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Abstract— This paper presents FaMSA, an ef cient method to
boost 3D scan registration from partially known correspondence
sets. This situation is typical at loop closure in large laser-based
mapping sessions. In such cases, scan registration for conseeat
point clouds has already been made during open loop traverse, ' .
and the point match history can be used to speed up the
computation of new scan matches. FaMSA allows to quickly
match a new scan with multiple consecutive scans at a time, with
the consequent benets in computational speed. Registration
error is shown to be comparable to that of independent scan
alignment. Results are shown for dense 3D outdoor scan
matching.

. . . Fig. 1. Dense point cloud registration during loop closur¢ha Barcelona
Index terms — ICP, 3D scan registration, scan alignment. Rgopot Lab.

I. INTRODUCTION

The lterative Closest Point (ICP) algorithm is the de-factgigorithm is to compute the relative motion between two data
standard for range registration in 3D mapping. It is used ts partially overlapped by minimizing the mean squareat er
compute the relative displacement between two robot posssthe distance between correspondences in the two sets.
by pairwise registration of the point clouds sensed fronmthe |, the original algorithm, a point-to-point metric is used
In a typical mapping session, consecutive pairwise regist - 1, measure the distance between correspondences in the set.
is performed during open loop traverse, and accumulatés dfgint-to-plane metrics are also common practice [8], which
error. This error is corrected by closing loops, i.e., MBIGh ake the method less susceptible to local minima. Further-
point clouds with large temporal deviation (see Fig. 1).  more, point-to-projection metrics are also possible [#, b

Most SLAM algorithms keep probablhsth estimates of th?natching points to ray indexes directly, inverting the ray
robot location that can be used to determine whether or nOlsting process. A thorough account of these metrics aiid the
a loop closure test is advisable. For instance, by Cons'ge”properties is given in [21]. More recently, an error metric
not only pose uncertainty but information content as Well{1 {hat weights unevenly rotation and translation was propose
But, once a loop closure test is deemed necessary, an aigority, op [15], [16], and later extended to 3D [6]. The method
that can compute it expeditiously is needed. Typically 100gses point-to-projection minimization using triangles the
closure tests are .checked not only from the current CloFﬂ)‘f'ojection surface, and performs nearest neighbor seartiei
to a query cloud in the past, but instead, to a consecutiyg,y metric space. FaMSA uses this metric for optimization.

set of query clouds in the past, which in turn have aIreadyICP.S computational bottleneck is in correspondence $earc

been Teg'Ste“?d among th_em. Using f[h's knowlv_edge, We CHdst strategies to accelerate this search rely on some prior
expedite multiple registrations at a time. In this paper w;

Stdering of points within each point cloud, and use tree-
propose FaMSA, a technique for fast multi-scan point cIou&L "9 pol Wit po! ue. "

i tatl | that tak dvant £ th sed search methods such as the Approximate Nearest Neigh-
alignment at loop closure that takes advantage of the erlSor [19], [3] that uses balanced kd-trees; kd-trees withnicar
point correspondences during sequential scan matching.

: : " rgechanisms [24]; or parallelized kd-trees [18].
The paper is organized as follows. A description of relate A method for fast NN h that N ith kd t
work is given in Section Il. Section Il details some impleme ¢ me ?. or asd . bseardc ?h comﬁe es IWtI' | rees
tation details of our ICP algorithms; and Section IV elabesa or execution speed 1S based on the spherical triangie con-

on the particularities of the method. Experiments thatdeé straint [10]. Like in [24], point caching is maintained from

the viability of the method are given in Section VI andne iteration to the next, and ordering and triangle coimga
Section VII contains some concluding remarks, ’ are used to quickly identify correspondences. Aside fraema tr

structures, other space partitioning mechanisms thawvallo
Il. RELATED WORK for fast NN search include double z-buffering [4] and grid
The most popular scan matching methods are based on @iegomposition [26].
Iterative Closest Point algorithm [5]. The objective ofsthi Point sampling is also a common strategy used to accel-



