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A General Method for the Numerical Computation
of Manipulator Singularity Sets

Oriol Bohigas, Dimiter Zlatanov, Llú�s Ros, Montserrat Manubens, Josep M. Porta

Abstract—The analysis of singularities is central to the devel-
opment and control of a manipulator. However, existing methods
for singularity set computation still concentrate on speci�c classes
of manipulators. The absence of general methods able to perform
such computation on a large class of manipulators is problematic,
because it hinders the analysis of unconventional manipulators
and the development of new robot topologies. The purpose
of this paper is to provide such a method for non-redundant
mechanisms with algebraic lower pairs and designated input
and output speeds. We formulate systems of equations describing
the whole singularity set and each one of the singularity types
independently, and show how to compute the con�gurations
in each type using a numerical technique based on linear
relaxations. The method can be used to analyze manipulators
with arbitrary geometry and it isolates the singularities with the
desired accuracy. We illustrate the formulation of the conditions
and their numerical solution with examples, and use three-
dimensional projections to visualize the complex partitions of
the con�guration space induced by the singularities.

Index Terms—Singularity set computation, non-redundant ma-
nipulator, linear relaxation, branch-and-prune method.

I. I NTRODUCTION

I N robot singularities either the forward or the inverse
instantaneous kinematic problem becomes indeterminate,

and the properties of the mechanism change dramatically,
often detrimentally. Despite the importance of such critical
con�gurations, the rich literature on singularity analysis does
not provide a method to explicitly compute the singularity
set, and to identify the various singularity types in it, on
manipulators of a general architecture. Most works on the topic
focus on particular classes of singularities, and restricttheir
attention to speci�c robot designs [1]–[13].

The efforts on characterizing all possible singularity types
date back to the nineties [14]–[19]. Based on an input-output
velocity equation, a general singularity classi�cation was at-
tempted in [14], but it was soon seen that this classi�cation
overlooks cases where the motion of the mechanism cannot
be described solely with the input and output speeds [15].
This led Zlatanov to de�ne a general manipulator model in
terms of differentiable mappings between manifolds, giving
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rise to a rigorous mathematical de�nition of kinematic sin-
gularity [16, 18]. Using the model, six different singularity
types were identi�ed, corresponding to the distinct kinematic
phenomena that may occur in a singularity.

Although the conditions for the presence of singularities
of all types were given in [17, 18], the formulation of these
conditions into a form amenable for computation had not been
achieved yet. The goal of the present work is to address this
task by de�ning systems of equations describing all singularity
types, and proposing a numerical procedure able to solve
them. The methodology is general and applicable to virtually
any relevant mechanism geometry. It allows the complete
singularity set to be obtained with the desired accuracy, and
each of its singularity types to be computed independently.

The approach was preliminarily introduced in [20] and
is now presented and illustrated in thorough detail. The
guiding principle is the importance of a complete charac-
terization of the manipulator motion in order to identifyall
possible singular phenomena. For each such phenomenon we
present, simply and rigorously, the de�nition, the mechanical
signi�cance, the algebraic conditions, and the computation
of the corresponding singularity subset. Special emphasisis
placed on illustrating concepts and procedures with clear and
comprehensible examples. Also, since a full knowledge of a
mechanism's special con�gurations is key to understanding
its motion capabilities, the paper exempli�es the use of three-
dimensional projections to reveal and visualize the complex
singularity-induced partition and interconnectedness ofthe
con�guration space.

The rest of the paper is organized as follows. Section II
brie�y recalls the de�nition of singular con�guration, and
provides systems of equations characterizing the whole sin-
gularity set of a manipulator. These systems can already be
used to isolate the set, as done in [21] for the planar case, but
additional systems are provided in Section III to independently
compute the con�gurations belonging to each one of the six
singularity types identi�ed in [16, 18]. The derivation and
application of these systems is next illustrated in SectionIV
on a simple example admitting an analytical approach. In
general, a numerical method is needed to solve the equations,
and Section V provides one based on a branch-and-prune
strategy and linear relaxations. Section VI demonstrates the
performance of the method with the analysis of a planar and a
spatial manipulator. Finally, Section VII summarizes the main
conclusions of the paper, and suggests points for future work.
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II. CHARACTERIZATION OF THE SINGULARITY SET

Every con�guration of a manipulator can be described
by a tupleq of scalar generalized-coordinate variables. For
manipulators with closed kinematic chains, or when a joint
does not admit a global parametrization, the con�guration
space is given by the solution set of a system of non-linear
equations

� (q) = 0; (1)

which expresses the assembly constraints imposed by the
joints [22]. In addition, the feasible instantaneous motions of
the manipulator can be characterized by a linear system of
equations

L m = 0; (2)

whereL is a matrix that depends on the con�gurationq, and
m is the so-called velocity vector of the manipulator [18]. The
vectorm takes the formm =

�

 oT ; 
 aT ; 
 pT

�
T , where
 o,


 a , and 
 p provide the output, input, and passive velocity
vectors, respectively. Typically,
 o encodes the velocity of
a point and/or the angular velocity of an end-effector body,
and 
 a and 
 p encompass the actuated and unactuated joint
speeds. Such a system, called the velocity equation in [18],
can be obtained for any manipulator [23], and therefore it can
be used for the practical identi�cation of singularities.

