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Abstract—In general, rearranging the legs of a Stewart- 1) If the singularity locus of the platform at hand has
Gough platform, i.e., changing the locations of its leg attach- already been characterized, it could be interesting to
ments, modies the platform singularity locus in a rather modify the location of its legs to optimize some other

unexpected way. Nevertheless, some leg rearrangements have latf h teristi ithout alteri hi
been recently found to leave singularities invariant. In this platiorm charactenstics without aftéring such locus.

work, a summary of the some of such singularity-invariant leg 2) If the singularity locus of the analyzed platform has

rearrangements are presented, and their practical consequees not been characterized yet, it could be of interest
are illustrated with several examples including well-known to simplify the platform's geometry by changing the
architectures. location of its legs, thus easing the task of obtaining

this characterization.

In [5] it is shown how, for a leg rearrangement to be

The Stewart-Gough platform triggered the research osingularity-invariant, it is necessary and suf cient thae
parallel manipulators, and it has remained one of the mokhear actuators' velocities, before and after the reayean
widely studied because, despite its geometric simplidisy, ment, are linearly related. It is important to realize that,
analysis translates into challenging mathematical proble if this condition is satis ed, a one-to-one correspondence
[19], [12]. One important part of this analysis correspondbetween the elements of the platform forward kinematics
to the characterization of its singularities. solution sets, before and after the rearrangement, exists.

The singularities of a Stewart-Gough platform are thoséctually, the invariance in the singularities and the adsigm
poses for which the manipulator loses stiffness. Charagrodes of a parallel platform are two faces of the same coin.
terizing such unstable poses has revealed as a challengifgese ideas are closely related to those that made possible
problem during the last decades, resulting in an extensi¥ge development of kinematic substitutions [18]. They are
literature in the scienti ¢ kinematic world [15], [23], [14 general in the sense that they can be applied to any kind of
[3], [13]. mechanism, not only parallel platforms.

The Stewart-Gough platform is de ned as a 6-DoF parallel This paper shows how the application of singularity-
mechanism with six identical SPlegs. The geometric and invariant leg rearrangements to well-studied platfornzsite
topological characterization of its singularity locus is $ix-  to interesting new results.
dimensional con guration space is, in general, a huge task Section Il introduces the notation used in the paper and
which has only been completely solved for some speciafection lll de nes a singularity-invariant leg rearrangamh
izations —.e., designs in which some spherical joints inin mathematical terms. Then, three case studies are pegsent

the platform, the base, or both, coalesce to form multipléSections 1V, V and VI), with particular numerical examples

. INTRODUCTION

spherical joints [2], [1]. showing interesting results and the development and imple-
The kinematics group at the Institut de Rwioa i In- Mmentation of two prototypes based in them.
formatica Industrial at Barcelona studies new approaches Il. NOTATION

to the singularity analysis of parallel platforms. This wor ,
presents one of their indirect approaches: even when therg” 9eneral Stewart-Gough platform is a 6Splatform. In

is no known solution to a given mathematical problem, it i9ther words, it has six actuated prismatic legs with lengths
always possible to try to nd the set of transformations te th! = 1736, conneTctlng two spherical pais"’ef joints centered
problem that leave its solution invariant. Although thisedo & = (Xiiyi;zi)" andbi = (ri;si;ti)", given in base
not solve the problem itself, it provides a lot of insightant and platform reference frames, respectively (see Fig. 1g. T
its nature. This way of thinking is the one applied herein foP2S€ Of thTe platform is de ned by a position vectpr=

the characterization of the singularity loci of Stewarte@b  (Px:Py;Pz)" and a rotation matrbR

platforms. In this context, this approach means nding leg 0 ix Jx kx:L
rearrangements in a given Stewart-Gough platform thaeleav R =(i;j;k) = @iy iy kyA :
its singularity locus invariant. i jz kg

Such singularity-invariant leg rearrangementsre useful

for two main reasons: (a) so that the platform attachments can be written in the base

Institut de Robtica i Informatica Industrial (CSIC-UPC), Barcelona, To simplify Fhe notgtion, t_h_e same name will be used to
Spainf jborras, fthomas, ctorras g@iri.upc.edu denote a point and its position vector.