erate the matching process. Sampling however, only redu¢@dSA(P;P%Q;Y;R;t;Ro;to)

asymptotic computational complexity by a constant fadtor, INPUTS: | , i

is common practice to use hierarchical coarse-to- ne samgpl g,_P ' vafr:r?tnsgfnﬂt'c"lif i point clouds.
methods to avoid missing ne resolution correspondencB [ v Correspondences betweenand P°.
[27]; and sampling can be either uniform [25], [7], ran- R;t:  Relative displacement betwe&handP°.
dom [14], or with ad-hoc reduction heuristics related to the Ro;to: Initial displacement betweeR and Q.
sensing mechanism [20]. OuTPUTS:

Rp ;tp: Relative displacement betwe&hand Q.

Outlier removal is also a major concern on most modern ICP Rpo: tpoRelative displacement betwer? and Q.

implementations. Point rejection can be based on statistic
point distributions [27], [14], [20], using xed or dynamig
distance thresholds [22], or using topological heurisfRS], 2 Reoitpo (Roito) (R:1)
[27], [22]. 3: while not convergencelo

The idea of multi-scan alignment has been addressed as 7z  NNSeaARCH(P; Q;Rp;tp)
a bundle adjustment problem for 2D range scans [13] using Z° LINK(Z;Y)
force eld simulation. The work that most relates to ours fs6: Reite  ICPUPDATE(P; QRe;tp;Z)
the latent map [11], a multi-scan matching technique for 2[%: Rpoitpo  ICPUPDATE(P': QiRpo; tp0; 27)

. . convergence ( <T )and(°<T)
range matching. o: end while

1: Rp;tp Ro;to

1. RANGE IMAGE REGISTRATION Algorithm 1: FaMSA: Fast multi-scan alignment with partial

A. Notation known correspondences

The objective of the classic ICP algorithm is to compute the

relative rotation and translatiofR;t) between two partially the case and adequate similarity tests must be implemented.
overlapped point cloud® andQ, iteratively minimizing the Using point distance as the only criteria for point simitari
mean square error over point matches. For a given set of paigtially leads to wrong data association and local minima.
match indexes’, |CP'>5( cost function is We use, as in [22], oriented normal similarity constraints,
; A A 2, together with statistical constraints [14], i.e, pointslstances
ar%;mn(i'j )2y k(P Ry Dk @ larger than a multiple of their standard deviation are rtejgc
' These ltering strategies are time consuming, and should be
This minimization is solved iteratively, revising at eachysed with discretion, since they require sorting and binary
iteration the list of point matches, using for instance, NNearch. Correspondence uniqueness is also enforced and its
search. implementation needs appropriate bookkeeping of matches a
each iteration.

) ] ) Several metrics exist to nd the closest point during cor-
Correspondence search is the most expensive step in rtggpondence search [23], [21]. We adopt in this work the

ICP algorithm. Finding the NN to a given query point relieg,qtric proposed in [6], but use point-to-point matchingéasl
on the ability to discard large portions of the data with denp 5 point-to-triangle matching, and avoid the computational

tests. Brute force correspondence search would @ke), |, den of computing the corresponding triangle mesh.

with n the size of the point cloud. The preferred data structureStne metric is an approximated distance that penalizes
used to solve the NN problem in low multidimensional spacesistions with a user de ned weight

B. Implementation details and computational complexity

are kd-trees [9] withO(nlogn) construction complexity and s

O(log n) search complexity. Box structures on the other hand > kg (p Rg t)kz _
take polynomial time to build [2] and constant time to searchd(Pi;4) = kp  Rg  tk kg K2 + L2

Box structures are possible in ICP only when the initial and D 2)
nal poses do not change signi cantly so that NNs remain ignd a point nornkgk = = x2+ y2+ z2 + L2 2. The metric
the originally computed box. d substitutes the Euclidean distance in Eq. 1, andd &4