In this paper we assume that the manipulator is non-
redundant. This implies that the dimensions of
 o and 
 a

are equal to the global mobilityn of the mechanism, de�ned
as the dimension of the con�guration space, i.e., as the
maximum dimension of its tangent space, wherever such a
space exists [24].

In general, the instantaneous kinematic analysis of a manip-
ulator addresses two main problems:

� The forward instantaneous kinematics problem (FIKP):
�nd m given the input velocity
 a .

� The inverse instantaneous kinematics problem (IIKP):
�nd m given the output velocity
 o.

Note that, contrary to what is assumed elsewhere [14], in both
cases it is required to �ndall velocity components ofm , not
just those referring to the output or input velocities, respec-
tively. Following [18], a con�guration is said to benonsingular
when both the FIKP and the IIKP have unique solutions for
any input or output velocity, andsingular otherwise.

Let L I , L O , and L P be the submatrices ofL obtained
by removing the columns corresponding to the input, output,
and both the input and output velocities, respectively. It is
easy to see that the singular con�gurations are those in which
eitherL I or L O is rank de�cient. If a matrix is rank de�cient,
its kernel has to be non-null and, in particular, it must include
a vector of unit norm. Thus, all singularities can be determined
by solving the following two systems of equations:

� (q) = 0
L T

I � = 0
k� k2 = 1

9
=

;
;

� (q) = 0
L T

O � = 0
k� k2 = 1

9
=

;
: (3)

The �rst equation of each system constrainsq to be a
feasible con�guration of the mechanism, and the second and
third equations enforce the existence of a nonzero vector in
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Fig. 1. Left: A 1-DOF mechanism with three sliders. The prismatic joints
at A andB are on a line perpendicular to the axis of the prismatic joint at C.
Right: A 4-bar mechanism. The angular velocities indicated refer to relative
motions, e.g.,! B is the angular velocity of linkBC relative to linkAB .

the kernel of the corresponding matrix. Note thatk� k2 can be
any consistent norm, for instance� T D� , with D a diagonal
matrix with the proper physical units. There is no need for
the norm to be invariant with respect to change of frame
or units. In short, the conditionk� k2 = 1 only serves to
guarantee that� is not 0. The solutions of the system on
the left in Eq. (3) include all singularities where the FIKP
is indeterminate (forward singularities), while the solutions of
the system on the right include all singularities where the IIKP
is indeterminate (inverse singularities).

Now, depending on the cause of the degeneracy, six substan-
tially different types of singularities can be recognized.These
are redundant input(RI), redundant output(RO), impossible
input (II), impossible output(IO), increased instantaneous
mobility (IIM), and redundant passive motion(RPM) singular-
ities. Each of the six types corresponds to a different change in
the kinematic properties of the manipulator, and it is therefore
desirable to know whether a con�guration belongs to a given
type, and to compute all possible con�gurations of that type.

III. C HARACTERIZATION OF THE SINGULARITY TYPES

The de�nitions of each one of the six singularity types
are recalled next. Following each de�nition, a system of
equations characterizing the con�gurations of the type is
derived. The 3-slider and 4-bar mechanisms of Fig. 1 are used
to illustrate the different singularity types on mechanisms with
prismatic and revolute joints. Each mechanism has one degree
of freedom and, unless otherwise stated, the input and output
velocities are those of pointsA and B , vA and vB , for the
3-slider mechanism, and the angular velocities of linksAB
andDC , ! A and ! D , for the 4-bar mechanism.

Redundant Input

A con�guration is a singularity of RI type if there exist an
input velocity vector
 a 6= 0, and a vector
 p, that satisfy
the velocity equation (2) for
 o = 0, i.e., such that

L O

�

 a


 p

�
= 0;
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TABLE I
THE SIX SINGULARITY TYPES EXEMPLIFIED WITH3-SLIDER AND 4-BAR MECHANISM CONFIGURATIONS

RI, IO RO, II RPM IIM

! B

L 1 < L 2

vA

L 1 > L 2

vB vC

L 1 = L 2

vA

vB

A

B

C

D

! A

A

B

C

D

! D

A B

C

C

D

! B A B

CD

! A

! D

with 
 a 6= 0. Since such a vector exists whenever there exists
a unit vector with
 a 6= 0, q is a singularity of RI type if,
and only if, the system of equations

� (q) = 0
L O � = 0
k� k2 = 1

9
=

;
(4)

is satis�ed for some value of� =
�

 aT ; 
 pT

�
T with 
 a 6= 0.

Two examples of these singularities are provided in Table I,
�rst column. In the top con�guration,vA can have any value,
while vC must be zero and, thus, pointB cannot move. In the
bottom con�guration the output linkDC cannot move, since
the velocity of pointC must be zero, while! A , can have any
value.

Redundant Output

A con�guration is a singularity of RO type if there exist an
output velocity vector
 o 6= 0, and a vector
 p, that satisfy
the velocity equation for
 a = 0, i.e., such that

L I

�

 o


 p

�
= 0;

with 
 o 6= 0. Following a similar reasoning as above,q is of
RO type if, and only if, it satis�es the equations

� (q) = 0
L I � = 0
k� k2 = 1

9
=

;
; (5)

for some value of� =
�

 oT ; 
 pT

�
T with 
 o 6= 0.

