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Abstract—The analysis of singularities is central to the devel- rise to a rigorous mathematical de nition of kinematic sin-
opment and control of a manipulator. However, existing methods gularity [16, 18]. Using the model, six different singutgri

for singularity set computation still concentrate on speci c classe types were identi ed, corresponding to the distinct kinéima
of manipulators. The absence of general methods able to perform ’ . . .
phenomena that may occur in a singularity.

such computation on a large class of manipulators is problematic,
because it hinders the analysis of unconventional manipulators N ) -
and the development of new robot topologies. The purpose Although the conditions for the presence of singularities

of this paper is to provide such a method for non-redundant of all types were given in [17, 18], the formulation of these
mechanisms with algebraic lower pairs and designated input ,ngitions into a form amenable for computation had not been

and output speeds. We formulate systems of equations describing . . .
the whole singularity set and each one of the singularity types achieved yet. The goal of the present work is to address this

independently, and show how to compute the con gurations task by de ning systems of equations describing all singtyla
in each type using a numerical technique based on linear types, and proposing a numerical procedure able to solve

relaxations. The method can be used to analyze manipulators them. The methodology is general and applicable to viruall
with arbitrary geometry and it isolates the singularities with the any relevant mechanism geometry. It allows the complete

desired accuracy. We illustrate the formulation of the conditions . - . : .
and their numerical solution with examples, and use three- singularity set to be obtained with the desired accuracg, an

dimensional projections to visualize the complex partitions of €ach of its singularity types to be computed independently.
the con guration space induced by the singularities.

Index Terms—Singularity set computation, non-redundant ma- The approach was prgllmlnarlly .Introduced In [ZQ] and

nipulator, linear relaxation, branch-and-prune method. IS now presented and illustrated in thOfOUgh detail. The
guiding principle is the importance of a complete charac-
terization of the manipulator motion in order to identiyl

I. INTRODUCTION possible singular phenomena. For each such phenomenon we

resent, simply and rigorously, the de nition, the mecleahi

igni cance, the algebraic conditions, and the computatio

'the corresponding singularity subset. Special emphasis

aced on illustrating concepts and procedures with cledr a

N robot singularities either the forward or the inversg
instantaneous kinematic problem becomes indetermin
and the properties of the mechanism change dramatica

often det.rimentally..Des.pite the impprtancg of such altic comprehensible examples. Also, since a full knowledge of a
con gura_t|ons, the rich I|teratur_e on singularity anat_ysioes_ mechanism's special con gurations is key to understanding
not provide a method to explicity compute the smgulant}{S motion capabilities, the paper exempli es the use obéar

set, .and to identify the various singularity types in ',t’ OWimensional projections to reveal and visualize the comple
manipulators of a general architecture. Most works on tito singularity-induced partition and interconnectednessthef
focus on particular classes of singularities, and resthetr con guration space

attention to speci c robot designs [1]-[13].

The efforts on c_hargcterizing all possible singu_larityagp The rest of the paper is organized as follows. Section Il
date back to the nineties [14]-[19]. Based on an INpUt-AUtpy ;e y recalls the de nition of singular con guration, and

velocity e_quatlon, a general singularity classi paﬂona_mt-_ rovides systems of equations characterizing the whole sin
tempted in [14], but it was soon seen that this c|a_55| catio ularity set of a manipulator. These systems can already be
gvegooksbca(jses lwlherg rt]heh mguon of Ejhe mechamsrr(]j ca? 8Ed to isolate the set, as done in [21] for the planar case, bu
T(:]' ?Sgnz|et S0 ety V(\j/'t the input aln ogtplljttspee Z E “additional systems are provided in Section Il to indepertigte

i IS 1€ f d'?f anO\:. EI enca genEra: manipu a.;)rldmo ?.'Eompute the con gurations belonging to each one of the six
erms of ditterentiable mappings between mantiolds, g;Vmsingylar_ity types identi ed in _[16, 18]. The der_ivation and
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Il. CHARACTERIZATION OF THE SINGULARITY SET

Every con guration of a manipulator can be described
by a tupleq of scalar generalized-coordinate variables. For B
manipulators with closed kinematic chains, or when a joint
) o : ve L2
does not admit a global parametrization, the con guration V¢
space is given by the solution set of a system of non-linear
equations

(a) = 0; )

which expresses the assembly constraints imposed by the
joints [22]. In addition, the feasible instantaneous mudi@f

the manipulator can be characterized by a linear system of
equations

Lm = 0; (2) Fig. 1. Left: A 1-DOF mechanism with three sliders. The prismaints
. . . atA andB are on a line perpendicular to the axis of the prismatic joir€ a
whereL is a matrix that depends on the con guratignand Right: A 4-bar mechanism. The angular velocities indicatderreo relative

m is the so-called velocity vector of the manipulator [18]eThmotions, e.g.! g is the angular velocity of linkBC relative to linkAB .
vectorm takes the fornrm = °T; &T, PT T where °,