We implement Acka's box search structure with somgis measure tends to the Euclidean distance.
modi cations. The box structure in [2] assigns to empty ®xe
the index of the last occupied box. We instead leave empty V- FAST MULTI SCAN ALIGNMENT WITH PARTIALLY
boxes out of the search. This serves effectively as a xed KNOWN CORRESPONDENCES
distance lter with signi cant savings in computationaldd. Given that correspondence search is the most expensive part
Our method is faster than using the optimized Approximatd any ICP implementation, we propose FaMSA to boost mul-
Nearest Neigborh (ANN) library [3] with xed radius search tiple scan alignment using previously known correspondsnc
as shown in the experiments section. That is, given two previously aligned point clouBsandP?,

The original ICP algorithm of Besl and McKey [5] assumethe relative transformation between the tRot, and a listY
that for each point in the reference set there must be a cof-correspondences, we want to nd the registration between
respondence in the query set. In most applications this tis rbe current point clou® and the two query scar® andP°.



FAMSA2(P;P%Q;Y;R;t;Ro;to) z
INPUTS: A/‘[\‘
P;P% Two consecutive query point clouds. X Yy
Q: Current point cloud. 3D laser range
Y: Correspondences betweBnand P°.

R;t:  Relative displacement betwe&h and P°.
Ro;to: Initial displacement betweeR and Q.
OuTpuTS: X Left stereo camera
Rp ;tp: Relative displacement betweéhand Q. P
Rpo; tpoRelative displacement betwe&? and Q. 1>l le>l
Y-

:Rp;tp Ro;to Con)wfjfl

: while not convergencelo
Z  NNSEARCH(P;Q;Rp;tp) z
Rp;tp ICPUPDATE(P; Q;Rp ;tp;Z)
convergence ( <T)

: end while y
: Rpojtpo (Rp;tp) (R;1) X& Robot base
. while not convergencelo

Z%  LINK(Z:Y)

10: Rpojtpo  ICPUPDATE(P% Q% Rpo;tpo;Z9
11: end while

Rigth stereo camera

©

Algorithm 2: FaMSAZ2: Very fast multi-scan alignment with

. Fig. 2. Our mobile robotic platform.
partial known correspondences

V. EXPERIMENT SETUP

The method proceeds as follows. Standard correspondencgyr experimental data was acquired in the Barcelona Robot
search is implemented between cloitiandQ, and for each | ap, located at the Campus Nord of the Universitat Rolifca
match between points; andg;, a link to P°is read fromY,  ge Catalunya. The point clouds were captured using a Pioneer
and consequently the distance frato p; is immediately 3AT mobile robot and a custom built 3D laser with a Hokuyo
established, avoiding the computation of similarity seaand yTM-30LX scanner mounted in a slip-ring. Each scan has
lters. Aside from the previous alignment d? and PS, the 194,580 points with resolution of 0.5 deg azimuth and 0.25
method needs, as any other iterative ICP algorithm, aralnitijeg elevation. Figure 2 shows the coordinate frames of all of
estimation of the relative displacement between the quegyr robot sensors. For the work reported here, only 39 scans
cloud Q andP. Algorithm 1 shows the approach. from this dataset were used. Figure 7(a) shows a partial view

In the algorithmZ andZindicate the correspondence setef the mapped environment. The entire dataset is available
betweenP and Q; and P° and Q, respectively. Appropriate in [1].
index bookkeeping links to the other in constant time. The Each scan was uniformed sampled for faster convergence
thresholdT is used to indicate the maximum error allowed fousing voxel space discretization with a voxel size of 0.35
the registration of both point clouds. The method also Emitmeters. During sampling, we also computed surface normals
the search to a maximum number of iterations, typically sand enforced a minimum voxel occupancy restriction of 4
to 100. points. Random sampling with set sizes of 20 points was used

