 0
Output: an FFA A
Compute t0, the threshold on the size of the multiset needed for the test to
be statistically significant
A← PTA(S)
Red← {qλ}
Blue← {qa : a ∈ Pref(S)
currentscore← score(S, PTA(S))
while CHOOSE(qb) from Blue such that FREQ(qb) ≥ t0 do

if ∃qr ∈ Red : MDI-COMPATIBLE(A, qr, qb, S, α) then
A← STOCHASTIC-MERGE(A, qr, qb)

else

Red← Red ∪ {qb}
end if

Blue← {qua : ua ∈ Pref(S) ∧ qu ∈ Red} \Red

end while

return A



Chapter 4

Opponent Modelling

4.1 Defeating an Opponent

In Chapter 3 we learned about the algorithms used for inferring the PDFAs.
Those algorithms are used in the context of a repeated game setup where our
learning agent is trying to defeat an opponent. This chapter is about the two
main steps that must be performed to accomplish this goal:

1. Derive a working hypothesis about the internal strategy that our oppo-
nent is using. This will be accomplished using the GIATI algorithm.

2. Derive a counter-strategy that could exploit any weaknesses that strategy
could have. This will be accomplished translating our working hypothesis
into a Markov Decision Process and deriving the governing rules for it.

4.2 The GIATI algorithm

In the previous chapter we have seen techniques to infer probabilistic automata
from examples but in this thesis what we are trying to infer is the transducer
that our opponent is using to play the game. So, we should fill the gap between
having algorithms that learn PDFAs and to convert those models into the
target transducer. This chapter is devoted to the necessary techniques to
accomplish this task.

4.2.1 Some terminology

A finite-state transducer (FST), T , is a tuple 〈Σ,∆, Q, q0, F, δ〉, in which:

1. Σ is a finite set of source symbols

2. ∆ is a finite set of target symbols

3. Q is finite set of states

31
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4. q0 is the initial state

5. F ⊆ Q is a set of final states

6. δ ⊆ Q× Σ×∆∗ ×Q is a set of transitions.

Note that Σ ∩∆ = ∅. A translation form φ of length I in T is defined as the
sequence of transitions:

φ = (qφ0 , s
φ
1 , t

φ
1 , q

φ
1 )(q

φ
1 , s

φ
2 , t

φ
2 , q

φ
2 ) · · · (q

φ
I−1, s

φ
I , t

φ
I , q

φ
I )

where (qφi−1, s
φ
i , t

φ
i , q

φ
i ) ∈ δ. A pair (s, t) ∈ Σ∗×∆∗ is a translation pair if there

is a translation form φ of length I in T such that I = |s| and t = tφ1 t
φ
2 · · · t

φ
I .

A rational translation is the set of all translation pairs of some finite-state
transducer T .

This definition of a finite-state transducer is similar to the definition of a
regular or finite-state grammar. The main difference is that in a finite-state
grammar, the set of target symbols ∆ does not exist, and the transitions are
defined on Q × Σ × Q. A translation form is the transducer counterpart of a
derivation in a finite-state grammar, and the concept of rational translation is
reminiscent of the concept of (regular) language, defined as the set of strings
associated with the derivations in the grammar G.

A stochastic finite-state transducer , TP is defined as a tuple 〈Σ,∆, Q, q0, p, f〉
in which Q, q0,∆,Σ are as in the definition of a finite-state transducer and p
and f are two functions:

1. p : Q× Σ×∆∗ ×Q→ [0, 1]

2. f : Q→ [0, 1]

That satisfy ∀q ∈ Q

f(p) +
∑

(a,w,q′)∈Σ×∆∗×Q

p(q, a, w, q′) = 1

The probability of a translation pair (s, t) ∈ Σ∗ ×∆∗ according to TP

is the sum of the probabilities of all the translation forms of (s, t) in T :

PTP
(s, t) =

∑

φ∈d(s,t)

PTP
(φ)

where the probability of a translation form φ is

PTP
(φ) =

I
∏

i=0

p(qi−1, si, ti, qi) · f(qI)

that is, the product of the probabilities of all the transitions involved in φ.
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There are two main types of finite state transducers, the Moore machine
and the Mealy machine. Since we are interested in its stochastic derivations,
we will show the definition of the probabilistic instances. The definition of
the deterministic entities could be obtained by simply taking into account
degenerate probabilities where only one transition has the full weight, i.e. there
is a transition that has probability 1.

