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Abstract— This paper presents FaMSA, an ef�cient method to
boost 3D scan registration from partially known correspondence
sets. This situation is typical at loop closure in large laser-based
mapping sessions. In such cases, scan registration for consecutive
point clouds has already been made during open loop traverse,
and the point match history can be used to speed up the
computation of new scan matches. FaMSA allows to quickly
match a new scan with multiple consecutive scans at a time, with
the consequent bene�ts in computational speed. Registration
error is shown to be comparable to that of independent scan
alignment. Results are shown for dense 3D outdoor scan
matching.

Index terms – ICP, 3D scan registration, scan alignment.

I. I NTRODUCTION

The Iterative Closest Point (ICP) algorithm is the de-facto
standard for range registration in 3D mapping. It is used to
compute the relative displacement between two robot poses
by pairwise registration of the point clouds sensed from them.
In a typical mapping session, consecutive pairwise registration
is performed during open loop traverse, and accumulates drift
error. This error is corrected by closing loops, i.e., matching
point clouds with large temporal deviation (see Fig. 1).

Most SLAM algorithms keep probabilistic estimates of the
robot location that can be used to determine whether or not
a loop closure test is advisable. For instance, by considering
not only pose uncertainty but information content as well [12].
But, once a loop closure test is deemed necessary, an algorithm
that can compute it expeditiously is needed. Typically loop
closure tests are checked not only from the current cloud
to a query cloud in the past, but instead, to a consecutive
set of query clouds in the past, which in turn have already
been registered among them. Using this knowledge, we can
expedite multiple registrations at a time. In this paper we
propose FaMSA, a technique for fast multi-scan point cloud
alignment at loop closure that takes advantage of the asserted
point correspondences during sequential scan matching.

The paper is organized as follows. A description of related
work is given in Section II. Section III details some implemen-
tation details of our ICP algorithms; and Section IV elaborates
on the particularities of the method. Experiments that validate
the viability of the method are given in Section VI, and
Section VII contains some concluding remarks.

II. RELATED WORK

The most popular scan matching methods are based on the
Iterative Closest Point algorithm [5]. The objective of this

Fig. 1. Dense point cloud registration during loop closure at the Barcelona
Robot Lab.

algorithm is to compute the relative motion between two data
sets partially overlapped by minimizing the mean squared error
of the distance between correspondences in the two sets.

In the original algorithm, a point-to-point metric is used
to measure the distance between correspondences in the set.
Point-to-plane metrics are also common practice [8], which
make the method less susceptible to local minima. Further-
more, point-to-projection metrics are also possible [7], by
matching points to ray indexes directly, inverting the ray
casting process. A thorough account of these metrics and their
properties is given in [21]. More recently, an error metric
that weights unevenly rotation and translation was proposed
for 2D [15], [16], and later extended to 3D [6]. The method
uses point-to-projection minimization using triangles asthe
projection surface, and performs nearest neighbor search in the
new metric space. FaMSA uses this metric for optimization.

ICP's computational bottleneck is in correspondence search.
Most strategies to accelerate this search rely on some prior
ordering of points within each point cloud, and use tree-
based search methods such as the Approximate Nearest Neigh-
bor [19], [3] that uses balanced kd-trees; kd-trees with caching
mechanisms [24]; or parallelized kd-trees [18].

A method for fast NN search that competes with kd trees
for execution speed is based on the spherical triangle con-
straint [10]. Like in [24], point caching is maintained from
one iteration to the next, and ordering and triangle constraints
are used to quickly identify correspondences. Aside from tree
structures, other space partitioning mechanisms that allow
for fast NN search include double z-buffering [4] and grid
decomposition [26].

Point sampling is also a common strategy used to accel-



erate the matching process. Sampling however, only reduces
asymptotic computational complexity by a constant factor.It
is common practice to use hierarchical coarse-to-�ne sampling
methods to avoid missing �ne resolution correspondences [25],
[27]; and sampling can be either uniform [25], [7], ran-
dom [14], or with ad-hoc reduction heuristics related to the
sensing mechanism [20].

Outlier removal is also a major concern on most modern ICP
implementations. Point rejection can be based on statistical
point distributions [27], [14], [20], using �xed or dynamic
distance thresholds [22], or using topological heuristics[25],
[27], [22].