0 1
i reiStityXeyrzr riXp riyr rizz SiXs Siyr S1zr tiXa tiyn t1z3 1
iT2iS2itaXoyaZa TI2Xa T2Y2 T2Zp SpXo SpYo S22y MoXo toys 1oz 1
ir3iS3itaXayszz I3Xz I3ys I3Z3 S3X3z S3ys S3Zz 13Xz tayz tzzz 1l
P = i TaiSaitaXaVYazZs TaXa VaYa TV4Zs SaXs SaYa SaZs 1sXs tays 1424 1 = 1)
i f5iSs5itsXsYs2Z5 IsXs [Isys [s5Zs SsXs SsYs SsZs tsXs tsys tszs 1
iTeiSeitleXeYsZs reXe [FeYs F6Zs SeXe Se¥e S6Zs teXe leYe 16Zs 1

ir isitxyz rx ry rz sx sy sz & ty tz 1

Despite of this, recently, we have been able to identify leg
rearrangements that do not modify the singularity locus of
the platform, nor the solution of its forward kinematics. In
other words, for the rearranged platform, the location ef th
singularity poses within the workspace of the manipulator
remain at the same position. This kind of rearrangement are
called singularity-invariant leg rearrangementsnd where
characterized in detail in [5].

In Fig. 1 we show the rearrangement of the jedn other
words, we relocate the attachmers and b to the new
coordinatesa = (x;y;z)" andb = (r;s;t)". In [5], it was
shown how such leg rearrangement is singularity invariant i
and only if, the coordinate;y; z;r; s;t) make the matrix
P in (1) to be rank defective.

Note that the rst 6 rows ofP contain only geometric
Fig. 1. A general Stewart-Gough platform with base attachsan and parameters O,f the manipulator, Wh”e,the last row depends
platform attachments 4, i = 1;:::; 6. A single leg rearrangement consist ON the coordinates of the new location of the rearranged
in the substitution of one of the legs by a new one, in gray endrewing. |eg. The 6 rst rows of P where used in [11], [21] to

characterize architectural singularities. With this @ddial
row, we are able to characterize any singularity-invarlagt

There are three types of parameters that fully de ne fearrangement by studying the rankRf
Stewart-Gough platform Gaussian Elimination uses elementary row operations to
reduce a given matrix into a rank-equivalent one, with an
upper triangular shape. After it is applied to a matrix, rank

Pose parameters:

X :(pxi_py?pz;ix;jx;kx;iy;jy;ky;iz;jz;kZ) de ciency occurs when all the elements of the last row
Geometric parameters: are zero. MatrixP is 7 £ 16 and, if we apply Gaussian
G=(X1;Y1;2Z1;r1;S1; 11,717 ; X6 Ve, Z6: T6; S t6) Elimination, the last row of the resulting matrix can be

expressed as: ¢
i
£:(Il;:::;|6) 0O 00O 0O OPl L PlO ) (2)

Finally, it will be useful to introduce a 6-dimensional spac
de ned by the coordinate$x;y;z;r;s;t), calledthe space
of leg attachmentsEach point of this space de nes a leg

that goes from base attachmemt= (x;y;z)" to platform
attachmenb = (r;s;t)".

knowns(x;y;z;r;s;t), and we can state th& is rank de-
fective if, and only if, the 10 polynomials are simultanelgus
vanished.

In conclusion, if any of the legs is relocated to the new
attachmenta = (x;y;z)" andb = (r;s;t), the resulting leg
I11. SINGULARITY-INVARIANT LEG rearrangement is singularity-invariant if, and onlyfiR ; =

REARRANGEMENTS 0;:::5P10 =09,

This is an overdetermined system that has no solution for

A leg rearrangement consists in a relocation of the attacla— generic case. We need to impose at least 5 more scalar
ments of the manipulator, without modifying the pose of the,q, ations to obtain a 1-dimensional set of solutions. Next

platform, and thus, leading to new leg lengthsd,;:::;ds e will see several cases for which matxis simpli ed

(Fig. 1). In general, such rearrangement completely madi e,y <ojutions of dimension 1 and 2 are obtained.