Moore machine

A Moore machine is a deterministic automaton with the ability to generate
symbols. Like other automata, the Moore machine performs state transitions
depending on the input symbol consumed. When the automata lands in a new
state, an output symbol is generated according to an internal formula.

Formally a stochastic Moore machine is a tuple 〈Q,Σ,∆, δ, λ, q0〉 where:

• Q is the set of nodes in the automaton

• Σ and ∆ are the input and output alphabets

• δ : Q× Σ→ PQ is the set of probability distributions over Q

• λ : Q → P∆ is the probabilistic output function. The Moore machine
generates output symbols according to a given probability function P∆

• q0 is the initial state

Mealy machine

A Mealy machine is also a deterministic automaton that generates output
symbols during the state transition. The main difference with the Moore
machine is that you can define different probability functions for the transitions
and for the output symbols while in the Mealy machine the probability function
is a joint function for the transitions and the output symbols.

Mathematically a Mealy machine is a tuple 〈Q,Σ,∆, δ, q0〉 where:

• Q is the set of nodes in the automata

• Σ and ∆ are the input and output alphabets

• δ : Q × Σ → PQ×∆ is the set of probability distributions over the set of
transitions and output symbols Q×∆

• q0 is the initial state

The GIATI algorithm relies on the following two theorems. The interested
reader should check [Ber09] for the corresponding proofs.

Theorem 4.1. T ⊆ Σ∗×∆∗ is a rational translation if and only if there exists
an alphabet Γ, a regular language L ⊂ Γ∗, and two morphisms hΣ : Γ∗ → Σ∗

and h∆ : Γ∗ → ∆∗ such that T = {(hΣ(w), h∆(w))|w ∈ L}.
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and

Theorem 4.2. A distribution PT : Σ∗ × ∆∗ → [0, 1] is a stochastic rational
translation if and only if there exist an alphabet Γ, two morphism hΣ : Γ∗ → Σ∗

and h∆ : Γ∗ → ∆∗, and a stochastic regular language PL such that ∀(s, t) ∈
Σ∗ ×∆∗,

PT (s, t) =
∑

w∈Γ∗:(hΣ(w),h∆(w))=(s,t)

PL(w)

4.2.2 Inferring Finite-State Transducers

The methodology explained in [CV04] is called grammatical inference and

alignment for transducer inference (GIATI). Based on the works of Berstel
[Ber09] it is well known that (stochastic) rational translation T can be obtained
as a homomorphic image of certain (stochastic) regular language L over an
adequate alphabet Γ.

This suggest the following general technique for learning a stochastic finite-
state transducer, given a finite sample I+ of string pairs (s, t) ∈ Σ∗ ×∆∗:

1. Each training pair (s, t) from I+ is transformed into a string z from an
extended alphabet Γ (strings of Γ-symbols) yielding a sample S of strings
S ⊂ Γ∗. Lets call this transformation L : Σ∗ ×∆∗ → Γ∗

2. A (stochastic) regular grammar G is inferred from S

3. The Γ-symbols of the grammar rules are transformed back into pairs of
source/target symbols/strings (from Σ∗ × ∆∗). The “inverse labelling
function” Λ : Γ∗ → Σ∗ × ∆∗ is one that Λ(L(I+)) = I+. Following
Theorems 4.2 and 4.1, Λ(·) consists of a couple of morphisms, hΣ, h∆,
such that for a string z ∈ Γ∗, Λ(z) = (hΣ(z), h∆(z))

The overall procedure can be seen in the Figure 4.1.