The 3-slider and the 4-bar mechanisms in the second column
of Table I are shown in a singularity of RO type. On the former,
the instantaneous outputvB can have any value while pointA
must have zero velocity. The same happens on the latter,
where the input linkAB is locked while the instantaneous
output, ! D , can have any value.

Impossible Output

A con�guration is a singularity of IO type if there exists
a vector 
 o 6= 0 in the output-velocity space for which
the velocity equation cannot be satis�ed for any combination
of 
 a and 
 p. This means that there is a nonzero vec-
tor

�

 oT ; 0T ; 0T

�
T that cannot be obtained by projection of

any vector
�

 oT ; 
 aT ; 
 pT

�
T belonging to the kernel ofL .

In order to derive the system of equations for this type, let
V = [ v1; : : : ; v r ] be a matrix whose columns form a basis of
the kernel ofL . Then, all vectors

�

 oT ; 0T ; 0T

�
T that can be

obtained by projection of some vector of the kernel ofL are
those in the image space of the linear map given by

A =
�

I n � n 0
�

V ;

wheren is the dimension of
 o. Thus, a singular con�guration
is of IO type if the map is not surjective, i.e., ifA is
rank de�cient. In this situation it can be seen that there
exists a unit vector
 o� in the kernel ofA T and, hence, a
vector

�

 o� T ; 0T ; 0T

� T
in the kernel ofV T . Such a vector

is orthogonal to all vectorsv1; : : : ; v r , so it must belong to
the image ofL T . In conclusion, there must exist a nonzero
vector 
 o� satisfying

L T u =

2

4

 o�

0
0

3

5 ;

for some vectoru , which can be chosen of unit norm.
Therefore a con�gurationq is an IO type singularity if, and
only if, it satis�es

� (q) = 0

L T u =
h


 o� T 0T 0T
i T

kuk2 = 1

9
>=

>;
; (6)

with 
 o� 6= 0. For all solutions of this system, the obtained
value of 
 o� corresponds to a non-feasible output at the
corresponding con�guration.
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The con�gurations in the �rst column of Table I are also
singularities of IO type because any nonzero output is impos-
sible in them.

Impossible Input

A con�guration is a singularity of II type if there exists an
input velocity vector
 a 6= 0 for which the velocity equation
cannot be satis�ed for any combination of
 o and
 p. Follow-
ing a similar reasoning as for the IO type, a con�gurationq is
a singularity of II type if, and only if, there exists a nonzero
vector 
 a � such that

L T u =

2

4
0


 a �

0

3

5 ;

for some vectoru , which can also be chosen of unit norm.
Thus, a con�gurationq will be a singularity of II type if, and
only if, it satis�es

� (q) = 0

L T u =
h

0T 
 a � T 0T
i T

kuk2 = 1

9
>=

>;
; (7)

with 
 a � 6= 0.
The 3-slider and the 4-bar mechanisms in the second column

of Table I are also in singularities of II type since any nonzero
input is impossible in these con�gurations.

Redundant Passive Motion

A con�guration is a singularity of RPM type if there exists a
vector
 p in the input-velocity space that satis�es the velocity
equation for
 a = 0 and 
 o = 0, i.e., such that

L P 
 p = 0;

with 
 p 6= 0. This will happen when the kernel ofL P is
nonzero and, thus, the following system of equations

� (q) = 0
L P 
 p = 0
k
 pk2 = 1

9
=

;
(8)

encodes all RPM type singularitiesq.
Two examples of these singularities are provided in Table I,

third column. In the 3-slider mechanism, both the inputA
and the outputB must have zero velocity, while the velocity
of point C can be nonzero. A 4-bar mechanism with a kite
geometry, as shown in the table, can collapse so all joints
lie on a single line andB and D coincide. If the input and
output are the velocities at jointsA and C, ! A and ! C , the
mechanism can move from the con�guration shown in gray,
maintaining zero-velocity at both the input and output joints.
Nonzero velocity is present only at the passive jointsB andD.
Hence, both mechanisms are shown in a singularity of RPM
type.

Increased Instantaneous Mobility

A con�guration is a singularity of IIM type ifL is rank de�-
cient. In fact, these are con�gurations where the instantaneous
mobility is greater than the number of degrees of freedom.
The de�nition directly allows to write the system of equations

� (q) = 0
L T � = 0
k� k2 = 1

9
=

;
; (9)

which will be satis�ed for some� by a con�gurationq if, and
only if, it is a singularity of IIM type. These are also called
con�guration-spacesingularities, because they correspond to
points where the tangent space is ill-de�ned, and thus, both
the FIKP and IIKP become indeterminate for any de�nition
of input or output on the given velocity variables.

The mobility of the 3-slider and the 4-bar mechanisms in
the fourth column of Table I increases from 1 to 2 at the
shown con�gurations and, thus, they exhibit a singularity of
IIM type.