& and P provide the output, input, and passive velocity ) )
vectors, respectively. Typically, © encodes the velocity of the kernell of the correspo.ndlng matrix. N.ote thak? can be
a point and/or the angular velocity of an end-effector bod@"y consistent norm, for '”S.ta”CéD_ , with D a diagonal
and ®and P encompass the actuated and unactuated jolRELriX with the proper phyS|_caI units. There is no need for
speeds. Such a system, called the velocity equation in [L#]® norm to be invariant with respect to change of frame
can be obtained for any manipulator [23], and thereforerit ¢ Units. In short, the conditiork kz_ = 1 only serves to
be used for the practical identi cation of singularities. guarantee that is not 0. The solutions of the system on

In this paper we assume that the manipulator is noHﬁ_g left in !Eq. 3) mclude.all sm_g.ularltles_ where _the FIKP
redundant. This implies that the dimensions of and 2 IS indeterminate (forward singularities), while the saos of
are equal to the global mobility of the mechanism, de ned fthg system on the' right inclgde aII.s'inguIarities where tK|
as the dimension of the con guration space, i.e., as theindeterminate (inverse singularities). _
maximum dimension of its tangent space, wherever such aNOW, depending on the cause of the degeneracy, six substan-

space exists [24]. tially different types of singularities can be recognizétiese
In general, the instantaneous kinematic analysis of a manf€ "édundant input(RI), redundant outpu(RO), impossible
ulator addresses two main problems: input (Il), impossible output(IO), increased instantaneous

The forward instantaneous kinematics problem (FIKP).”.]Ob'“ty(”M)’ and Ted“”da”‘ passive mOt'q'RPM) S'”gu'?‘r'
. . L a ities. Each of the six types corresponds to a different chamg
nd m given the input velocity °. the ki i " f1h ioulat ditis
The inverse instantaneous kinematics problem (IIKP):de. mt?lm? I(I:(properhletsho € mamputg ort,)aln ' 'St .
nd m given the output velocity °. esirable to know whether a con guration belongs to a given

type, and to compute all possible con gurations of that type
Note that, contrary to what is assumed elsewhere [14], ih bo%/ P P P g P

cases it is required to nall velocity components ofn, not

just those referring to the output or input velocities, \xsp

tively. Following [18], a con guration is said to beonsingular The de nitions of each one of the six singularity types

when both the FIKP and the IIKP have unique solutions fare recalled next. Following each de nition, a system of

any input or output velocity, andingular otherwise. equations characterizing the con gurations of the type is
LetL,, Lo, andLp be the submatrices df obtained derived. The 3-slider and 4-bar mechanisms of Fig. 1 are used

by removing the columns corresponding to the input, outpug illustrate the different singularity types on mecharsgsnith

and both the input and output velocities, respectively.slt prismatic and revolute joints. Each mechanism has one degre

easy to see that the singular con gurations are those inhwhiof freedom and, unless otherwise stated, the input and butpu

eitherL, or Lo is rank de cient. If a matrix is rank de cient, velocities are those of point& and B, va andvg, for the

its kernel has to be non-null and, in particular, it mustuid 3-slider mechanism, and the angular velocities of lif&

a vector of unit norm. Thus, all singularities can be deteedi andDC, ! o and! p, for the 4-bar mechanism.

by solving the following two systems of equations:

Ill. CHARACTERIZATION OF THE SINGULARITY TYPES

(@=0 2 (@)= 0 2 Redundant Input
L,T =0 . ; Lg =0 3) A con guration is a singularity of RI type if there exist an
k k=1 " k k2=1 - input velocity vector 2 6 0, and a vector P, that satisfy

X X 0_ ~
The rst equation of each system constraigsto be a the velocity equation (2) for * = 0, i.e., such that

feasible con guration of the mechanism, and the second and L a 0
third equations enforce the existence of a nonzero vector in o b=



TABLE |
THE SIX SINGULARITY TYPES EXEMPLIFIED WITH3-SLIDER AND 4-BAR MECHANISM CONFIGURATIONS

RI, 10 RO, Il RPM 1M
tve Ve VB
V,
A e
Li<L: L;>L, Ly= L,
C
N
B ) B
! XS Joull} he]
D Ty C
I'a
A D

with  # 6 0. Since such a vector exists whenever there exidtapossible Output
a unit vector with 2 6 0, g is a singularity of RI type if,

- i A con guration is a singularity of 10 type if there exists
and only if, the system of equations

a vector ° 6 0 in the output-velocity space for which

(@ =0 2 the velocity equatio.n cannot be satis ed fpr any combimatio
Lo =0 4) of ® and P. This means that there is a nonzero vec-
Kk2=1 ' tor °T;0T;0" T that cannot be obtained by projection of
any vector °T; 2T. PT T pelonging to the kernel of .
is satis ed for some value of = aT. PT T with 26 0. In order to derive the system of equations for this type, let
Two examples of these singularities are provided in TableV, =[V1;:::;Vv,] be a matrix whose columns form a basis of

rst column. In the top con gurationya can have any value, the kernel ofL. Then, all vectors  °T;07;0" T that can be
while vc must be zero and, thus, poiBt cannot move. In the obtained by projection of some vector of the kernelofire
bottom con guration the output linDC cannot move, since those in the image space of the linear map given by
the velocity of pointC must be zero, whilé o, can have any _ .
A= Ipn, 0 V;

value.
wheren is the dimension of °. Thus, a singular con guration
is of 10 type if the map is not surjective, i.e., A is
rank de cient. In this situation it can be seen that there

