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Abstract— Perception and manipulation of rigid objects has
received a lot of attention, and several solutions have been
proposed. In contrast, dealing with deformable objects is a |
relatively new and challenging task because they are more
complex to model, their state is dif cult to determine, and
self-occlusions are common and hard to estimate. In this
paper we present our progress/results in the perception of |}
deformable objects both using conventional RGB cameras and
active sensing strategies by means of depth cameras. We provide ='»"~
insights in two different areas of application: grasping of textiles .
and plant leaf modelling.
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I. INTRODUCTION (a) Kinect camera on the robot  (b) Detail of the ToF+color cam-

3D perception of deformable objects using RGB cameras era sensor
has been one the most studied research elds within confdg. 1: Experimental setup with the robot arm used in the
puter vision. There exist a large number of techniques fisr thexperiments in two different con gurations.
purpose, such as stereovision, shape from shading, stetictu
from-motion or shape from texture. For robotics applicasio
monocular techniques that require one acquisition are-prob We have studied the use of ToF cameras to assist robot
ably the most interesting approaches, because they awid tearning of manipulation skills in a kitchen environment.
occlusion problems that appear when dealing with multipl&ince this entailed mobile manipulation of rigid objects
views and a single camera may be easily incorporated guided by a human teacher, we surveyed near one hundred
a robotic arm, for instance. On the negative side, retrggvinprevious works in three scenarios of application, namely
non-rigid shape using one single image is a highly ambiguowssene-related tasks involving mobile robots in large emvir
problem, because many different shapes may have similarents, object-related tasks entailing robot interactioshart
projections. In our group, we have researched on techniqudistances, and human-related tasks dealing with face, hand
for addressing this [1], [2]. and body recognition for robot-human interfaces [3]. Our

On the other hand, the problem may be highly simpli edconclusion was that ToF cameras seem especially adequate
when using the now popularized 3D cameras. The technologgr mobile robotics and real-time applications in general,
of 3D cameras has quickly evolved in recent years, yieldingnd in particular for the automatic acquisition of 3D models
off-the-shelf devices with great potential in many scienrequiring sensor motion and on-line involved computatjons
tic elds ranging from virtual reality to surveillance and which was the target application nally developed [4].
security. In particular within robotics, these camerasmope We now have interest in two different scenarios involving
up the possibility of real-time robot interaction in humandeformable objects. One is the perception of textiles to
environments, by offering an alternative to computatitynal estimate adequate grasping points. In the context of the
costly procedures such as stereovision and laser scanniPg\U project [5] perception and manipulation of deformable
Time-of-Flight (ToF) cameras, provided by Mesa Imagingbjects is investigated, as the problem is challengingidens
and PMD Technologies among others, appeared rst areting its high dimensionality and the dif culties related t
attracted a lot of attention with dedicated workshops (e.gthe uncertainty.
within CVPR'08) and a quickly growing number of papers at The other scenario is aimed at enhancing the perception
major conferences. These days the appearance among otlerplants. The ongoing project GARNICS [6] aims at au-
of the Kinect camera, with the Light Coding technologytomatically monitoring large botanic experiments so as to
provided by PrimeSense and based on Structured Light (Sidetermine the best treatments (watering, nutrients, glomli
has received even greater attention, because of its low cdstoptimize prede ned aspects (growth, seedling, owers)
and simplicity of use. and eventually guiding robots, like the one in Figure 1, to

. . . _ interact with plants in order to obtain samples from leaves
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tural/geometric information indispensable for robot rate Ground Truth Three Possible Interpretations
tion with plants. 3D cameras are, thus, a good complement,g
since they directly provide depth images. Moreover, plantg
data acquired from a given viewpoint are often partial or g
ambiguous, thus planning the best next viewpoint becomes
an important requirement. This, together with the need of §
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second) a good option in front of other depth measuring§
procedures, such as stereovision or laser scanners. Since n &
ready-to-use SL cameras are also available, we undertook &
comparative assessment of the usefulness of both ToF ang
SL cameras to acquire (possibly deformable) object models?
at close distances and to calibrate them with respect to thes
robot for subsequent manipulation. Y