IV. A N ILLUSTRATIVE EXAMPLE

To exemplify how the previous systems can be used to
obtain the con�gurations of each singularity type, consider
the 3-slider mechanism in Fig. 1. Let(xP ; yP ) denote the
coordinates of pointsP 2 f A; B; C g relative to the reference
frame OXY in the �gure, and letL 1 and L 2 be the lengths
of the connector links. Clearly, a con�guration of the mecha-
nism can be described by the tupleq = ( yA ; yB ; xC ) because
xA = xB = yC = 0 in any con�guration. Since the distances
from A to B and from B to C must be kept equal toL 1

andL 2, Eq. (1) is

yA
2 + xC

2 = L 1
2

yB
2 + xC

2 = L 2
2

�
; (10)

from which we realize that the C-space corresponds to the
intersection of two cylinders in the space ofyA , yB , andxC .

The velocity equation in Eq. (2) could now be obtained
using the revolute- and prismatic-joint screws [18], but a
more compact expression can in this case be derived by
differentiating Eq. (10). TakingvA and vB as the input and
output velocities, the differentiation yields

Lm =
�

0 2yA 2xC

2yB 0 2xC

�
2

4
vB

vA

vC

3

5 = 0;

so thatL I , L O , andL P are, respectively,
�

0 2xC

2yB 2xC

�
;

�
2yA 2xC

0 2xC

�
;

�
2xC

2xC

�
:

Any of the systems in Eqs. (3)-(9) can now be written,
and note that they can be solved analytically in this case. For
example, ifL 1 = L 2 = 1 , the C-space has a single connected
component composed of two ellipses intersecting on thexC

axis (Fig. 2a), and the solutions of the systems in Eq. (3) reveal
that the singularity set has six isolated con�gurations, marked
in red in Fig. 2a-bottom, with the following values ofq:

(0; 0; 1); (0; 0; � 1); (� 1; � 1; 0)
(1; 1; 0); (1; � 1; 0); (� 1; 1; 0):
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Fig. 2. Con�guration space (in blue) and singularities (reddots) of the 3-slider mechanism forL 1 = L 2 (a) andL 1 > L 2 (b) with some examples of
singular con�gurations depicted. In this mechanism, the con�guration space corresponds to the intersection of two cylinders at right angles.

All of these con�gurations satisfy both systems in Eq. (3), so
that both the FIKP and the IIKP are indeterminate in them. It
turns out, moreover, that the four con�gurations withxC = 0
satisfy the systems in Eqs. (6), (7) and (8), meaning that
they are singularities of IO, II, and RPM type. The other two
con�gurations, which lie in thexC axis, are singularities of
RI, RO, and IIM type because they satisfy the systems in
Eqs. (4), (5) and (9). These two con�gurations are in fact
C-space singularities, i.e., points where the tangent space is
ill-de�ned. The C-space self-intersects at these points, and
presents a bifurcation that allows to change the mode of
operation from both sliders moving on the same side of the
horizontal axis,yA yB � 0, to one slider moving on each side,
yA yB � 0.

The topology of the C-space changes whenL 1 6= L 2. It
no longer presents any bifurcation, and is instead formed by
two connected components (Fig. 2b). By solving Eq. (3) for
L 1 = 1 and L 2 = 0 :8, for example, eight singularities are
obtained:

(1; 0:8; 0); (� 1; � 0:8; 0); (1; � 0:8; 0); (� 0:6; 0; 0:8);
(� 1; 0:8; 0); (0:6; 0; � 0:8); (0:6; 0; 0:8); (� 0:6; 0; � 0:8):

As before, the con�gurations withxC = 0 are singularities
of IO, II, and RPM type, but the other four con�gurations are
of RO and II type, and there are no singularities of IIM type.
In this case, to change the operation mode fromyA � 0 to
yA � 0 the mechanism has to be disassembled.

It must be noted that if a singularity identi�cation were
attempted by means of an input-output velocity equation, for
instanceyA vA = yB vB , which holds for all con�gurations,
then the singularities withxC = 0 would not be detected.

V. I SOLATING THE SINGULARITY SETS

In the previous example, it was possible to solve all systems
in Eqs. (3)-(9) analytically, because they are simple, but this
is not the case in general. The need to resort to a numerical
method is often imperative in complex manipulators, where
such systems are typically big and de�ne positive-dimensional
singularity sets. This section provides such a method by
adapting a branch-and-prune strategy introduced earlier for
position and workspace analysis [25, 26]. The method is
based on formulating the systems in a quadratic form, then
de�ning an initial box bounding all points of the solution
sets, and �nally exploiting the special form of the equations to
iteratively remove portions of the box that contain no solution.
This approach is advantageous because our solution sets can
be of dimensions 0, 1, 2, or higher, and they are de�ned in
the real �eld. Alternative approaches like homotopy methods
are mainly designed to isolate zero- or one-dimensional solu-
tions, and they must compute the roots in the complex �eld,
which may increase the solution dimension unnecessarily [27].
Methods based on elimination exhibit similar drawbacks, and
easily explode in complexity with the problem size [28].
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A. Equation formulation

In order to formulate the equations, note that the structure
of all systems in Eqs. (3)-(9) is very similar. The �rst line is
always Eq. (1), because all solution points must correspond
to feasible con�gurations of the manipulator. The second line
always involvesL or one of its sub-matrices, and the third
line constrains the norm of some vector. For a manipulator
involving non-helical lower pairs, the formulation proposed
in [25] makes Eq. (1) directly adopt the form of a polynomial
system of quadratic equations, and allows writing the com-
ponents ofL using linear terms only [23]. Thus, the second
equation of all systems will be quadratic too, and the third
equation is directly a quadratic expression. The helical pair
could also be treated using the developments in [25], but its
treatment is here omitted for ease of explanation.