the kinematics of the manipulator and also the location

of its singularities, because the forward kinematics of the IV. CASE STUDY I: DOUBLY-PLANAR

rearranged platform must be solved again, which leads to a STEWART-GOUGH PLATFORMS

different number of assembly modes and to a different set For any doubly planar Stewart-Gough platform, the coor-
of singularities. dinates of the base and platform attachments can be written,



without loss of generality, as = (X;;y;;0) andb; =
(zi;ti;0). In this case, a leg rearrangement with coordinates
(x;y;z;t) stands for the substitution of any of the legs by
another one going from the base attachment located=at
(x;y; 0)" to the platform attachment &t= p+ R(z;t;0)".
In this case, matriP can be simpli ed to

0 1
i ZritiX1y1Xazr Y1z Xatp yitp 1
i Z2it2 X2 Y2 X2Z2 Y2Zo Xotz Yotz 1
i Z3 i t3 X3 Y3 X3Zz Y3Zz Xstz Ystz 1l
P= i Za i a4 Xa Ya XaZa YaZs Xala Yals 1
i Zs i t5s X5 Y5 X525 Ys5Z5 Xsts Ysts 1
i Z6 i l6 X6 Y6 X626 Y6Zs Xels Yels 1
iz it xy xz yz xt yt 1 Fig. 2. A general singularity-invariant leg rearrangemeott & doubly-
(3)  planar Stewart-Gough platform

Consider the example with attachment local coordinates

appearing in Table I.

TABLE |
ATTACHMENT COORDINATES(a; = ( Xi;Vi;0)T:b5; = (z:t;;0)7).

/

[xi [yvilz [t]

|

T3 5]5]6 ]

> 7 9 78 ]
378998 o

ZT 12596 a
515 264 /

6] 9 295

To check rank de ciency, Gaussian Elimination is applied
on P with the corresponding numerical values substitutedig- 3. The base and the platform curves of the doubly-pl@Btawart-
In this case, the last row of the resulting matrix has only $°ud" platform depicted in Fig. 2.
nonzero terms dependent on y, z andt. Different but

eqluwalentFequatlonsl arlée dependEl?g 'ont'the orderﬁqf ﬂ?ﬁt with different monomials. As the system is linear, both
columns. For example, t>aussian Elimination on matix ., (x;y) and in(z;t), it can be rewritten in matrix form as
0

as it appears in equation (3) leads to a matrix whose last

1 01
row is z 0
1 ¢ Sp @tA = @0A ; (5)
—000000P89P79P7g; 1 0
P89 _
whereP; is the determinant of the submatrix obtained fromVN€re S is 1
P after deleting columns andj, andPj the determinant L 27748 + 310y Wy x+ W2 213y 1098y
of the submatrix formed by the rst 6 rows oP after
. .. . . 10519 ,, . 87557 . ﬂx y + 51343 61662y. 13274X
deleting columnsi, j and k. With the corresponding nu- 305 Y1 30s5 1 oo 1015 1015 Y | 1015
merical valuesP7g9 = j 12180and the singularity-invariant 17 38 247 i 192 D14 STy 194
sos X1 sog¥Y * &og 203 | 208 %1 203Y

leg rearrangements are de ned by the condition de ned by

fPgg = P79 = P7g = 0g, which reads as which only depends or andy (brefers tobase asx andy

338 3706 1096 99713 9 are the coordinates of the base attachments). The other way
i gogXZ * XU+ 355YZ + JausX i gV round, the system can also be written as
i 052+ Jo5t =0 «
L 470y 4 10519\ o vy 4 13274 . 61662 = Sp @yA = @0A ; (6)
i 509XZ* a5 YZTY Xi y
st 10
| 3045 1015 '
17 38 67 194 wheresSp is
WXZ i @yzi 203 + my 0 t 4+ 1096 . 338, i 22713 3706 27743 , . 19302 ¢ 1
+ 277 %t +1 =0 ' 1015 | 609 1015 3045 3045 <1 1015
(4) % 13274, 470, | 61662 4 10519 ;4 { 87557 51343 4
Note that any equation consisting of a submatrix determi 1015 T 6097 1015 3045 8045 1015
nantP; equated to zero will be bilinear in the unknowns, i67 4 17 5 i385 4 194 L2475 4 19240 7

203 609 609 203 609 203



Fig. 4. Grif s-Duffy type | platform with the attachment codinates given in in Table Il (left), and its equivalent oadhal manipulator after applying
a leg rearrangement (right).

that only depends om andt (p refers toplatform asz and representation of these manipulators can be found in Fig. 4-

t are the coordinates of the platform attachments). (left).
From equation (5) it is clear that the system has a solution
for (z;t) only for those(x;y) that satisfydet(Sy,) = 0, TABLE Il

and this solution is unique (assuming ti&f has rank 2).
In the same way, there exists a solution fary) only for
those(z;t) that makedet(Sy) = 0. Both determinants de ne
cubic curves on the base and platform planes, respectively.

