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Abstract Designing a robot manipulator with fewer actuators than the dimension

of its configuration space —to reduce bulk, weight and cost— becomes feasible by

introducing mechanical elements that lead to non-holonomic constraints. Unfortu-

nately, the mechanical advantages of these non-holonomic designs are usually dark-

ened by the complexity of their control. This paper deals with motion planning for

parallel robots with non-holonomic joints shedding new light on their control strate-

gies. As a case study, the motion planning problem is solved for a 3-ŬPU parallel

robot, where Ŭ stands for a non-holonomic joint whose instantaneous kinematics are

equivalent to that of a universal joint. It is thus shown how the three prismatic actua-

tors can maneuver to reach any six-degree-of-freedompose of the moving platform.

The motion planning has been addressed as a control problem in the control system

representation of the robot’s kinematics and a motion planning algorithm has been

devised based on a Jacobian inversion of the end-point map of the representation.

Performance of the algorithm is illustrated with numeric computations.
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1 Introduction

The joints of standard robots, either serial or parallel, implement lower kinematic

pairs. An alternative to these joints are non-holonomic joints, a mechanical concept

probably used for the first time in [8], which can be implemented using convex
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Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain e-mail:

pgrosch|fthomas@iri.upc.edu



bodies rolling on spherical surfaces. Two kinds of contacts have been considered:

marble rolling, when the convex body can freely roll in contact with the sphere

without slipping [4], and rubber rolling, when the convex body satisfies additionally

a no-twist condition [9].

In the practical implementations of non-holonomic joints, the rolling convex

body is usually a disk implementing a marble rolling contact with the sphere. If

the disk rolls upon the interior surface of a spherical shell, the resulting joint is said

to implement the Suslov constraint [15]. Alternatively, if the contact is performed

on the outer surface of the spherical shell, the resulting joint is said to implement the

Veselova constraint [3], the kind of non-holonomic joint used throughout this paper.

Lower-mobility spatial parallel robots have become an active research topic in the

field of parallel robot during the last decade because of their simple structure, low

price and easy control. The dimension of the space of admissible velocities for the

end-effector of this kind of parallel robots is lower than six and, if singular config-

urations are excluded, equal to the dimension of the tangent space of the reachable

manifold. The substitution of a standard joint in a lower-mobility parallel robot by

a non-holonomic joint with equivalent instantaneous kinematics has dramatic con-

sequences: while the dimension of the space of admissible velocities for the end-

effector remains the same, the dimension of the reachable space is increased. To the

best of our knowledge, this idea was first used by Ben-Horin and Thomas in [1],

where a three-legged parallel robot is proposed whose each leg is connected to the

base through non-holonomic joints. The kinetostatics of this architecture was ana-

lyzed by Grosch et al. in [6], who proved that this robot was able to locallymove its

moving platform —excluding singular configurations— in a six-dimensional con-

figuration space. In this paper we go a step further by presenting a solution to the

motion planning problem for this robot which can be adapted to other designs.

It is worth to mention that the use of non-holonomic devices in the design of

robot manipulators has some tradition. For example, in [13], Stammers et al. present

a robot wrist that can attain any orientation with two motors only. This is achieved

by means of a friction drive, using rollers on a spherical ball to which the end effec-

tor is fixed, and by fixing the two motors to the arm. In [12], Peshkin et al. present a

passive spherical robot which can display programmable constraints. The device is

based on a non-holonomic element involving a sphere and three reorientable rollers.

In [11], Nakamura et al. describe an n-joint serial manipulator which can reach any

pose in its n-dimensional configuration space with only two actuators. The joints of

this manipulator are coupled by (n− 1) non-holonomic devices, based on spheres

and rollers, so that its control is equivalent to maneuvering a car with n-trailers.

Considerable effort has beenmade to clarify different aspects of non-holonomicme-

chanical systems [2]. A challenge in control of these systems results from a limited

applicability of the feedback control, discovered by Brockett [5] and Lizárraga [10].