The method is suboptimal in the sense that no new matcﬁ% those boxes exceeding such number of points. Normal

are sought for between point clouBt€ andQ. For suf ciently orientations are computed aft_er rar_ldom sgmpling. This _has
close reference cloud andP it does not impose a limitation shown 1o produced befter orientation estimates, especiall
on the quality of the nal correspondence around corners, when compared to other strategies such as

k-NNs with density Itering.
In the same way that FaMSA takes advantage of the pointcp is executed in open loop for 39 consecutive scans,

correspondences betweBnand P° to boost the computation storing all relative pose displacements as well as the €orre
of the relative displacement betwed? and Q, one can also gnondence indexes. Then, a number of possible loop closure
defer the estimation of the pose betwehand Q until all _locations were selected manually. FaMSA was executed on
iterations forP have nished and use the result as a starting,age loop closure candidates. The speci ¢ parameterseof th
point_for the second optimization. This method is shown igp implementation include: maximum angle between nor-
Algorithm 2. mals of 35 deg; upper and lower bounds of sigma rejection at
Extensive experimentation shows that only one iteration 6f25 and 5 , respectively; and maximum number of iterations
ICP update suf ces to revise the poseR? with respect taQ, at 100.
once the relative transformation betweBnand Q has been  For the execution times reported, experiments were run in
optimized. We call this method FaMSA2. MATLAB using mex les of C++ routines in an Intel Core 2
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(a) Dense point cloud registration. Color indicates height (b) Robot trajectory. In green the initial pose, in red thel pose.

Fig. 3. A path with 39 poses around the FIB plaza of the BareelRobot Lab.
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andP 0 are known.

Fig. 4. Algorithm performance.

Quad CPU Q9650 3.0 GHz system, with 4 GB RAM runninfastest of the methods, requiring only one iteration in the
Ubuntu 10.04 32 bits. minimization. Extensive experimentation showed thatHfert

re nement in the case of FaMSA2 does not signi cantly
improve the registration.

First, we compare the execution time in seconds for variousFigure 4(b) plots the time it takes to register the current
implementations of multi-scan ICP. To this end, 10 loopoint cloud Q against both query cloud® and P% The
closure locationgQ are selected in the trajectory, and eachlot shows individual registration using BNN and combined
is compared against its query clouBsand P° Figure 4(a) registration using the proposed schemes BNN+FaMSA and
shows the time it takes to align the current clo@dto the BNN+FaMSA2. The advantages in computational load of
second query clou®® given the correspondences betweé@n using the proposed mechanism are signi cative.
and rst cloud P are knwon. The methods BNN, ANN-FR One might think that using only the correspondences in
and ANN refer to our implementation of voxel NNs; ANNY would yield suboptimal estimation. As a matter of fact,
with xed radius, the size of the voxels; and conventionalvhen using only this set to compute the relative displacémen
ANN. FaMSA and FaMSA2 stand for the methods presentégtweenP®andQ, the number of correspondences effectively
in this paper that make use of previous point correspondertaves (see Fig.5), but pose estimation accuracy does ffiet su
indexes to speed up registration. Note that FaMSA?2 is tkegni cantly.

VI. RESULTS
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Figure 6 plots proportional translation and rotationabesr
as compared with full ICP estimation using BNN, and com-
puted as follows [17]: using as ground truth the relativeepos

betweenQ and P° as computed with BNNRgnn ;tenn ). (8]
we measure the relative error of the estimated rotatiyn)(
as Er(%) = kagnn gk=kgk, whereggnn and q are  [9]

the normalized quaternions of the corresponding oriemtati
matricesRgnn - and R, respectively. Similarly, the relative [1q;
error of the estimated translation is computed Wat{{(%) =
ktenn tpok=ktpok. Translation error turns out to be Iesiﬂ]
than 0:7% for FaMSA and for all cloud pairs, and less tha
0:2% for FaMSA2. Rotation error is barely noticable for both
methods. (12]

Figure 7 shows a sample of the point cloud match (be[gg]
viewed in color). In blue, the current pose. In green and red,
the query poses. A safe percentage of point cloud overlap in
our method is roughly60% This is achieved with displace-
ments of about 4 meters.