A ⊂ Σ∗ ×∆∗
Labeling - L(·)
−−−−−−−−→ S ⊂ Γ∗





y
GI





y

algorithm

T : A ⊂ T (T)
Inverse labeling - Λ(·)
←−−−−−−−−−−−− G : S ⊂ L(G)

Figure 4.1: Commutative diagram of the transformations performed using the
GIATI algorithm
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4.2.3 Applying GIATI in the repeated games scenario

When applying the GIATI algorithm three placeholders have to be filled in
order to run the algorithm, the labelling function L(·), the inverse labelling
function Λ(·) and the algorithm used to learn the probabilistic automaton.
For our opponent modelling scenario that has been defined in Section 2.3, the
GIATI elements are defined as follows:

• Choosing the labelling function L tends to be a difficult decision. In sta-
tistical translation, that is one of the domains where FST are of common
use, a previous study of the statistical correlations between the positions
of the words in the source language and the target language, called sta-
tistical alignment, is performed. In our case, since the action and the
response are always paired, there is no need to perform such statistical
analysis of the data, each input symbol is paired with only one output
symbol.

So, the labelling function L will be

L(s, t) = concat(s, t) = st = z z ∈ Γ

where the symbol st ∈ Γ is obtained from the alphabet Γ that receives
its elements from all the permutations of the symbols in Σ and ∆.

• Learning the probabilistic automata will be performed using one of the
before mentioned algorithms, ALERGIA and MDI

• The inverse labelling function just splits the source symbol from the
target symbol

Λ(z) = Λ(st) = (s, t) s ∈ Σ, t ∈ ∆

4.3 Markov Decision Processes

A Markov Decision Process (MDP) [Ber95, Put94] consists of five elements:
decision epochs, states, actions, transition probabilities, and rewards.

Decision Epochs and Periods

Decisions are made at points of time referred as decision epochs. Let T denote
the set of decision epochs, in a discrete environment T can be finite or infinite
ranging in the real positive line. In our discrete environment, at each epoch
decisions are made to govern the probabilistic system.
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State and Action Sets

At each decision epoch, the system occupies a state. We denote the set of
possible system states as S. If, at some decision epoch, the decision maker
observes the system in state s ∈ S, he may choose action a from the set of
allowable actions in state s, As. Given this setup let A = ∪s∈SAs. Note that
S and A do not vary with t.

Actions may be chosen either randomly or deterministically. Choosing
actions randomly means selecting a probability distribution q(·) ∈ P (As) being
P (As) the collection of probability distributions on subsets of As. When we
are dealing with deterministic selection of actions, our model is simply using
degenerate probability distributions.

Rewards and Transition Probabilities

As a result of choosing action a ∈ As in state s,

1. the decision maker receives a reward, rt(s, a) and

2. the system state at the next decision epoch is determined by the proba-
bility distribution p(·|s, a)

From the perspective of the models, it is immaterial how the reward is
accrued during the period. We only require that its value or expected value be
known before choosing an action, and that it not be effected by future actions.
The reward might be,

1. a lump sum received prior to the next decision epoch

2. a random quantity that depends on the system state at the subsequent
epoch

3. or a combination of the above

When the reward depends on the state of the system at the next decision
epoch, we let r(s, a, j) denote the value at time t of the reward received when
the sttate of the system at decision epoch t is s, action a ∈ As is selected
and the system occupies state j at decision epoch t+ 1. Its expected value at
decision epoch t may be evaluated by computing

rt(s, a) =
∑

j∈S

rt(s, a, j)pt(j|s, a)

We usually assume that
∑

j∈S

pt(j|s, a) = 1

We refer to the collection of objects forming a tuple

〈T, S,As, p(·|s, a), r(s, a, j)〉 (4.1)
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as a Markov Decision Process. The qualifier “Markov” is used because the
transition probabilities and reward functions depend on the past only through
the current state of the system and the action selected by the decision maker
in that state.