The idea of multi-scan alignment has been addressed as
a bundle adjustment problem for 2D range scans [13] using
force �eld simulation. The work that most relates to ours is
the latent map [11], a multi-scan matching technique for 2D
range matching.

III. R ANGE IMAGE REGISTRATION

A. Notation

The objective of the classic ICP algorithm is to compute the
relative rotation and translation(R; t ) between two partially
overlapped point cloudsP and Q, iteratively minimizing the
mean square error over point matches. For a given set of point
match indexesY , ICP's cost function is

arg min
R;t

X

( i;j )2 Y

k(pi � Rqj � t)k2 : (1)

This minimization is solved iteratively, revising at each
iteration the list of point matches, using for instance, NN
search.

B. Implementation details and computational complexity

Correspondence search is the most expensive step in the
ICP algorithm. Finding the NN to a given query point relies
on the ability to discard large portions of the data with simple
tests. Brute force correspondence search would takeO(n),
with n the size of the point cloud. The preferred data structures
used to solve the NN problem in low multidimensional spaces
are kd-trees [9] withO(n logn) construction complexity and
O(log n) search complexity. Box structures on the other hand
take polynomial time to build [2] and constant time to search.
Box structures are possible in ICP only when the initial and
�nal poses do not change signi�cantly so that NNs remain in
the originally computed box.

We implement Acka's box search structure with some
modi�cations. The box structure in [2] assigns to empty boxes
the index of the last occupied box. We instead leave empty
boxes out of the search. This serves effectively as a �xed
distance �lter with signi�cant savings in computational load.
Our method is faster than using the optimized Approximate
Nearest Neigborh (ANN) library [3] with �xed radius search,
as shown in the experiments section.

The original ICP algorithm of Besl and McKey [5] assumes
that for each point in the reference set there must be a cor-
respondence in the query set. In most applications this is not

FAMSA(P; P 0; Q; Y; R; t; R 0 ; t0)
INPUTS:

P; P 0: Two consecutive query point clouds.
Q: Current point cloud.
Y : Correspondences betweenP andP 0.
R; t : Relative displacement betweenP andP 0.
R0 ; t0 : Initial displacement betweenP andQ.

OUTPUTS:
RP ; tP : Relative displacement betweenP andQ.
RP 0; tP 0:Relative displacement betweenP 0 andQ.

1: RP ; tP  R0 ; t0

2: RP 0; tP 0  (R0 ; t0) � (R; t )
3: while not convergencedo
4: Z  NNSEARCH(P; Q; RP ; tP )
5: Z 0  L INK (Z; Y )
6: RP ; tP  ICPUPDATE(P; Q; RP ; tP ; Z )
7: RP 0; tP 0  ICPUPDATE(P 0; Q; RP 0; tP 0; Z 0)
8: convergence (� < T ) and (� 0 < T )
9: end while

Algorithm 1: FaMSA: Fast multi-scan alignment with partial
known correspondences

the case and adequate similarity tests must be implemented.
Using point distance as the only criteria for point similarity
usually leads to wrong data association and local minima.
We use, as in [22], oriented normal similarity constraints,
together with statistical constraints [14], i.e, points atdistances
larger than a multiple of their standard deviation are rejected.
These �ltering strategies are time consuming, and should be
used with discretion, since they require sorting and binary
search. Correspondence uniqueness is also enforced and its
implementation needs appropriate bookkeeping of matches at
each iteration.

Several metrics exist to �nd the closest point during cor-
respondence search [23], [21]. We adopt in this work the
metric proposed in [6], but use point-to-point matching instead
a point-to-triangle matching, and avoid the computational
burden of computing the corresponding triangle mesh.

The metric is an approximated distance that penalizes
rotations with a user de�ned weightL ,

d(pi ; qj ) =

s

kpi � Rqj � tk2 �
kqj � (pi � Rqj � t)k2

kqj k2 + L 2 :

(2)
and a point normkqk =

p
x2 + y2 + z2 + L 2� 2. The metric

d substitutes the Euclidean distance in Eq. 1, and asL ! 1 ,
this measure tends to the Euclidean distance.