The paper is structured as follows. First we present our§
advances in reconstructing deformable objects using ane si

gle RGB camera. Then, in Sec. lll we present two differentig. 2: Handling 3D shape ambiguitieseft Column. An
depth camera technologies: ToF and SL. The rst area Qinage of a surface lit by a nearby light source and the
application, grasping of textiles, is described in Sec. IVeorresponding ground truth surfackhree other Columns.
Active vision, with the camera mounted on a robotic armjn each one, a different candidate surface proposed by our
is presented in Sec. V in relation to the botanic applicationygorithm is shown in black. The corresponding projection
Finally, Sec. VI is devoted to some discussions about thgnd synthesized image given automatically estimatedifight
results and possible exploitation of these technologies.  parameters are shown below. As can be seen in the second
Il. NON-RIGID RECONSTRUCTION USING ASINGLE RGB 'O Its prpjectmn IS very S|m!le_1r, even though its shapeg/ma
C be very different from the original one. In other words, the
AMERA ; AT o
candidates cannot be distinguished based on reprojeation e
It has been shown that the 3D shape of deformablgy alone. However, when comparing the true and synthesized

surfaces can be very effectively recovered from even sing|gages, it becomes clear that the correct shape is the one at
images provided that enough correspondences can be estgfer top of the second column.

lished between that image and one in which the surface's
shape is already known [7], [1], [8]. While effective, these
techniques only return one reconstruction without acdagnt state-of-the-art methods [9], [1].A few sample frames & th
for the fact that several plausible shapes could produte-vir results are shown in Fig. 3.
ally the same projection and therefore be indistinguishabl In other words, our contribution was an approach to
the basis of correspondences and geometry alone. In practiavoiding being trapped in the local minima of a potentially
as shown in Fig. 2, disambiguation is only possible usingomplicated objective function by ef ciently exploring e¢h
additional information, such as that provided by shadingolution space of a simpler one. As a result, we only had to
patterns. evaluate the full objective function for a few selected s®p

In [2], we introduced an effective way to sample the spacevhich implied we could use a very discriminating one if
of all plausible solutions. We achieved this by representinnecessary.
shape deformations in terms of a weighted sum of deforma- In the following sections we will turn to other approaches
tion modes and relating uncertainties in the location ofipoi that instead of capturing the 3D structure using RGB cam-
correspondences to uncertainties in the mode weights. Thigas, directly use the information of depth sensors. Algou
let us explore the space of modes and, in the end, selecR&B cameras offer a more general solution that may poten-
very small number of likely ones, which correspond to 30ially be used in unconstrained and outdoor environments,
shapes such as those depicted in the top row of Fig. 2. the depth sensors represent a robust solution specially in

In practice, to select the best one, we used lighting infossituations where lighting may be controlled.
mation that comes from either distant or nearby light sasirce
The latter was particularly signi cant because exploitiitg Ill. DEPTH CAMERAS
would involve solving a dif cult non linear minimization  We will consider two different 3D camera types, a Cam-
problem if we did not have a reliable way to generate 30Cube ToF camera and the Kinect sensor.
shape hypotheses. In our examples, this was all the more trueToF camera is a relatively new type of sensor that delivers
since the lighting parameters are initially unknown and had-dimensional images at high frame rate, simultaneously
to be estimated from the images. This also means that weoviding intensity data and range information for every
could have used other sources of shape information besidaizel. Figure 4 shows the depth image of a plant leaf with
shading. We showed that these approaches outperformibg depth values coded as different color values.
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Fig. 3: Results of reconstructing shape from single RGB iesagsing [2] and two other approaches [9], [1]. Top three rows
Results of a bending paper. Bottom three rows: Results off@ameig T-Shirt. Note that our results are consistently enor
accurate. The reconstruction gures are color coded, shahreddish areas represent regions with larger errors.