Written in the previous way, any one of the systems only
involves monomials of the formx i , x2

i , or x i x j , where x i

andx j refer to any two of their variables. Thus, by introducing
changes of variables of the formxk = x2

i and x l = x i x j , it
is possible to expand the systems into the form

� (x ) = 0
� (x ) = 0

�
; (11)

wherex is a vector encompassing the variables of the original
system and the newly-introducedxk and x l ones,� (x ) = 0
is a collection of linear equations inx , and � (x ) = 0 is
a collection of scalar quadratic equations In the systems of
Eqs. (4)-(7) there is a vector that must be different from zero,
but since the technique can also handle non-strict inequalities
as explained below, this later condition can be enforced by
setting

k
 ak2 � � (12)

for systems (4) and (7), and

k
 ok2 � � (13)

for systems (5) and (6), where� is a suf�ciently small value.
By using these inequalities, whose terms are also quadratic,
some singularities might be overlooked, but� can be made
arbitrarily small, reducing the set of missed solutions to a
negligible size.

B. Initial bounding box

It can be shown that all variables in the systems can only
take feasible values within bounded intervals. For example,
from the results in [25] one can readily de�ne such intervals
for the variables inq, and the vector in the last line of each
system has all of its components in the range[� 1; 1]. In the
case of Eq. (6), the feasibility intervals for the entries of
 o�

can be readily obtained by mapping the known intervals
using A T

o u = 
 o� , where A o is formed by the columns
of L corresponding to the output velocity vector. A similar
mapping, but using the columns of the input velocity, allows
the determination of feasibility intervals for
 a � in Eq. (7).
Finally, by propagating the intervals of the previous variables
through the expressionsxk = x2

i and x l = x i x j , it is
straightforward to de�ne bounded intervals for thexk andx l

variables.

(a) (b)

A1 A3

A2

B1

B2

B3

B4

xk

x l

x jx i

x i

ui

ui

vi

vi

uj

vj

Fig. 3. Polytope bounds within boxBc for a parabola (a) and for a hyperbolic
paraboloid (b).

In conclusion, from the Cartesian product of all such
intervals it is possible to de�ne an initial boxB bounding
the location of all pointsx satisfying Eq. (11).

C. Numerical solution

The algorithm for solving Eq. (11), together with Eqs. (12)
or (13) in the case of Eqs. (4)-(7), applies two operations onB:
box shrinkingand boxsplitting. Using box shrinking, portions
of B containing no solution are eliminated by narrowing
some of its de�ning intervals. This process is repeated until
either (1) the box is found to contain no solution and is
marked asempty, (2) the box is “suf�ciently” small and
can be considered asolution box, or (3) the box cannot be
“signi�cantly” reduced. In the latter case, the box is bisected
via box splitting and the whole process is recursively applied
to the resulting sub-boxes until all box sides are below a given
threshold� .

The crucial operation in this scheme is box shrinking, which
is implemented as follows. The solutions falling in some
sub-box Bc � B must lie in the linear variety de�ned by
� (x ) = 0. Thus, we may shrinkBc to the smallest possible
box bounding this variety insideBc. The limits of the shrunk
box along dimensionx i can be found by solving the linear
programs

LP1: Minimize x i ; subject to:� (x ) = 0; x 2 Bc

LP2: Maximizex i ; subject to:� (x ) = 0; x 2 Bc:

However, observe thatBc can be further reduced because
the solutions must also satisfy all equationsxk = x2

i and
x l = x i x j in � (x ) = 0. These equations can be taken into
account by using their linear relaxations [25]. Note that, if
[vi ; ui ] denotes the interval ofBc along dimensionx i , then:

1) The portion of the parabolaxk = x2
i lying insideBc is

bound by the triangleA1A2A3, whereA1 and A2 are
the points where the parabola intercepts the linesx i = vi

andx i = ui , andA3 is the point where the tangent lines
at A1 andA2 meet (Fig. 3a).

2) The portion of the hyperbolic paraboloidx l = x i x j

lying insideBc is bound by the tetrahedronB1B2B3B4,
where the pointsB1; : : : ; B4 are obtained by lifting the
corners of the rectangle[vi ; ui ] � [vj ; uj ] vertically to
the paraboloid (Fig. 3b).
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Fig. 4. Progression of the numerical algorithm on computing the con�guration space of the 3-slider mechanism forL 1 = L 2 . From left to right the sequence
shows four stages of the computation, with the computed singularities of the mechanism shown overlaid in the right plot (in red). The method provided in
this paper allows computing such boxes directly, without needing to isolate the whole con�guration space. The boxes weremagni�ed for clarity, because the
box shrinking process yields too small boxes to be discerned.

Thus, linear inequalities corresponding to these bounds can
be added to LP1 and LP2. This usually produces a much
larger reduction ofBc, or even its complete elimination if one
of the linear programs is found unfeasible. In this step, the
inequalities needed to model the conditions in (12) or (13)
can also be taken into account by adding them to the linear
programs.