COORDINATES OF THE ATTACHMENTSa; = ( Xj;Yi;0) AND
bi = p+ R(z;ti;0)7T FOR THE ANALYZED ROBOTS

other words, system (4) de nes a one-to-one correspondence LLL x| g [ 2 | 4 |
between generic points on two cubic curves. However, the % % 03 1i2 8
correspondence may be not one-to-one for special points on 3| 2=3 0 il [0
the cubics for non-generic examples (see details in [10]). 4] j2 0, il=2 | 3=2
For this particular example, the equations of the cubic on 5|28 (4=g)i 3 0 pr_§
the base is 6] © 23 1=2 3=2
1450 ' 609" V" 10157 ' 609’ © 304 _ _ _ _
4343 2313 , 17888 = 26032 = 261691 In this case, the system obtained by applying Gaussian
105 " 1018 ' 101X 101587 T 3045 elimination on the corresponding matrix results in :
and on the platform 9
9 , 39 _, 293 _, 192, 282, 1877 i ytyzgxt =0 =
145 | 015" ' 1015 | 208 ' 203" ' 1015 o o f’tszmp y =0
+22292_ 177992_ 98097+32922_0 i 2 3z+4t+ 3Xj y+ 3Ixz+3yz; 2 3 =0
145" ' 1015°' 1015 = 145 @)

which have been plotted in Fig. 3. The curves attached t‘Bhe resolution of this system gives correspondences batwee

the manipulator base and platform are shown in Fig. 2 base and platform attachments that leave the singularities
Depending on the placement of the attachments the'ga/ariant. The base and platform cubic curves, in this case,

curves can be generic curves of degree 3, or a line and'@Ftorize into the 3 lines:

conic, or even 3 lines crossing 2 by 2. In the next example,

one of these degenerate cases is analyzed. ( 3z t+ P §)(p 37+t P 3)t=0;

A. An octahedral manipulator implementation

In 1993, Grif s and Duffy patented a manipulators namecdand
thereafter Grif s-Duffy platform [17]. The platform have D p
his attachments distributed on triangles, three attacksnen (j 3+ §yi 6)(3x + f_3yi 6)y=0;
on the vertexes and three on the midpoints of the edges,
and platform is formed by joining the attachments on the )
midpoints on the base to the vertexes on the platform, as tFRSPectively.
example with attachment coordinates given in Table 1. A Actually, it can be checked that system (7) has 6 sets of



Fig. 5. Contrary to what happens to the Stoughton-Arai appration,
the proposed modi cation leads to a 6-6 platform kinematicaljuivalent
to the octahedral manipulator.

solutions

Cp=f(Xy;25t) ]

_ P_ Fi . . . . . .
- oy = o — ()t — . . g. 6. This platform consists of six extensible legs cotingca moving
x=,y =(.1+2) 3z=0t=" 3;,12Rg platform to a xed base. We avoid the use of multiple spherjoaits (that
Co=f(Xy;z;t) ] is, spherical joints sharing the same center) without lapsite properties

P of the celebrated octahedral architecture.
X=,2Y=2i ,2) 3z=1;t=0;,22Rg;
Cos = F(Xy;zZ;t) ] . . . . . :
K= V=0'7=i1t=0 «2Ra kinematics and singularities to the widely studied octaaled
—.eY =027 =082 KRG manipulator (see more details in [20], [6]).
Cp= TGy Z) ]

oo P _ _ V. CASE STUDY II: A DECOUPLED
X=i2y=0;z=,4t= 3(4*1);.42Rg STEWART-GOUGH PLATFORM
¢p2 = f(Xy;Z5t) ]

_ p_ Consider the manipulator in Fig. 7. It contains a tripod and
x=0jy=2 3z= ,5t= 3(1i ,s),52R% 3 more legs, with all the base attachments coplanar. Thus,
Cpz=f(Xy;z;t)] without loss of generality, we can write the coordinates of