Depth measurements are based on the well-known tim200 x 200), while the Kinect depth camera exhibits VGA
of- ight principle [10]. A radio frequency modulated light resolution. Both camera types are auto-illuminated so in
eld is emitted by the system and then re ected back tgorinciple they can work in a wide variety of illumination
the sensor, which allows for the parallel measurement of itonditions.
phase (cross-correlation), offset and amplitude [11]. One common problem with both cameras is that they

Kinect uses an infrared structured light emitter to projeatlo not provide a dense depth map. The delivered depth
a pattern into the scene and a camera to acquire the imagermfges contain holes corresponding to the zones where the
the pattern, then depth is computed by means of structurednsors have problems, whether due to the material of the
light algorithms. Additionally, among others sensors, th@bjects (re ection, transparency, light absorption) oeith
Kinect integrates a high resolution color camera. position (out of range, occlusions). As will be presented in

Kinect was developed with the aim of robust interactiveahe next sections, Kinect is more sensitive to this problem
human body tracking and great efforts have been made lry construction.
this direction [12]. After the Kinect protocol was hacked, To compare both cameras in one of our scenarios, we take
the community rapidly started to use it, rst with the sameseveral images of a shirt (Fig. 5) in different con guratson
aim of human interaction and afterwards in other areas, likBoth cameras offer good depth estimation of the shirt, and
robot navigatioh. Later, the of cial library was made public even small wrinkles can be identi ed. The close views with
through the OpenNi organization. ToF and Kinect provide lots of details. Observe clearly the

Both camera types can deliver depth images at reasonalyape of the collar (Figs. 5b and 5f), the different depths in
high frame rates. The main difference is in resolutionthe top image of the wrinkled shirt (Figs. 5¢ and 5g), and
ToF cameras still have limited resolution (typically ardun the details of the shirt sleeve (Figs. 5d and 5h).

1 o ) ) As regards to Kinect, in Figure 5f occlusions appear in

See for example the initiative of commercially releasing . .

a  low-cost robot based on iRobot Create and Kinect ain€ collar and this produces holes in the surface, presymabl
http://www.willowgarage.com/turtlebot due to bad readings as no occlusions are present. We should



(a) ToF depth (b) ToF depth closer view (c) ToF depth of wrinkled shirt (d) ToF depth closer view

(e) Kinect depth (f) Kinect depth detail (g) Kinect depth of wrinkled (h) Kinect depth detail
shirt

Fig. 5: Images of a folded and a wrinkled shirt. Images araiabtl by moving both ToF and Kinect cameras to obtain the
best possible depth acquisition. The wrinkles in the sbirgn if they are small, are visible with both cameras. (f) €bs
the holes in some parts of the surface and the occlusionsirdlar.

note that the position, size and number of holes vary with Our initial assumption is that a good grasping point for a

the sensor motion. textile object lying on a table is one where the cloth de nes
ridges or other 3D structures, i.e. there are wrinkles. The
IV. GRASPINGCLOTH USING DEPTHINFORMATION justi cation of this assumption comes from the nature of the

) . . grasping mechanism, which in our case has three ngers,
Recently the problem of grasping and folding clothes withy iy, 5 total of four degrees of freedom. Lacking the pregisio

a robotic arm has attracted much attention [13], [14], [15]0f movement, exibility and the small(er) size of human
[16], [17], [18]. Its application ranges from automatizinghands (which can pick up cloth objects from the edges), the
industrial cleaning facilities to domestic service robots best point for a grasp for this type of hand is a pyramidal or
There exist works devoted to determining the best/optimalynic-like shape, such as the one produced by wrinkles.
grasping point for a particular purpose (e.g. folding) off@®  \ye have developed a measure of the “wrinkledness” in
cloth is held by a robotic hand. However, most of the research point taking into account the depth information of its
done in this area has been used in controlled enViro”merﬂéighbourhood. This measure is computed using a local
and simple heuristics have suf ced. descriptor based in the surface normals of a 3D point cloud.
A common heuristic or workaround used by works ady particular, we use thénclination and azimuth angles

dressing textile grasping, such as [15], [18], is to seleCt gje ned in the spherical coordinates representation of the
grasping point the highest one in the 3D point cloud of thggrmal vectors:

cloth object. However, in practice, the highest point does z y
not need to constitute a good grasping point for robotic (; )= arccos - ;arctan ~ (1)
manipulators. ) o _ )