Decision Rules

A decision rule prescribes a procedure for action selection in each state at
a specified decision epoch. There is a lot of variety on how decision rules
pick their actions but the primary focus in this thesis will be on deterministic
Markovian rules because they are easier to implement and evaluate. Such
decision rules are functions d : S → As, which specify the action choice when
the system occupies state s, and thus for each s ∈ S we have d(s) ∈ As. This
decision rule is said to beMarkovian (memoryless) because it does not depends
on previous system states and actions only thought the current state of the
system, and deterministic because it chooses an action with certainty.

Policies

A policy specifies the decision rule to be used at all decision epochs. We call
a policy stationary if dt = d for all t ∈ T

4.3.1 Links between Probabilistic Mealy Machines and

MDP

The GIATI algorithm provides us with a transducer in the form of a non-
deterministic Mealy Machine. There is an almost direct translation between
this Mealy machine and an MDP but some considerations should be taken into
account. Lets recap the definitions of those mathematical objects, a Mealy
Machine (Section 4.2.1) is the tuple:

〈Q,Σ,∆, δ, q0〉

and a Markov Decision Process (Equation 4.1) is defined by:

〈T, S,As, p(·|s, a), r(s, a, s
′)〉

So the different transformations can be summarized by

• The decision epochs T in a MDP are more general than the step tran-
sitions in a transducer since in an MDP, continuous or Borel sets are
allowed as epoch. Since we are doing the translation from a Mealy ma-
chine to an MDP the translation is direct, the MDP is fixed to discrete
and evenly spaced decision epochs and no further adaptations must be
done.
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• The set of states Q and S can be used interchangeably between the two
models. Here we perform a direct translation

• For the transition probabilities in an MDP, p(s′|s, a) some derivations
must be performed. In a Mealy machine our transition function δ spec-
ifies probabilities for the pairs next state plus emitting symbol, Q ×∆,
so the basic translation should be

p(s′|s, a) =
∑

t∈∆

p(s, a, s′, t)

• The reward function, r(s, a, s′) depends on the game we are playing.
When a transition happens in a Mealy machine, both the input symbol
and the emitted symbol are available. This represents a movement that
a referee later will assign a value to each player, so in order to provide an
expected value for a transition, the rewards are weighted by the proba-
bilities of a given transition happening when receiving an input symbol

r(s, a, s′) =
∑

t∈∆

p(s, a, s′, t) · evalMove(a, t)

Where the function evalMove is game dependent.

With these simple translations, a given Mealy machine obtained by the
GIATI algorithm can be translated into a Markov Decision Process, ready for
obtaining the governing decision rules.

4.3.2 Infinite horizon models

When a Markov decision process is run indefinitely, each policy induces a
discrete-time reward process. That reward stream has an associated utility
to the agent depending on some functions used to value that stream. Several
functions can be used to aggregate that stream into a single value for easiness
when comparing different streams:

1. The expected total reward policy π, vπ is defined to be

vπ(s) ≡ lim
N→∞

Eπ
s

{

N
∑

t=1

r(Xt, Yt)

}

= lim
N→∞

vπN+1(s) (4.2)

Note that the limit in 4.2 may be +∞ or −∞ and consequently this
performance measure is not always appropriate.

2. The expected discounted reward of policy π is defined to be

vπλ(s) ≡ lim
N→∞

Eπ
s

{

N
∑

t=1

λt−1r(Xt, Yt)

}

for 0 ≤ λ ≤ 1
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3. The average reward or gain of policy π is defined by

gπ(s) ≡ lim
N→∞

1

N
Eπ

s

{

N
∑

t=1

r(Xt, Yt)

}

The expected total discounted reward criterion

The discounted reward model is the function valuation that will be employed
in this thesis. The discounted reward has strong links with the economic
behaviour and decision theoretic literature and our learning agent is dealing
with utility functions to determine which actions to take. Moreover, discounted
functions present some mathematical niceties that allow easy function usage,
we do not need to worry about the convergence of the reward series.