Xx=2:y=0:z= t=0;. 62 Rg: the attachments a& = (X;;yi;0)" andb; = (r;;si;t;)".
This manipulator is said to be decoupled because the three
legs forming the tripod give the position of the platform,
In other words, these are 6 point-line correspondences, thyhile the three remaining ones orient it. When the tripod is
is, to each vertex of the base (platform) triangle corregigon rigid, i. e, xed at a position, this manipulator is also known
a line on the platform (base) triangle. This means that,Her t &S SPherical [4], [16]. _ _ _ _
Grif s-Duffy type manipulator, we can x the attachments Consider the example W|th numeric (?oordlr!atfes appearing
at the vertexes of the platform (base), and then rearran{je Table Ill. After performing Gaussian Elimination on
the opposite attachments along a line in the base (platform)
without modifying the kinematics of the platform.

As a result, by moving the six midpoint attachments along
their supporting lines, the manipulator can be rearrangted i
the manipulator depicted in Fig. 4-(right), which is the alig
known octahedral manipulator. This is an interesting tesul |

TABLE IlI
ATTACHMENT COORDINATESa; = ( Xj;Vj;0) AND
bi = p+ R(ri;siiti)T

x

yi [ri[si[ti]

|
because we can avoid the use of multiple spherical joints é § -j 5 g 8
(that is, spherical joints sharing the same center) without 3142|210
loosing the properties of the celebrated octahedral achit 4| 712|510 1
ture [14]. A manipulator has been constructed following the g 23 72 21 g 1
design in Fig. 5 in the Laboratory of Parallel Robots, at the

Institut de Robtica i Informatica Industrial [22] (Fig. 6).
Its advantage is that it is a 6-6 manipulator with the samthe corresponding matriP, only six non-zero elements
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Fig. 8. Singularity-invariant leg rearrangements from tkaneple in Fig. 7

VI. CASE STUDY IIl: PENTAPODS

A pentapod is usually de ned as a 5-degree-of-freedom
au fully-parallel manipulator with an axial spindle as moving
Fig. 7. A decoupled manipulator with non-planar platform. loe its Platform' This k'”‘?' of man_lpUIatorS have_revea_led f:ls an
singularity-invariant leg rearrangement lines. interesting alternative to serial robots handling axisyetnn
tools. The moving platform can freely rotate around the axis
de ned by the ve aligned revolute joints, but if this rotati
remain at the last row. That is, a leg rearrangement will baxis is made coincident with the symmetry axis of the tool,
singularity-invariant if it ful lls the following 6 conditons  the uncontrolled motion becomes irrelevant in most cases.
Their particular geometry permits that, in one tool axis,
large inclination angles are possible thus overcoming the

ai

i 2Xr + yr+4xij 2y+6rj 6s+18t=0;

i AXr=3+xs+2x=3+6rj 6s+12t=0; orientation limits of the classical Stewart-Gough platfior
1=5(17xr + ysj 34xi 10y 34r +34sj 20%) =0; A pentapod involves only 5 of the 6 legs of the Stewart-
Bxr=3+ xt j 10x=3j 5r+5sj 17t =0: Gough platform, with the platform attachments collinear.

_ . . _ . e A, This 5 legs form a rigid component by itself that can be
=5+ yti 1&=5i 18=5+18s5i 8A=5=0; studied separately. In addition to the platform attachsent

i IXr=2+x+ 71§ 35=2+9t=2+1=0 collinearity, if we consider all the base attachments cugia
then we can write the coordinates of the attachments as
a = (xi;y;;0)7 andb; = (z;0;0)" fori = 1:5 and the

This system of equations has 4 sets of solutions: corresponding matri® after some simpli cations reads as

T =f(xy)(rsit)] 0 1
X= :y=1r=2:5=2:t=0::! 2Rg, z1 X1 Y1 X1zz yizz 1
> ! ) ! ! 1! ! Zp X2 Y2 XoZy Y22y 1