We have investigated what constitutes a good initiaf/nere is the inclination and is the azimuth(x;y;z) are
grasping point for a piece of cloth lying on a at surfacethe 3D point coordinates, and is the radius in spherical
in an arbitrary con guration. Below we propose a newfnes, dened as:
“wrinkledness” measure [19] that uses range information
that can be used to determine the most easily graspable
point at an affordable computational cost. Compared torothe Next, we model the distribution of the inclination and
works [14], we directly use 3D information obtained fromazimuth values in a local region around each point. A
a low-cost sensor, therefore avoiding the expensive daleene cial side effect of this process is that occluded ragio
collection and manual annotation step required for SVMind areas where the Kinect was not able to estimate the depth
training, and which not being vulnerable to learning errorsare naturally interpolated using the information providsd

r:IOx2+y2+z2 (2
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Fig. 6: Details for the ve experiments conducted with a rbbarm (one per row). For each experiment is shown (in
order): the segmented “wrinkledness” map of the towel, #lecied grasping point, and a picture of the robotic hanél wit
the grasped towel, if successful.

their neighbours, which reduces the sparsity of the poirt is a highly wrinkled area. Although standard deviation is
cloud. probably the rst measure of spread that comes to mind, it
From this model of the local distribution of normal is not a good choice, since a strongly bimodal distribution
angles in spherical coordinates, we seek to estimate tha" have a Ia_lrge_ standard dew_atlon while having low spregd.
“wrinkledness” of a point. This can be intuitively done byA better choice is entropy, which does not suffer from this

looking at the spread of the angle histogram: the more
different orientations the surface takes, the more likbit t



(a) ToF depth (b) ToF intensity (c) ToF 3D point cloud

(d) Kinect depth (e) Kinect color (f) Kinect 3D point
cloud

Fig. 4: Typical images supplied by a ToF camera and a

Kinect camera. Figures (c) and (f) are the reconstructed 3D

point clouds for each camera. (c) Observe the fayéeg

points points between the leaf edge and background. (dig. 7: Frames of a leaf tracking experiment. The set of

Observe the holes between the leaf and the background desnnected reference systems represent the current positio

to occlusions between the IR projector and the camera. of the robot. The 3D points of the tracked leaf are colored
with the depth and an additional reference system is atthche
to the leaf with Z coordinate (blue) normal to the leaf suefac

drawback:

xo
H(X)= p(xi) log p(xi); (3) plant leaves from a initial image, then extracts some geo-
i=1 metrical characteristics and use them to move a combined
ToF+color camera sensor with a robotic arm to obtain
theig, bin. new and more detailed views of the selected leaves. Our

We tested our proposed “wrinkledness” measure in regpproach uses a combination of depth and color information

grasping experiments. Our experimental setup consists Oil%perform 'mage _segmentatpn and robot guidance, and use
robotic hand with three ngers installed in front of a at tieb some characteristics of the point cloud to extract the aosto

of uniform color, in which a small red towel was randomlyto segment the. depth image [21]. . .
positioned. We are now interested not only in the rst general image

In all the experiments, a 2D histogram with a squaré‘nd the last detailed image, but also in the sequence of

support region with a side of 33 pixels was used to genera't'@ageS acquired while the robot is moving. This allows

the “wrinkledness” map after segmenting the towel from thé® P?rform a guided segmentatlon of _the leaf in the nal

table, and the point with the highest activation was setbctd0S!ton, as .weII as contmgously upd_atlng the_ 3D model of
as the grasping point. Next the robotic arm was moved to tﬁge plant using an uncertgmty reduction algorithm [4].