As it turns out, the previous algorithm explores a binary tree
of boxes whose internal nodes correspond to boxes that have
been split at some time, and whose leaves are either solutionor
empty boxes. The collectionB of all solution boxes is returned
as output, and it is said to form abox approximationof the
singularity set, because it forms a discrete envelope of the
set whose accuracy can be adjusted through the� parameter.
Notice that the algorithm is complete, in the sense that it will
succeed in isolating all solution points accurately, provided
that a small-enough value for� is used.

The application of the method to the 3-slider mechanism
can be seen in Fig. 4. The �gure shows box approximations
of the C-space in blue color, obtained by applying the method
to Eq. (10) only. The red boxes correspond to singular con-
�gurations obtained by solving the systems in Eqs. (4)-(9).

D. Computational cost

The computational cost of the algorithm can be evaluated by
analyzing the cost of one iteration, and the number of iterations
to be performed, both in terms of the number of bodies (nb)
and joints (nj ) of the manipulator. On the one hand, we can
consider that an iteration includes the box shrinking process
for a given box. This involves solving2 nx linear programs,
where nx is the number of variables in Eq. (11). Sincenx

depends linearly onnb and nj , and Karmarkar's bound for
the complexity of linear programming isO(n3:5

x ) [29], we can
conclude that the cost of one iteration is worst-case polynomial
in nb andnj . On the other hand, it is dif�cult to predict how
many iterations will be required to isolate all solutions. The
number of iterations largely depends on the chosen� , and
on the dimensiond of the singularity subset considered. For
d = 0 the algorithm is quadratically convergent to the roots.
For d � 1, the cost is inversely proportional to� in the best

case. For a �xed� , however, the amount of solution boxes
grows exponentially withd, so that an initial guess on the
execution time is usually made on the basis ofd only. The
value ofd can be estimated by noting that the singularity set
is typically of codimension one relative to the C-space, and
using the Gr̈ubler-Kutzbach formula onnb andnj to determine
the C-space dimension. Detailed properties of the algorithm,
including an analysis of its completeness, correctness, and
convergence order, are given in [25].

VI. T EST CASES

The performance of the approach is next illustrated in two
test cases. The results were obtained using a parallelized
version of the method implemented in C [30]. Table II sum-
marizes the main performance data on the various singularity
sets analyzed. For each set we indicate its dimension (d), the
number of equations (Neq) and variables (Nvar ) in its de�ning
system, the number of solution boxes returned by the method
(Nboxes ), the accuracy threshold assumed (� ), the� parameter
where applicable, and the time required to compute the set (t),
in seconds, on a Xeon processor grid able to run160 threads
in parallel.

A. A planar manipulator

The 2-DOF mechanism shown in Fig. 5 is used to illustrate
the computation of each one of the singularity sets in detail.

TABLE II
PERFORMANCE DATA ON THE REPORTED TEST CASES

Sing. Set d N eq -N var N boxes � � t (s)

Planar

RI 1 19-20 14903 0:01 10� 5 12

RO 1 19-20 12773 0:01 10� 5 12

IO 1 19-20 14906 0:01 10� 5 14

II 1 19-20 13062 0:01 10� 5 13

RPM 0 19-18 8 0:01 - 4

IIM - 21-20 0 0:01 - 2

Spatial
�xed ori. 2 25-27 146420 0:02 - 79

�xed pos. 2 37-39 195982 0:25 - 2554



8

The inputs of the manipulator are the joint velocities ofA
andE, and the output is the velocity of pointG. By gathering
the loop-closure equations of the mechanism, and introducing
two further equations to include the position ofG, Eq. (1) can
be formulated as follows

cos� A + cos � B � 2 cos� D � 1 = 0
sin � A + sin � B � 2 sin � D = 0

2 cos� D + 3
2 cos� C + 2 cos � G � 3 cos� E � 1 = 0

2 sin � D + 3
2 sin � C + 2 sin � G � 3 sin � E = 0

� x + 2 cos � D + 3
2 cos� C = 0

� y + 2 sin � D + 3
2 sin � C = 0

9
>>>>>>>=

>>>>>>>;

(14)

where � A , � B , � C , � D , � E and � G are the counterclockwise
angles of linksAB , BC , CG, DC , EF , andGF , respectively,
relative to the ground, andx and y are the coordinates of
point G relative to a �xed frame centered inD . The velocity
equation of the manipulator may now be obtained by differen-
tiating Eq. (14) with respect to all variables, but it could also
be obtained using the twist loop equations, or by any other
means. In order to achieve the desired quadratic formulation,
the changes of variablesc� = cos � � and s� = sin � � can
now be applied for all� 2 f A; B; C; D; E; G g. Since the
variablesc� ands� represent the cosine and sine of a variable,
the circle equationsc2

� + s2
� = 1 need also to be introduced

into the systems, for every angle� � .
Given that the manipulator has two degrees of freedom,

its con�guration space is a surface, which is shown projected
onto thex, y, and � A variables in Fig. 6. This surface was
obtained from the computation of all solutions of Eq. (1)
using the same numerical technique presented in the previous
section. Note that by �xingx, y, and � A , there are still two
possible positions of pointF , so that most of the points in this
projection correspond, in fact, to two different con�gurations
of the manipulator. Only the points whereE, F , and G are
aligned represent a single con�guration, and these are exactly
the boundaries of the two “holes” that the surface presents.