¢q,= f(X;y); (r;S;t) J p= Z3 X3 Y3 X3Z3z Y3Z3 1 (8)
X=2;y=7r=2;s=2+3 ;t = ;, 2Rg; Zy X4 Ya XaZy YaZy 1
Co=f(xy)(ns;t)jx=7;y=j 2 5 Xs Y5 XsZ5 ysZs 1

zZ X Xz z 1
r=5j 3=2s=;t=1 =2;, 2Rg; y Y

Cs=Txy)nsi)jx=i3y=i2
r=2j 3,s=2i 2;t=

55

In this caseP is a square matrix, so its rank de ciency is

characterized only by the equatidet(P) = 0. In [9] it was
2 Rg: shown that such condition de nes a one-to-one correspon-
The rst one corresponds to the tripod component and glence between the platform attachments and the lines of a
means that base attachments can be rearranged to any pgﬁaﬁncil attached at the base. The center of this pencil,ctalle
of the base plane as long as its corresponding platforBrPoint in [9], [7], plays an important role in the geometric
attachment is the vertex of the tripod. The other 3 seharacterization of the manipulator singularities.
correspond to point-line correspondences as before, wepic  Consider the example with numerical coordinates appear-
as red lines in Fig. 7. This means that, bs andbg can NG in table VI.
be relocated to any other point of the red lines (as long as After substituting the numerical values i, we get that
their corresponding base attachment remains the same). the condition for the singularity invariance is

In Fig. 8 we show two ppssible singularity-invariant leg det(P)= xj z=0: 9)

rearrangements of the manipulator at hand. For all of them,
the decoupling properties remain the same as they are @lis means that any leg can be rearranged to a leg going
equivalent manipulators. from the base attachmeat= (,;y; 0)T tob = (,; 0;,0)7



Fig. 9. Pentapod analyzed in Section VI. Note that it is in pside-down
con guration, so that the platform is located under the base

TABLE IV
ATTACHMENTS &; = ( Xj;Yi;0) AND B =(z;0;0)

Lilx [y [z ] Fig. 10. Prototype of the recon gurable quadraticallysatile pentapod
11i2] 2 [iz2 and its joint implementations.
21 il|li2]i1
3 0 3 0
211 121 1
5 2 2 2

We have presented a tool to detect equivalences between
manipulators, which means that we can use previous known
geometric interpretations of singularities to new ardhite
without modifying the singularity locus (where for a xed tures. That is the case of the Grif s-Duffy platform at Secti
., they coordinate can take any value). This correspondd/. The 6-6 Stewart-Gough platform prototype shown in
to the rearrangements plotted in Fig. 9, that is, a one-®-orfrig. 6 has the same kinematic properties than the octahedral
correspondence between the attachments at the platform andnipulator, that is, the same geometric interpretatiorit$o
a pencil of parallel lines attached at the base. In this cassipgularities applies, as well as all other kinematic prepe
the center of the pencil lies at in nity. ties studied in the extensive literature about the octatiedr

This particular architecture was proved to be quadragicallmanipulator.

solvable in [8], [9], that is, its forward kinematics can be e have also shown how decoupled manipulators can
solved by solving only 2 quadratic polynomials. If we X pe rearranged to equivalent and apparently non-decoupled

the attachments of the platform, the corresponding bagganipulators, with different con gurations of their sphud
attachments can be relocated to any point of the red lingsints that might be easy to construct.

plotted in Fig.9. Taking advantage of that idea, at Labayato Also, the hidden geometric structure reveled by these
of Parallel Robots at IRl we have developed a recon g- '

) : curves of singularity-invariant leg rearrangements caip he
urable manipulator prototype based on this structure. | 9 y g 9 alp

base attachments can be recon qured alona actuated uidﬁ the simpli cation of the forward kinematics resolution.
g 9 9 B example, in the case study lll, we show a manipulator

without modifying the nature of its forward kinematics NOTyp ot is quadratically solvable.

the singularities of the manipulator, and thus increashe t i o ) . .
versatility of the manipulator, as for each task, the legs ca Finally, new geometric interpretation of singularitiessba

be recon gured to equally distribute the forces among itbeen found thanks to singularity-invariant leg rearrange-
legs (Fig. 10). ments. For example, for pentapods with planar bases, the

identi ed pencil of lines at the base of the manipulator
VIlI. CONCLUSIONS reveals to be crucial for the geometric interpretation ef it
The present work shows how the application ofingularities. Similar interpretations represent a arak for
singularity-invariant leg rearrangements provide a new gdhe future work.
ometric approach to the study of Stewart-Gough platform In conclusion, this indirect approach to the analysis of
singularities. Indeed, we have presented three case studi&tewart-Gough platform singularities has succeed in gdin
that illustrate several new results. new results in a topic with an extensive previous literature
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