[15]
VII. CONCLUSIONS

This paper presents a novel ICP variation for simultaneoli$]
multiple scan registration that benets from prior known
correspondences. Speed up gain is substantial when compgi
with other methods.

The method uses a voxel structure to ef ciently search f?{s]
correspondences to the rst cloud in the set, and a metric tha
unevenly weights rotation and translation. [19]

The method was devised to search for loop closures after
long sequences in open loop traverse but could be used
other con gurations, provided the correspondences on the
guery set are known.

[21]
VIII. ACKNOWLEDGMENTS

This work has been partially supported by the Mexic 2]
Council of Science and Technology with a PhD Scholarship to

E.H. Teniente, by the Spanish Ministry of Science and Innova
tion under projects PAU (DP12008-06022) and MIPRCV Con-
. solider Ingenio (CSD2007-018), and by the CEEDS (FP7-ICT-
2009-5-95682) and INTELLACT (FP7-ICT2009-6-269959)

projects of the EU.

REFERENCES

Barcelona Robot Lab data set. [onling}tp://www.iri.upc.
edu/research/webprojects/pau/datasets/BRL/php/

dataset.php , 2011.

D. Akca and A. Gruen. Fast correspondece search for 3@acer
matching. InProc. ISPRS Workshop on Laser Scannipgges 186—
191, Enschede, Sep. 2005.

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A.Wu.
An optimal algorithm for approximate nearest neighbor seagchxed
dimensions.J. ACM 45(6):891-923, Nov. 1998.

R. Benjemaa and F. Schmitt. Fast global registration of &chged
surfaces using a multi-z-buffer techniquelmage Vision Comput.
17:113-123, 1999.

P.J. Besl and N.D. McKay. A method for registration of 3Daphbs.
IEEE Trans. Pattern Anal. Machine Intelll4(2):239-256, Feb. 1992.
L. Biota, L. Montesano, J. Minguez, and F. Lamiraux. Towvea
metric-based scan matching algorithm for displacement estimar
3d workspaces. IfProc. IEEE Int. Conf. Robot. Automapages 4330—
4332, Orlando, May 2006.

] G. Blais and M.D. Levine. Registering multiview range al& create 3D

computer objectdEEE Trans. Pattern Anal. Machine IntellL7(8):820—
824, Aug. 1995.

Y. Chen and G. Medioni. Object modeling by registrationnosltiples
ranges images. IfProc. IEEE Int. Conf. Robot. Automatvolume 3,
pages 2724-2729, Sacramento, Apr. 1991.

J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algonitfior nding
best matches in logarithmic expected tima&CM T. Math. Software
3(3):209-226, Sep. 1977.

M. Greenspan and G. Godin. A nearest neighbor method ffoiert
icp. In Proc. 3rd Int. Conf. 3D Digital Imaging Modelingpages 161—
168, Quebec, May 2001.

Q-X Huang and D. Anguelov. High quality pose estimatignatigning
multiple scans to a latent map. Rroc. IEEE Int. Conf. Robot. Automat.
pages 1353-1360, Anchorage, May 2010.

V. lla, J. M. Porta, and J. Andrade-Cetto. Informaticased compact
Pose SLAM.IEEE Trans. Robo}.26(1):78-93, Feb. 2010.

R. Lakaemper, N. Adluru, and L.J. Latecki. Force eld bdsn-scan
alignment. InProc. European Conf. Mobile RoboticEreiburg, Sep.
2007.

] T. Masuda. Registration and integration of multiple garimages by

matching signed distance elds for object shape modeli@omput.
Vis. Image Und.87(1):51-65, 2002.

J. Minguez, F. Lamiraux, and L. Montesano. Metric-baseah matching
algorithms for mobile robot displacement estimationPhoc. IEEE Int.
Conf. Robot. Automatpages 3568—-3574, Barcelona, Apr. 2005.