The singularity set is generally of lower dimension than the
con�guration space, so that only curves or points are to be
expected in the solution set of all systems of equations. The
result of the computation of each singularity type is shown
in Figs. 7 and 8, projected onto the output and one input

A

B

C

D
E

F

X

Y

G(x; y )

! A ! E

Fig. 5. A 2-DOF planar manipulator. The link dimensions areAB = AD =
BC = DE = 1 , CD = F G = 2 , CG = 1 :5 andEF = 3 .

x

y

� A

�
3

5�
3

Fig. 6. Two-dimensional con�guration space of the manipulator in Fig. 5
computed at� = 0 :1. Two holes can be seen, whose boundary corresponds
to con�gurations whereE , F , andG are aligned.

(x, y, � A ), and onto the output only, respectively. In Fig. 7, the
con�guration space is shown in blue, separated in two parts
so that a cross-section can be seen, but both parts are actually
connected through� and � � as shown in Fig. 6. The gray
area in Fig. 8 represents all attainable positions of pointG,
i.e., the workspace of the manipulator.

As it turns out, this manipulator contains no IIM con�gura-
tions, and the computation of this type of singularity givesno
box as output. On the contrary, there are eight distinct RPM
singularities, which in these projections appear coincident in
pairs as four orange boxes, corresponding to the two possible
locations ofF . Using a different projection, for instance onto
(� A , � E , � D ), the eight boxes appear separated.

The green curves correspond to singularities that are both of
RI and IO type. These con�gurations can be seen to contour
the two “holes” of the con�guration space in this projection.
The red curves correspond to con�gurations simultaneously
belonging to the RO and II type. Even if the curves for
RI and IO seem to coincide everywhere, there are some IO
con�gurations that are not of RI type, and the same happens
for II and RO singularities, respectively. This is illustrated in
Fig. 7 with a close-up on the left that shows only the output
of computing RI singularities. These gaps on the curves of
RI and RO, which can be found by properly adjusting the�
parameter, coincide with the location of the RPM singularities
and, hence, the RPM singularities are also of II and IO type
(but not of RI or RO type). Fig. 8a shows an example of an
(RPM, II, IO) singularity, while Fig. 8b and Fig. 8c show
examples of (RI, IO) and (RO, II) singularities, respectively.

Figure 7 also shows yellow (arcs of) curves that correspond
to con�gurations where pointsD , B and G are aligned. For
each yellow-marked triple (x, y, � A ), with D , B and G
collinear, there are two possible locations of pointC. In con-
trast, pointC is uniquely determined for any other (x, y, � A ).
Thus, a point on a yellow curve corresponds to four different
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x

y

� A

� �

�

Fig. 7. The singular con�gurations of the mechanism in Fig. 5 shown overlaid onto a projection of its con�guration space. Different colors are used to
identify the several singularity types encountered: greenfor the RI, and IO types, red for the RO and II types, and orangefor the RPM type.

x
y

D

(a)

(b)

(c)

Fig. 8. A projection of the plot in Fig. 7 to the(x; y ) plane. (a) A singularity of RPM, IO, and II type. (b) A singularity of RI and IO type. (c) A singularity
of RO and II type.

con�gurations, because each of pointsC andF can have two
positions. As is visible in the �gure, these are the points of
self-intersection of theprojection of the con�guration space
on the (x, y, � A ) space. The four con�gurations for each
point can be identi�ed with the two sides (“in” and “out”)
of the two sheets that intersect. The con�guration space
itself has no self-intersections as there are no con�guration-

space, or IIM-type, singularities. The yellow points are only
singularities of the projection map. The four orange vertices
of the yellow curve arcs in Fig. 7 correspond to the eight
con�gurations whereD, B , G, andC are collinear. These are
the mechanism's RPM-type singularities. They are branching
points for the inverse kinematics solution, because pointC
can move in two different ways out of such a con�guration.
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� A5�
3

�
3

� D

17�
12

7�
12

� E

�
4

7�
4

Fig. 9. A projection of the con�guration space and the computed singularities to the(� A ; � E ; � D ) space, together with two con�gurations whereC, G,
andF are aligned. Green corresponds to the RI and IO types, red to the RO and II types, and orange to the RPM type. There are no singularities of IIM type.

The other con�gurations where the working mode changes are
those whereE, F , andG are aligned.

Using the same color code, Figs. 9 and 10 show the
projection of the results onto the the 3-dimensional space of
the two input angles and one passive joint angle (� A , � E , � D )
and onto the 2-dimensional input space only. The eight RPM
singularities appear separated. As before, for �xed valuesof
� A , � E , and � D , there are still two possible locations of
point C in general, and almost all points in this projection
correspond to two distinct con�gurations of the manipulator. It
can be seen that the con�guration space presents four “holes”
in these projections. These four contours are made of those
con�gurations whereG, C, andF are aligned and there is only
one possibility forC. Note that none of these “holes” coincides
with one in the previous projection, but, once again, crossing
each curve allows the transition between two different working
modes. One can imagine the two working modes as the two
“sides” of the surface of the con�guration-space projection.
To “get to the opposite side”, i.e., to change working mode,
the motion curve must “go through a hole”.