In this paper, the motion planning problem for the parallel non-holonomic robot

will be addressed using the endogenous configuration space approach [14], speci-

fied in [7] to the class of mechanical systems including the parallel non-holonomic

robot used as case study in this paper. The motion planning problem for the parallel

non-holonomic robot will be decomposed into two steps: first the control system



representing the robot’s kinematics is subject to a feedback transformation, and af-

terwards the end-point map of the obtained system is inverted.

The remainder of the paper is organized as follows. Section 2 summarizes the

main characteristics of the non-holonomic parallel robot used as the case study, and

its instantaneous kinematics. Section 3 introduces the motion planning algorithm. Its

performance is illustrated in section 4 by a numeric example. Section 5 concludes

the paper.

2 Instantaneous kinematics of the 3-ŬPU parallel robot
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Fig. 1 The 3-ŬPU parallel robot used as a case study and notations associated with leg i

The parallel robot manipulator appearing in Fig. 1 (left) can be thought as a 3-

UPU lower mobility parallel robot in which each universal joint attached to the base

is substituted by a non-holonomic joint (see [1] for details). Let us consider the leg

number i, i= 1,2,3. According to Fig. 1, we shall introduce the following notations:

• ai and bi are the position vectors, in the base reference frame, of the centers of

the sphere and of the universal joint, respectively.

• li is the length of leg i, that is, ‖bi−ai‖. Then, gi = (bi−ai)/li is the unit vector
in the direction of leg i.

• {w1i,w2i,ri} defines a right-handed reference frame with origin at the center of

the sphere. w1i is aligned with ai and w2i is parallel to the roller axis.

• {w3i,w4i,hi} defines a right-handed reference frame with origin at the center of

the universal joint. w3i and w4i are defined by the two revolute axis constituting

the universal joint.

• θ ji is the joint variable denoting the rotation angle about the axis defined by w ji.

• si = hi× ri− [gi · (hi× ri)]gi is the component of hi× ri perpendicular to gi.

Then, it can be proved that (see [6] for details):

(

13×3

03×3

)

l̇=

[

G3×3 K3×3

S3×3 J3×3

](

ṗ

ω

)

, (1)



where l̇ = (l̇1, l̇2, l̇3)
T is the vector of velocities in the actuators,

(

ṗ

ω

)

is the vector

of linear and angular velocities of the moving platform, 13×3 and 03×3 are the 3×
3 identity and the zero matrix, respectively, and G = G(p,R), K = K(p,R), S =
S(p,R), J= J(p,R) are 3×3 matrices dependent on the end-effector pose (position

and orientation) (p,R) ∈ R
3×SO(3) whose entries are defined as

KT [i, :] = (bi−p)× gi, GT [i, :] = gi
JT [i, :] = (bi−p)× si− li(ri ·gi)hi, ST [i, :] = si,

(2)

where A[i, :] denotes the i-th row of a matrix A.

3 Motion planning

As a starting point we shall adopt the kinematics representation (1) of the parallel

non-holonomic robot. Assuming invertibility of the whole block matrix standing on

the right hand side of (1) and taking u= l̇ as a control variable, the kinematics model

is converted to the driftless control system

ṗ= E(p,R)u, Ṙ= [F(p,R)u]R, (3)

used in [7], where [ ] :R3 → so(3) denotes the standard Lie algebras isomorphism

of R3 with the cross product and the space of skew symmetric 3× 3 matrices with

the matrix commutator, so that [v×w] = [v][w]− [w][v], and

[

E(p,R)
F(p,R)

]

=

[

G K

S J

]−1
∣

∣

∣

∣

∣

3 first columns

. (4)

Given the control system (3), the motion planning problem for the parallel non-

holonomic robot can be stated in the following way: compute a control function

u(t) steering the system from an initial end effector pose (p0,R0) to the desired one
(pd ,Rd) within a prescribed time T . More formally, setting p(t) = pp0,R0,t(u(·)),
R(t) = Rp0,R0,t(u(·)) to be the trajectory of (3) starting at (p0,R0) and driven by

the control u(t), this means that at time T the end-point map of (3) assumes the

prescribed values p(T ) = pd and R(T ) = Rd .