IV. FAST MULTI SCAN ALIGNMENT WITH PARTIALLY

KNOWN CORRESPONDENCES

Given that correspondence search is the most expensive part
of any ICP implementation, we propose FaMSA to boost mul-
tiple scan alignment using previously known correspondences.
That is, given two previously aligned point cloudsP andP0,
the relative transformation between the twoR, t, and a listY
of correspondences, we want to �nd the registration between
the current point cloudQ and the two query scansP andP0.



FAMSA2(P; P 0; Q; Y; R; t; R 0 ; t0)
INPUTS:

P; P 0: Two consecutive query point clouds.
Q: Current point cloud.
Y : Correspondences betweenP andP 0.
R; t : Relative displacement betweenP andP 0.
R0 ; t0 : Initial displacement betweenP andQ.

OUTPUTS:
RP ; tP : Relative displacement betweenP andQ.
RP 0; tP 0:Relative displacement betweenP 0 andQ.

1: RP ; tP  R0 ; t0

2: while not convergencedo
3: Z  NNSEARCH(P; Q; RP ; tP )
4: RP ; tP  ICPUPDATE(P; Q; RP ; tP ; Z )
5: convergence (� < T )
6: end while
7: RP 0; tP 0  (RP ; tP ) � (R; t )
8: while not convergencedo
9: Z 0  L INK (Z; Y )

10: RP 0; tP 0  ICPUPDATE(P 0; Q0; RP 0; tP 0; Z 0)
11: end while

Algorithm 2: FaMSA2: Very fast multi-scan alignment with
partial known correspondences

The method proceeds as follows. Standard correspondence
search is implemented between cloudsP andQ, and for each
match between pointspi andqi , a link to P0 is read fromY,
and consequently the distance fromqj to p0

k is immediately
established, avoiding the computation of similarity search and
�lters. Aside from the previous alignment ofP and P0, the
method needs, as any other iterative ICP algorithm, an initial
estimation of the relative displacement between the query
cloud Q andP. Algorithm 1 shows the approach.

In the algorithm,Z andZ 0 indicate the correspondence sets
betweenP and Q; and P0 and Q, respectively. Appropriate
index bookkeeping links to the other in constant time. The
thresholdT is used to indicate the maximum error allowed for
the registration of both point clouds. The method also limits
the search to a maximum number of iterations, typically set
to 100.

The method is suboptimal in the sense that no new matches
are sought for between point cloudsP0 andQ. For suf�ciently
close reference cloudsP andP0 it does not impose a limitation
on the quality of the �nal correspondence.

In the same way that FaMSA takes advantage of the point
correspondences betweenP andP0 to boost the computation
of the relative displacement betweenP0 andQ, one can also
defer the estimation of the pose betweenP0 and Q until all
iterations forP have �nished and use the result as a starting
point for the second optimization. This method is shown in
Algorithm 2.

Extensive experimentation shows that only one iteration of
ICP update suf�ces to revise the pose ofP0 with respect toQ,
once the relative transformation betweenP and Q has been
optimized. We call this method FaMSA2.

Fig. 2. Our mobile robotic platform.

V. EXPERIMENT SETUP

Our experimental data was acquired in the Barcelona Robot
Lab, located at the Campus Nord of the Universitat Polit�ecnica
de Catalunya. The point clouds were captured using a Pioneer
3AT mobile robot and a custom built 3D laser with a Hokuyo
UTM-30LX scanner mounted in a slip-ring. Each scan has
194,580 points with resolution of 0.5 deg azimuth and 0.25
deg elevation. Figure 2 shows the coordinate frames of all of
our robot sensors. For the work reported here, only 39 scans
from this dataset were used. Figure 7(a) shows a partial view
of the mapped environment. The entire dataset is available
in [1].

Each scan was uniformed sampled for faster convergence
using voxel space discretization with a voxel size of 0.35
meters. During sampling, we also computed surface normals
and enforced a minimum voxel occupancy restriction of 4
points. Random sampling with set sizes of 20 points was used
for those boxes exceeding such number of points. Normal
orientations are computed after random sampling. This has
shown to produced better orientation estimates, especially
around corners, when compared to other strategies such as
k-NNs with density �ltering.

ICP is executed in open loop for 39 consecutive scans,
storing all relative pose displacements as well as the corre-
spondence indexes. Then, a number of possible loop closure
locations were selected manually. FaMSA was executed on
these loop closure candidates. The speci�c parameters of the
ICP implementation include: maximum angle between nor-
mals of 35 deg; upper and lower bounds of sigma rejection at
0.25� and 5� , respectively; and maximum number of iterations
at 100.