B. A spatial manipulator

To illustrate the method on a spatial manipulator, we next
apply it to the Stewart-Gough platform. For the sake of con-
ciseness we concentrate on computing the forward singularity
locus only, which is the most relevant and representative of
the kind of complexity to be confronted in the spatial case.
This amounts to formulating and solving the left system in
Eq. (3) using the proposed approach.

The platform consists of a moving plate connected to a
�xed base by means of six legs, where each leg is a universal-
prismatic-spherical chain (Fig. 11, left). The six prismatic

� A

� E

Fig. 10. A projection of the plot in Fig. 9 to the(� A ; � E ) space.

joints are actuated, allowing to control the six degrees of free-
dom of the platform, and the remaining joints are passive [31].

The assembly constraints can be formulated as follows.
Let A i and B i be the center points of the universal and
spherical joints. Let alsoF1 and F2 be �xed and mobile
reference frames, centered inO andP respectively. Then, the
constraints imposed by each leg on the moving plate can be
written as

pF 1 = aF 1
i + di d

F 1
i � RbF 2

i ; (15)

kdF 1
i k2 = 1 ; (16)

where pF 1 , aF 1
i , and bF 2

i are the position vectors of
points P, A i , and B i in the indicated frames, anddF 1

i is a
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A i

B i

di

O

P

x

yz

�
�

 

Fig. 11. Left: The Stewart-Gough platform. Center and right:Slices of its forward singularity set for a constant orientation given by� = � 2� , � = 30 � ,
and  = � 87� , and for the �xed positionpF 1 = [10 ; 10; 10]T . The position and orientation variables of the platform have been limited to the ranges
[� 100; 100] and [� 90� ; 90� ] respectively.

unit vector along thei -th leg, expressed in frameF1. Also, di

is the length of the leg, representing the displacement of the
prismatic joint, andR is the rotation matrix providing the
orientation ofF2 relative toF1. The pose of the platform is
given by(pF 1 ; R ).

In this case, Eq. (1) is the system formed by Eqs. (15)
and (16) for all legs, together with the conditions

ksk2 = 1 ; s � t = 0 ;
kt k2 = 1 ; s � t = w i ;

which forceR = [ s; t ; w ] to represent a valid rotation.
The velocity equation can be obtained by writing the

expression of the output twist̂T following each leg

T̂ = 
 a
i Ŝa

i +
5X

j =1


 p
i;j Ŝp

i;j ; (17)

whereŜa
i and theŜp

i;j are the unit twists of the active and the
�ve passive joints of thei -th leg, respectively. By gathering
Eqs. (17) for all legs, we obtain a36 � 42 matrix L , and a
velocity vectorm containing the six components of the output
twist, the six active velocities of the prismatic joints, and
the 30 passive joint velocities of the universal and spherical
joints. This results in a relatively large system of equations,
but by multiplying each side of Eq. (17) by a unit screw
reciprocal to all passive joint twists of the leg, we can conclude
that the forward singularities are the con�gurations for which
the conventional screw JacobianJ is singular [18, 32]. This
condition is advantageous becauseJ is only 6 � 6, and
generally produces a much smaller system.

For some con�gurations, the space of reciprocal screws of
a given leg may be of dimension larger than one, and Eq. (17)
should be multiplied by a whole basis of reciprocal screws
of the leg [33]. In the Stewart-Gough platform this can only
happen when the center of the leg's spherical joint is in the
plane of the two revolute-joint axes of the universal joint,
resulting in a singularity of RPM type. Since joint limits and
other constraints typically exclude such singularities inreal
platforms, we will not compute them here.

Two slices of the forward singularity locus are shown in
Fig. 11, computed at a constant orientation and at a constant
position of the platform. Alternative slices could also be
obtained if desired, simply by �xing a different set of pose pa-
rameters. The geometric dimensions assumed here correspond
to the academic manipulator studied in [6]. The Euler angles� ,
� , and are those for whichR = R z ( )R y (� )R x (� ), which
also coincide with the ones assumed in [6]. From the results
in Table II we note that it is computationally much harder to
compute the constant position slice. This agrees with the fact
that the system to be solved is much larger, and its equations
are highly non-linear, in comparison to those of the constant
orientation slice.

VII. C ONCLUSIONS

This paper has proposed a method for the numerical compu-
tation and detailed classi�cation of the entire singularity set of
a lower-pair manipulator with arbitrary geometry. Systemsof
equations have been de�ned to compute the set, and each one
of the singularity subsets identi�ed in [18]. To solve any ofthe
systems, a numerical method based on linear relaxations has
been proposed, which can obtain a box approximation of the
solution set with the desired accuracy, even in the presenceof
self-intersections or dimension changes in the set [23, 34]. The
approach is based on a recursive segmentation and reductionof
the search space, and is particularly practical and useful on low
degree-of-freedom manipulators like the one in Section VI-A.
This example has been chosen for its high illustrative value,
since it allows a clear analysis and presentation of the results in
a moderate-dimensional case. It also shows how complex can
be the topology of the con�guration space and its singularity-
induced partitions. As demonstrated in Section VI-B, the anal-
ysis of manipulators with higher-dimensional singularitysets
does not add fundamental dif�culties to the method, other than
increasing the computation times, as with any other method.
The detailed interpretation and visualization of the singularity
sets of these and other manipulators will be the subject of
future work. Additional work is envisaged to also extend the
developments to deal with redundant manipulators [18, 35].
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