Due to the complexity of the matrix entries on the right hand side of (1), the an-

alytic form of (3) is not very enlightening. To make it more tractable, two regularity

assumptions will be made. First, the matrix G will be assumed invertible, resulting

in the following form of the system (4)

[

E(p,R)
F(p,R)

]

=

[

G−1+G−1K(J−SG−1K)−1SG−1

−(J−SG−1K)−1SG−1

]

. (5)

The second assumption is the invertibility of S. Under this assumption the feedback



u=GS−1(J−SG−1K)v, (6)

where v ∈R
3 is a new control, makes the control system (3) equivalent to

ṗ= S−1Jv, Ṙ=−[v]R. (7)

Thanks to the regularity assumptions, the solution of the motion planning prob-

lem may be obtained in two steps: first a control v(t) solving the motion planning

problem for the system (7) is found, and then the original control u(t) is computed

using (6). The first step can be accomplished in accordance with the guidelines pre-

sented in [7], that will be concisely recalled below. Let vθ (t) be a family of control

functions smoothly dependent on a parameter θ ∈ R, and pt(θ ) = pp0,R0,t(vθ (·)),
Rt(θ ) =Rp0,R0,t(vθ (·)) denote the trajectory of the system (7) initialized at (p0,R0)
and subject to the control vθ (t). The derivation of the motion planning algorithm for

the system (7) relies on an assumption that there exists a control family vθ (t), such
that the error

e(θ ) =
(

pT (θ )−pd, log(RT (θ ))R
T
d )
)

, (8)

decreases to zero exponentially along with θ with a prescribed decay rate γ > 0,

de(θ )

dθ
=−γe(θ ). (9)

The logarithm of the rotation matrix in (8) is defined as logR = α
2sinα

(

R−RT
)

,

where cosα = 1
2
(trR− 1) and the angle of rotation 0≤ α < π .

To proceed, a pair of auxiliary variables will be introduced, denoted by wt(θ ),
st(θ ), satisfying the following dependencies

wt(θ ) =
∂pt(θ )

∂θ
, [st (θ )] =

∂Rt(θ )

∂θ
RT
t (θ ). (10)

The differentiation with respect to θ of the matrices on the r.h.s of the system (7)

results in a collection of differential equations (for details see [7], proof of Theo-

rem 2.1)
(

ẇt(θ )
ṡt(θ )

)

=

[

A11θ (t) A12θ (t)
0 −[vθ (t)]

](

wt(θ )
st(θ )

)

+

[

B1θ (t)
−13

]

d vθ (t)

dθ
, (11)

where the entries of the matrices A11θ (t), A12θ (t) and B1θ (t) have been computed

on the basis of the data provided in [6]. The assumption that p0(θ ) = p0 and

R0(θ ) = R0 yields the initial conditions for (11) w0(θ ) = 0 and s0(θ ) = 0. With

these initial conditions the solution of (11) at T can be represented as

(

wT (θ )
sT (θ )

)

=
∫ T

0
Φθ (T, t)Bθ (t)

d vθ (t)

dθ
dt, (12)

where the fundamental matrix Φθ (T, t) satisfies the evolution equation
∂Φθ (t,s)

∂ t =

Aθ (t)Φθ (t,s), Φθ (s,s) = 16, and Aθ (t) =

[

A11θ (t) A12θ (t)
0 −[vθ (t)]

]

, Bθ (t) =

[

B1θ (t)
−13

]

.