Discounted policy also helps in our game setup since our agent assigns
greater value to rewards closer in time. Although games are not infinite, the
agent does not know how long they are going to take and thus a strategy that
assigns uncertainty to distant and future rewards is preferable.

4.3.3 Finding optimal policies

The transitions in a Markov Decision Process are independent of the tran-
sition history that took the MDP to a given state and by derivation, it has
no dependency either on the decision that generated the transitions in the
first place. So the objective is to find a collection of pair state/action, π =
{(q0, a0), (q1, a1), · · · , (qS, aS), that defines our policy.

Given a Markov Decision Process we are interested on a policy ππ
λ

vπ
∗

λ = sup
π

vπλ(s)

where the expected total discounted reward is defined by

vπλ(s) = Eπ
s

{

∞
∑

t=1

λt−1r(qt, at)

}

Several algorithms exist for finding such policies like value iteration, policy
iteration, modified policy iteration and linear programming [Put94, Ber95]. In
this thesis we will show the two most common procedures value iteration and
policy iteration.

Value iteration

The main idea behind the value iteration is that the utility of a given state is
computed iteratively. The procedure guarantees that in the limit, the utility
converges to its real value. In practice the algorithm does not go to the infinity
but instead stops when the utility does not change above a specified threshold.

In Algorithm 12 the value iteration algorithm can be seen.



40 CHAPTER 4. OPPONENT MODELLING

Algorithm 12 Value Iteration Algorithm

Input: an MDP M , a threshold ε
Output: a function d : states× actions
v0 ← 0, n← 0, S ← states(M)
repeat

for all s ∈ S do

vn+1(s) = maxa∈As

{

r(s, a) +
∑

j∈S λp(j|s, a)v
n(j)

}

end for

until ||vn+1 − vn|| < ε(1− λ)/2λ

return dε(s) ∈ argmaxa∈As

{

r(s, a) +
∑

j∈S λp(j|s, a)v
n+1(j)

}

Policy iteration

The value iteration algorithm first computes the set of utility functions for each
state and when those are calculated, it chooses the action that gives best utility
overall. While value iteration can be regarded as a fixed point algorithm, policy
iteration relates directly to the structure of Markov Decision Processes. In the
policy iteration algorithm, a set of rules is iterated until no change in the rules
provides better performance. It is known that this procedure provides better
performance and faster convergence rates.

4.4 Summary

Let’s briefly summarize the steps that our agent takes in order to play the
games.

First it will play a round of games choosing random movements because
that is the best strategy that can be followed when you have no idea about
the opponent’s strategy.

After this first round, all the pairs of movements will be collected. Those
pairs will be transformed to single symbols of an extended alphabet as is
explained in the GIATI algorithm.

With the new set of symbols and the associated words, a PDFA is learned.
Once we have this automaton a Mealy Machine is derived using the function to
revert symbols from the extended alphabet to pairs of input-output symbols.

The Mealy Machine is then converted to a Markov Decision Process and
the Policy Iteration algorithm is used to derive a set of rules. The rules are a
dictionary with the action that has to be performed when the Mealy Machine
is in a given state.

With the new Mealy Machine and the set of rules the agent plays another
round of movements.
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Algorithm 13 Policy Iteration
Input: a MDP M
Output: a policy π with an action for each state in M
V (s) ∈ ℜ and π(s) ∈ A(s) randomly chosen for all s ∈ states(M)
repeat

// Policy evaluation
∆←∞
repeat

v ← V (s)

V (s)←
∑

s′ P
π(s)
ss′ [R

π(s)
ss′ + γV (s′)]

∆← min(∆, |v − V (s)|)
until ∆ < ǫ
// Policy improvement
policyStable← true
for all s ∈ S do

b← π(s)

π(s)← argmaxa
∑

s′ P
π(s)
ss′ [R

π(s)
ss′ + γV (s′)]

if b 6= π(s) then
policyStable← false

end if

end for

until policyStable = true
return π
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Chapter 5

Experiments

In the previous chapters, we have delineated the framework that uses PDFA
learning algorithms for controlling an opposing agent in a game setup. How
well this algorithmic platform works in the task of winning an opponent is
something we will study here.