For the execution times reported, experiments were run in
MATLAB using mex �les of C++ routines in an Intel Core 2



(a) Dense point cloud registration. Color indicates height.

�

�

�
�

�

�
�

�
	

�


��
��

��

��

��

��

��

��

�	

�

����

��

��

��

��

��

��
�	 �


��

��

��

��

��

�� �� ��

�	

(b) Robot trajectory. In green the initial pose, in red the �nal pose.

Fig. 3. A path with 39 poses around the FIB plaza of the Barcelona Robot Lab.
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(a) Time required to matchQ andP 0, when the correspondences betweenP
andP 0 are known.
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(b) Time required to matchQ with both P andP 0.

Fig. 4. Algorithm performance.

Quad CPU Q9650 3.0 GHz system, with 4 GB RAM running
Ubuntu 10.04 32 bits.

VI. RESULTS

First, we compare the execution time in seconds for various
implementations of multi-scan ICP. To this end, 10 loop
closure locationsQ are selected in the trajectory, and each
is compared against its query cloudsP and P0. Figure 4(a)
shows the time it takes to align the current cloudQ to the
second query cloudP0 given the correspondences betweenQ
and �rst cloud P are knwon. The methods BNN, ANN-FR
and ANN refer to our implementation of voxel NNs; ANN
with �xed radius, the size of the voxels; and conventional
ANN. FaMSA and FaMSA2 stand for the methods presented
in this paper that make use of previous point correspondence
indexes to speed up registration. Note that FaMSA2 is the

fastest of the methods, requiring only one iteration in the
minimization. Extensive experimentation showed that further
re�nement in the case of FaMSA2 does not signi�cantly
improve the registration.

Figure 4(b) plots the time it takes to register the current
point cloud Q against both query cloudsP and P0. The
plot shows individual registration using BNN and combined
registration using the proposed schemes BNN+FaMSA and
BNN+FaMSA2. The advantages in computational load of
using the proposed mechanism are signi�cative.

One might think that using only the correspondences in
Y would yield suboptimal estimation. As a matter of fact,
when using only this set to compute the relative displacement
betweenP0 andQ, the number of correspondences effectively
halves (see Fig.5), but pose estimation accuracy does not suffer
signi�cantly.
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Fig. 5. Number of correspondences betweenP 0 andQ running a full BNN
compared to using the stored setY .

Figure 6 plots proportional translation and rotational errors
as compared with full ICP estimation using BNN, and com-
puted as follows [17]: using as ground truth the relative pose
betweenQ and P0 as computed with BNN (RBNN ; tBNN ),
we measure the relative error of the estimated rotation (R; t ),
as ER (%) = kqBNN � qk=kqk, where qBNN and q are
the normalized quaternions of the corresponding orientation
matricesRBNN and R, respectively. Similarly, the relative
error of the estimated translation is computed withE t (%) =
ktBNN � tP 0k=ktP 0k. Translation error turns out to be less
than 0:7% for FaMSA and for all cloud pairs, and less than
0:2% for FaMSA2. Rotation error is barely noticable for both
methods.

Figure 7 shows a sample of the point cloud match (best
viewed in color). In blue, the current pose. In green and red,
the query poses. A safe percentage of point cloud overlap in
our method is roughly50%. This is achieved with displace-
ments of about 4 meters.

VII. C ONCLUSIONS

This paper presents a novel ICP variation for simultaneous
multiple scan registration that bene�ts from prior known
correspondences. Speed up gain is substantial when compared
with other methods.

The method uses a voxel structure to ef�ciently search for
correspondences to the �rst cloud in the set, and a metric that
unevenly weights rotation and translation.

The method was devised to search for loop closures after
long sequences in open loop traverse but could be used for
other con�gurations, provided the correspondences on the
query set are known.
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(a) Relative translational error.
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(b) Relative rotational error.

Fig. 6. Proportional translation and rotation errors for the registration betweenQ and P 0 with the proposed methods. BNN is used for ground truth
comparison.

(a) P in yellow, P 0 in red, andQ in blue. (b) Cenital view.

Fig. 7. A loop closure location between clouds 3, 4, and 28 in the BRL dataset (best viewed in color).
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