The integral operator in (12) can be regarded as a Jacobian operator of the parallel

non-holonomic robot [14]. Now, it has been proved in [7] that the error vanishing

formula (9) is tantamount to the integral equation

∫ T

0
Φθ (T, t)Bθ (t)

d vθ (t)

dθ
dt =−γ

(

pT (θ )−pd
rT (θ )

)

, (13)

where [rT (θ )] = log(RT (θ )R
T
d ). This being so, the motion planning algorithm for

the parallel non-holonomic robot is obtained by solving the equation (13) using a

generalized inverse of the Jacobian. If the Moore-Penrose pseudo inverse is chosen,

the resulting differential equation for the control function vθ (t) takes the form

dvθ (t)

dθ
=−γBT

θ (t)Φ
T
θ (T, t)D

−1
θ

(

pT (θ )−pd
rT (θ )

)

. (14)

The matrix Dθ =
∫ T
0 Φθ (T, t)Bθ (t)B

T
θ (t)Φ

T
θ (T, t)dt, is the Gram matrix of the sys-

tem (11). Given the system (14), the solution of the motion planning problem is

computed as the limit v(t) = limθ→+∞ vθ (t). The system (7) subject to the con-

trol v(t) produces a trajectory (p(t),R(t)). A suitable substitutions to the feedback

equation (6) defines the control u(t) solving the motion planning problem for the

parallel non-holonomic robot.

4 Computations

Since the motion planning algorithm (14) operates in an infinite dimensional space

of control functions, its computer implementation needs to be preceded by the in-

troduction of a finite dimensional space of controls. This is done in a standard way,

by representing the control function by its truncated orthogonal expansion [14]. In

this paper the truncated Fourier series is exploited, so each control vi(t), i= 1,2,3,
will consist of a constant term and up to h harmonics,

vi(t) = λi,0+
h

∑
k=1

(

λi,2k−1 sin
2π

T
kt+λi,2k cos

2π

T
kt

)

, (15)

so the control is finitely parametrized by Λ = (λ1,0, . . . ,λ1,2h, . . . ,λ3,0, . . . ,λ3,2h)
T ∈

R
6h+3. In the finite dimensional case the control family takes the form vθ (t) =

P(t)Λ(θ ), where the block matrix P(t) aggregates the basic harmonic functions.

Consequently, the differential equation (14) underlying the motion planning algo-

rithm determines the control coefficientsΛ

dΛθ

dθ
=−γJ#p0,R0,T

(Λθ )

(

pT (θ )−pd
rT (θ )

)

, (16)
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Fig. 2 Solution of the motion planning problem: controls v(t) and leg lengths l(t)
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Fig. 3 Relative position ep(t) and orientation r(t) trajectories

where J#p0,R0,T
(Λθ ) denotes the Moore-Penrose pseudo inverse of the 6× (6h+ 3)

Jacobian matrix

Jp0,R0,T (Λθ ) =
∫ T

0
Φθ (T, t)Bθ (t)P(t)dt

of the parallel non-holonomic robot. The differential equation (16) should be inte-

grated numerically in accordance with a suitable integration scheme. In the sequel

the simplest Euler scheme will be applied leading to the following difference equa-

tion for Λθ , where θ = 0,1, . . .

Λθ+1 =Λθ − γJ#p0,R0,T
(Λθ )

(

pT (θ )−pd
rT (θ )

)

. (17)

Performance of the motion planning algorithm will be illustrated with a numeric

example. The initial position of the platform is p0 = (0,0,25)T , while its orienta-

tion R0 = RPY (0,0,−π/6) corresponds to the Roll-Pitch-Yaw angles (0,0,−π/6).
The desired end effector position and orientation pd = (−0.4,−0.2,35)T and Rd =
RPY (0,0,−π/2). The initial values of control parameters have been set to 0, except

for λ11 = λ21 = λ32 = 0.5, λ30 = 1. The planning time horizon T = 1. The algorithm

has been stopped when the total error E (θ ) =
√

||pT (θ )−pd||2+ ||rT (θ )||2 drops
below 10−3. In the computations the number h of harmonics is set to two. Results of

computations are shown in figures 2 and 3. In Figure 3 the relative trajectories are

shown, defined as ep(t) = p(t)−pd and [r(t)] = log(R(t)RT
d ).

5 Conclusion

This paper provides a motion planning algorithm of the parallel non-holonomic

robot. The algorithm’s synthesis has been based on an application of the endoge-



nous configuration space approach preceded by a feedback transformation of the

system (3). Presented results provide a novel motion planning algorithm and essen-

tially extend the applicability of the endogenous configuration space approach.
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