5.1 The experiments

Here we describe the experimental setup we have used. All the graphs contain
the results for each of the algorithms under study (ALERGIA and MDI) plus
the results of using a random player against the opponent. The other measure
taken is how much could we made against the opponent if we knew on each time
step in which state the opponent is and issuing the command most favourable
to us.

The software

In order to conduct the experiments that follow we developed a testing frame-
work where we could play with different automata and algorithm configuration.
The code for the ALERGIA algorithm and the MDI were kindly provided by
the authors [Onc92, Tho00].

5.2 Prisoner’s Dilemma

For the study of the Prisoner’s dilemma game we will use as opponents three
different Moore Machine borrowed from the famous tournament held by Robert
Axelrod [Axe84]. In the original tournament, fifteen attendees competed in
round-robin tournament of the iterated Prisoner Dilemma, where every inter-
action was based on 200 repetitions of the PD game. In the study we are going
to use three of the best opponents sent to the tournament. Those opponents
can be seen in Figure 5.1. The automata in the figure must be regarded as
Moore Machines. Here we haven’t explicitly stated the emitting symbols and
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Figure 5.1: Prisoner’s Dilemma opponents used in the study

probabilities in order to not clutter the diagram. The labels on each state must
be regarded as the prevailing emitting symbol, that is, a c represents that a
state has probabilities Pstate(c) = 0.9 and Pstate(d) = 0.1, and conversely, a d

represents Pstate(c) = 0.1 and Pstate(d) = 0.9. The exact numbers of the proba-
bilities were chosen in order to introduce a meaningful probabilistic behaviour
in the automata keeping at the same time its original intended purpose due
to its architecture. Here are a brief description of the meaning of each of the
automata:

• Tit-for-Tat (TTT): Cooperates at the first iteration and then follows
(most likely) the previous opponent’s action.

• Tit-for-two-Tat: Tf2T Cooperates (most likely) for the two first states
and defects (most likely) after two consecutive defections of its opponent.

• Nydegger Behaves like TTT at the beginning and then behaves accord-
ing to the three previous joint actions of both players.

5.2.1 Round length

In this set experiments we want to study the effect of the round length in
the game outcome. On each round a new agent hypothesis is created with
the movements of this round. So the best agent that we could obtain would
be the one learnt after the full game happens, but this would leave us with
the random player playing all the movements in the beginning and we are
primarily interested in wining the game. So a balance or trade-off has to
be found for better performance. This section will study how increasing the
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Figure 5.2: Average payoff against different opponents when we vary the num-
ber of rounds in the game
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number of rounds for a fixed number of movements affects the quality of the
game results.

Figure 5.2 shows that on average, MDI algorithm performs better that
ALERGIA taking into account the average payoff per move. Both algorithms
seems to improve with the number of rounds, till we arrive at 10 rounds per
game, where the improvement stabilizes. One remarkable thing is that when
competing against the Tf2T opponent, the random player performs better than
whichever of our algorithms. This is because of the structure of the opponent
and the chosen payoffs for the Prisoner’s dilemma game. The opponent reacts
to 2 consecutive defections with the defect action, but it returns to the coop-
erative setting whenever a cooperation happens. Given the payoffs the most
profitable strategy could be to alternate defections and cooperations on each
single state, but our agent can’t learn this strategy because it can not query
which moves it issued (that would break our MDP hypothesis also).

5.2.2 Match length

Here we study how the match length affects our game results in the competi-
tion. Remember that match length relates to the length of the words the agent
is learning and in turn to the complexity of the prefix tree that the algorithm
must manipulate.