point, and a grasp attempt was performed. Please note thal" contrast to our previous work, we present here some
we are not claiming that the point with highest activatiof€Sults using a Kinect camera (Fig. 7). The experimental

in the map is necessarily the best possible grasping poiﬁl‘?IUp is shown in Figure 1a, where the camera is mounted

However, we have used this simple heuristic with very goog" the end-effector of a WAM robot arm. Here we show
results. the tracking using 3D information, so a leaf is manually

Four out of ve tests ended with a successful gras selected and the robot arm is moved trying to keep the leaf

Figure 6 shows the images and “wrinkledness” maps usélato the image area. The real-time trackin.g. uses a georaktric
to decide the grasping point, and a photo of the robotic arlngel o_f the leaf [22] and the pentral position _and the normal
holding the towel for those tests that were successful. prientation are extracted. In Fig. 7 the leaf points are renlo

each successive test the towel was positioned in incrdysin?ependmg on the depth, and th_e refe_:rence system Is attac_hed
dif cult con gurations. o the computed leaf central point with the Z component (in

blue) normal to the surface at the center pbint
V. NEXT BEST VIEW AND TRACKING As eXplainEd before, USing a Kinect camera it is not

whereX is then-bin angle orientation histogram, amg is

Recently we have presented a work on next view selectionzrpe  complete  video  can be  accessed at
for plants [20]. The algorithm rst selects some candidatettp://www.iri.upc.edu/people/galenya/pub/LeafTriagkavi



possible to approach the leaf in the same manner as we did
with the ToF+color combination, this being the reason whym
approaching motions are quite restricted.

VI. CONCLUSIONS AND FUTURE WORK [2]
In this paper we have presented some recent work of oug)
group towards perception and manipulation of deformable
objects. [

We are convinced that in these scenarios having depth
information of the scene is crucial to produce robust and
repetitive algorithms. Apart from the classical stereo and”!
range nders sensors, we have extensive experience with thig]
two different camera technologies that we have presented:
ToF cameras and SL cameras. Although ToF cameras ha\Vé
lower resolution, they can provide depth images at short
distances of up to 20cm. This capability makes them very8l
valuable in contexts where ne details on the objects are
crucial.

Two different areas of application have been presenteo{.gl
The rst one is manipulation of textiles. We have presented
some preliminary work towards nding a good measure of
“graspability” for cloth objects lying on a at surface. Thi (10]
is an important aspect for making robots fully autonomous ip;
unprepared environments; in contrast, related literagarar
relied on simple heuristics that worked in controlled sefsi.

One important limitation of this approach is that concave
areas of the image get a high activation level while not
being good grasping points. Yet, it is possible to compute
concavity measure and use it to re-weight the “wrinkledhess
map.

As next step, we think that better grasping points could b[é4]
found by combining information like point height, total 3D
volume, normal orientation or the aforementioned congavit!1®!
measure with the entropy-based measure proposed in this
paper.

The second area of application is plant monitoring. Fooﬂ6]
industry is very important for society, and current effdrts
automation are devoted to monitoring and performing astion
on individual plants belonging to large plantations. Owfle [17]
tracking example has been developed using a Kinect camera,
yielding a very robust performance under varying condgjon
since the precision requirements were relatively low. Gn th 18]
contrary, in the past we have also used a ToF camera under
a next-best-view approach to nd suitable leaves from which
to take probes. Since this requires getting very close to the
plant and nding suitable probing points with high precisjo
a ToF camera was more appropriate, although it requirdépd]
considerable parameter tuning.

Plants evolve with time, change their shape and thejei]
topology. We are exploring now how to create complete
models of a plant, and how these models should be updatgg
with time. An important aspect of the modeling process is
to create models containing enough information to allow
robotized interaction with the plant, for example cuttioge
leaves or taking probes for posterior analysis.

[12]
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