J. Minguez, L. Montesano, and F. Lamiraux. Metric-basedative
closest point scan matching for sensor displacement estimalitEE
Trans. Robot.22(5):1047-1054, Oct. 2006.

F. Moreno-Noguer, V. Lepetit, and P. Fua. EPnP: An aamuiO(n)
solution to the PnP problemint. J. Comput. Vision81(2):155-166,
2009.

A. Nuchter. Parallelization of scan matching for robotic 3d magpin
Proc. European Conf. Mobile RobotjcBreiburg, Sep. 2007.

A. Nuchter, K. Lingemann, J. Hertzberg, and H. Surmann. SSIAM
with approximate data association. Broc. 12th Int. Conf. Advanced
Robotics pages 242-249, Seattle, Jul. 2005.

A. Nuchter, H. Surmann, K. Lingemann, J. Hertzberg, andri&un.
6D SLAM with an application in autonomous mine mapping.Proc.
IEEE Int. Conf. Robot. Automatpages 1998-2003, New Orleans, Apr.
2004.

S-Y. Park and M. Subbarao. A fast point-to-tangent plaechnique
for multi-view registration. InProc. 4th Int. Conf. 3D Digital Imaging
Modeling pages 276-283, Banff, Oct. 2003.

K. Pulli. Multiview registration for large data setsn Proc. 2nd Int.
Conf. 3D Digital Imaging Modelingpages 160-168, Ottawa, Oct. 1999.



0.7
-FaMSA
® - @ -FaMSA2
06l RN i
7/ \
/ A\
7/
7/
0.5 _ _® 'Y B
! R
0.4 e '\ 1
g . \
w” / \\
03r 1
/ 2
/ \ ’ N N
/ / N
02r/ ° N N
® N o -e g L
~ 7 \ - ~
o1l S L ’ \\ ’ ‘@ /!)
® N e . L
o ‘ . ® ‘ . e
427 428 529 530 631 732 733 1837 1638 17-39
Cloud pairs
(a) Relative translational error.
Fig. 6. Proportional translation and rotation errors foe tfegistration
comparison.

(@) P in yellow, P%in red, andQ in blue.

x10°
35 T
[ ]
"
|
;o
3F ;o 1
J \
! /Q \
P
Wi AN
25 /,\ 7 VA b
’ \ a VA
/ \ sy AN
/ \ e | A
= 7 / | A
S /
e S o 1
o 3 /r \\\ .
N | [N - .
N / | N [ & /
15F ® J RN ; //*
\ v ! ‘e / /
I I \ \)</ /
\‘/ N NEPZN ’
L ) / N |
1 [ ] ®
05 I I I I
4-27 4-28 5-29 5-30 6-31 7-32 7-33  18-37 16-38 17-39
Cloud pairs

(b) Relative rotational error.

betwee® and P with the proposed methods. BNN is used for ground truth

(b) Cenital view.

Fig. 7. A loop closure location between clouds 3, 4, and 2@ BRL dataset (best viewed in color).

[23] S. Rusinkiewicz and M. Levoy. Ef cient variants of th€P algorithm.
In Proc. 3rd Int. Conf. 3D Digital Imaging Modelingpages 145-152,

Quebec, May 2001.
[24] D.A. Simon, M. Hebert, and T. Kanade. Real-time 3D poséregion
using a high-speed range sensor. Rroc. |IEEE Int. Conf. Robot.
Automat, volume 3, pages 2235-2241, New Orleans, Apr. 2004.

[25] G. Turk and M. Levoy. Zippered polygon meshes from rangeges.
In Computer Graphics. Proc. ACM SIGGRAPH Compfages 311-318,

Orlando, Jul. 1994. ACM Press.

[26] S.M. Yamany, M.N. Ahmed, and A.A. Farag. A new geneticdmhs
technique for matching 3D curves and surfacefattern Recogn.

32(10):1827-1820.

[27] Z. Zhang. lterative point matching for registration oéé-form curves

and surfacesint. J. Comput. Vision13:119-152, 1994.