Again the game consists on conducting 500 movements and fixing the num-
ber of rounds to 5. Results can be seen in Figure 5.3. This time the result are
a little bit different than when varying the number of rounds. The differences
between the ALERGIA and MDI algorithm seems lesser when only varying
the match length. Even from the results it could be inferred that the MDI
algorithm is a little bit worse than its competitor. On the other hand, we can
see that changing the match length does not solve the structural problem with
the Tf2T opponent.

5.2.3 Alpha

For this experiment we study the effect of the α parameter on each of the
algorithms. Remember from Sections 3.4.3 and 3.4.4 that the α parameter
controls how liberally could we consider the merge of different states. Lower
alphas tend two create automata with less states while increasing the value
allows the addition of more states in the resulting automaton.

Results can be seen in Figure 5.4. It can be seen that when varying α, best
results are obtained both for low and high values of the parameter. Automata
with a low number of states are somehow “averaging” the symbol frequen-
cies because there are few states that can introduce discontinuities in the rate
of appearance. On the other hand automata with a high number of states
tend to mimic better the structure of the opponent and thus offer better re-
sults. So there is a middle range of α values that begin to create structure in
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Figure 5.3: Average payoff against different opponents when we vary the match
length within each round
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the automata but with diverging results from the ones truly representing the
opponent.

5.3 RoShamBo

For the automata in Section 5.2 we had some examples of real automata with
a meaningful behaviour in the competition. In this section we are going to
study how the methodology compares when automata are created randomly.
To that end we have created 4 different automata with a random procedure that
picks at random both the structure (the transitions) and the emitting symbol
probabilities. The chosen game for these experiments will be the RoShamBo
(see sec. 2.3.1) that introduces three symbols to pick from and a zero-sum
structure of the rewards. In Appendix B is represented the structure of the
automata. The emitting probabilities have been kept apart in order to improve
legibility.

5.3.1 The experiment

The experiment consists on creating a game composed of 10 rounds with 20
matches per round and 10 moves per match, adding up to 2000 moves per
game. Figure 5.3.1 show the results of our learning agent when confronting
to the 2-state and 5-state RoShamBo opponents. For the 2-state opponent,
both learning algorithms score below the random opponent (depicted as the
inverted triangles in the figure) and when the alpha parameter goes beyond
a threshold the learned automata acquires enough complexity and performs
almost optimally. For the 5-state automaton, both algorithms can not reach
near optimal performance despite whichever α we use for training. However
the performance is always better than choosing randomly actions, so some kind
of learning has taken place in the learning environment.

Figure 5.3.1 shows the results against the 10-state and 20-state RoShamBo
opponents. Again our learning agents behave better than the random oppo-
nent with the only noticing particularity that in the 10-state games, the MDI
algorithm performs near optimally for low alpha values, then the performance
drops below the random level for middle values, and regains for higher values.

Another interesting property is that the experiments present a property
worth mentioning. The complexity of the learned automata scales slowly in
the case of the MDI agent and grows rapidly in the case of the ALERGIA
algorithm.
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Figure 5.4: Average payoff against different opponents when we vary the alpha
parameter
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Figure 5.5: Results against the 2-state and 5-state RoShamBo opponents
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Figure 5.6: Results against the 10-state and 20-state RoShamBo opponents
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Chapter 6

Conclusions

In this Master’s Thesis we have explored a novel technique to learn agent
behaviour in a competitive environment where Reinforcement Learning pro-
cedures are used routinely. The main tool employed in that task has been
the algorithms for learning probabilistic finite state automata ALERGIA and
MDI.

The range of opponents that our agents could learn were constrained to
the class of Stochastic Moore Machines, finite automata that are deterministic
in their transitions but that have probabilities associated to the symbols that
they emit when the automata lands in one of the states.

However, the algorithms before mentioned learn PDFA not transducers
like the Moore Machine. In this thesis we have used the GIATI algorithm
framework and extended its usage beyond the N-gram techniques where it was
initially tested. With this algorithm we can perform translations forward and
backward between an extended language and the pairs of input-output symbols
characteristic of the transducers.

Once we had our working hypothesis about the Moore Machine that our
opponent holds, we must devise the best strategy to outperform that policy. In
order to accomplish this task we presented the necessary operations to convert
from a Mealy Machine to a Markov Decision Process. When the conversion
completes, we use well known algorithms to devise the best strategy for each
state.

In order to test our ideas, we developed a game infrastructure where differ-
ent players could interact with each other and gathered results on the games
played. Results were very promising since we obtained consistently better re-
sults than the random strategy. The random strategy is the best strategy in
these games when the player is uninformed about the opponent strategy, so
getting an advantage over the purely random move generation shows that we
were in the right track.
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6.1 Future work

The work done in this thesis ranged among several topics (learning PDFAs,
transducers, opponent modelling, Markov Decision Processes, etc. . . ) that
could not be explored in full detail given the time constrains of a Master’s
Thesis. So picking one of the topics and performing a full research on them
could be very insightful. In particular these are some research lines that could
be followed in the future:

• Strategy exploration. In this thesis, when exploring the opponent
strategy (that is, to walk over all the states and transitions in the un-
known Moore Machine) our learning agent could only rely on the moves
generated randomly in the first round of the game and on the states
and transitions that could be reached with the inferred rules. This could
leave some parts of the Moore Machine (i.e. the opponent’s strategy)
unexplored. More research on how to balance the trade off between ex-
ploration and exploitation could be tackled in order to infer more efficient
opponents.

• Related to the previous point is the fact that the algorithms employed
when learning the PDFA do not take into account the payoff matrix

of each of the games. For instance, when faced with how to order states
of the Prefix Tree Acceptor, the algorithms rely on the lexicographical
heuristic. This is a valid heuristic but much more value could be obtained
if that heuristic was related to the payoff matrix and the merging of states
could take this into account.

• In the game structure that we presented in this thesis, games and matches
are preset to a fixed number of moves. Although this could be reasonable
in this experimental sandbox it could not make sense in real world envi-
ronments. For instance, imagine that the behaviour of a user in a website
is the opponent we are trying to model with our technology. Clearly the
actions that this user performs, can not be constrained to a fixed size
and they will vary in time. Allowing variable match lengths and
how this affects performance is a valid research extension.

• Once the agent forms the hypothesis about the opposing agent, it runs
freely and does not take into account the symbols that the agent is spit-
ting in response to their actions until the next learning round. A very
promising venue of research could be to extend the rules governing the
inferred automaton in order to take into account the symbols emitted
by the opposing agent. This could lower the uncertainty that we have
about in which state the Moore Machine currently is and take advantage
of it. Extend this thesis using techniques employed learning Partially

Observable Markov Decision Processes .
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• Compare the results of this thesis with the results obtained using Rein-
forcement Learning techniques

• Extending whichever of the decisions that were taken when deciding the
course of the thesis. For instance, how other algorithms for learning
PDFAs behave in this setup, other policies and parameters for learning
the Markov Decision Processes, extending the range of models that could
represent an opponent beyond the Moore Machine, etc. . .
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Appendix A

JSON format for a game

Games are specified using the JSON data [Cro]

{

"exp1":{

"player1":{

"type":"ALERGIA",

"alpha":0.7

},

"player2":{

"type":"MOORE_MACHINE",

"filename":"../resources/prisonerMooreMachine.automata"

},

"game":{

"type":"PRISONER",

"numRounds":2,

"numMatchesRound":5,

"matchLength":5

}

}

}
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Appendix B

Automata for the RoShamBo

experiments
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Figure B.1: 2-state automata employed in the RoShamBo Experiments

59



60 APPENDIX B. AUTOMATA FOR THE ROSHAMBO EXPERIMENTS

0

p
s 2

r

1

r

3

sp

r

p

4
s

p

r
s

p

sr

Figure B.2: 5-state automata employed in the RoShamBo Experiments
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Figure B.3: 10-state automata employed in the RoShamBo Experiments
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