A con guration is a singularity of RO type if there exist anexists a unit vector ° in the kernel ofAT and, hence, a
output velocity vector ° 6 0, and a vector P, that satisfy vector ©° T;07;0" " in the kernel ofV 7. Such a vector

Redundant Output

the velocity equation for # = 0, i.e., such that is orthogonal to all vectorsq;:::;v,, so it must belong to
o the image ofL ". In conclusion, there must exist a nonzero
L, o =0; vector ° satisfying
2 . 3
with  ° 8 0. Following a similar reasoning as abowgjs of L'u=4 0 5;
RO type if, and only if, it satis es the equations 0
9
(=0 = for some vectoru, which can be chosen of unit norm.
L, =0 _; (5) Therefore a con guratiorg is an 10 type singularity if, and
k k2=1 only if, it satis es
9
for some value of =  °T; PT T with °6 0. h @=0 ip =
The 3-slider and the 4-bar mechanisms in the second column LTu = oT o7 o7 - (6)
of Table I are shown in a singularity of RO type. On the former, kuk? =1 '

the instantaneous output can have any value while poidt

must have zero velocity. The same happens on the latweith 6 0. For all solutions of this system, the obtained
where the input linkAB is locked while the instantaneousvalue of ° corresponds to a non-feasible output at the
output,! p, can have any value. corresponding con guration.

(o]



The con gurations in the rst column of Table | are alsolncreased Instantaneous Mobility
singularities of 10 type because any nonzero output is impos A con guration is a singularity of [IM type ifL is rank de -
sible in them. cient. In fact, these are con gurations where the instagoais
mobility is greater than the number of degrees of freedom.

_ The de nition directly allows to write the system of equatf
Impossible Input 9

(@=0=
A con guration is a singularity of Il type if there exists an LT =0 9)
input velocity vector 2 6 0 for which the velocity equation Kk2=1 "'

cannot be satis ed for any combination of and P. Follow- . . _ _ _
ing a similar reasoning as for the 10 type, a con guratipis  Which will be satis ed for some by a con gurationg if, and
a singularity of Il type if, and only if, there exists a nonaer ONly if, it is a singularity of 1IM type. These are also called

vector 2 such that con guration-spacesingularities, b_ecguse they correspond to
3 points where the tangent space is ill-de ned, and thus, both
0 the FIKP and IIKP become indeterminate for any de nition
LTu=4 2 5; of input or output on the given velocity variables.
0 The mobility of the 3-slider and the 4-bar mechanisms in

the fourth column of Table | increases from 1 to 2 at the

for some vector, which can also be chosen of unit normMgp vy con gurations and, thus, they exhibit a singularify o
Thus, a con guratiorg will be a singularity of Il type if, and |\ type.

only if, it satis es
(@=0 IV. AN ILLUSTRATIVE EXAMPLE

LTy = h T aT AT It = ) To exemplify how the previous systems can be used to
u= 0 0 ’ obtain the con gurations of each singularity type, conside
kuk? =1 ’ the 3-slider mechanism in Fig. 1. Lékp;yp) denote the

_ a coordinates of point® 2 f A;B; C g relative to the reference

with 6 0. frame OXY in the gure, and letL; andL, be the lengths
The 3-slider and the 4-bar mechanisms in the second colugithe connector links. Clearly, a con guration of the mecha

of Table I are also in singularities of 1l type since any nawze pism can be described by the tuple= (ya: Vs :Xc) because
input is impossible in these con gurations. Xa = Xg = Yc =0 in any con guration. Since the distances
from A to B and fromB to C must be kept equal th
andL,, Eqg. (1) is
yaZ+ xc2=1L%
A con guration is a singularity of RPM type if there exists a Vel+ xo2= L2 (10)

vector P in the input-velocity space that satis es the velocity i ]
equation for 2= 0and °= 0, i.e., such that from which we realize that the C-space corresponds to the

intersection of two cylinders in the spaceof, yg, andxc.
Lp P=0; The velocity equation in Eq. (2) could now be obtained
using the revolute- and prismatic-joint screws [18], but a
with P 6 0. This will happen when the kernel df is more compact expression can in this case be derived by
nonzero and, thus, the following system of equations differentiating Eq. (10). Taking/a andvg as the input and

IV ©

Redundant Passive Motion

9 output velocities, the differentiation yields
(q)p: O = 2 VB
Lp "=0, (8) - 0 2 Xc 4 5_
k Pk2=1 ' Lm = e 0 e Va 0 = 0;
Ve
encodes all RPM type singularities so thatL, Lo, andLp are, respectively,
Two examples of these singularities are provided in Table I, > o 5
third column. In the 3-slider mechanism, both the input 0 Xc . YA c . Xc
2ys  2Xc 0 X 2X¢

and the outpuB must have zero velocity, while the velocity
of point C can be nonzero. A 4-bar mechanism with a kite Any of the systems in Egs. (3)-(9) can now be written,
geometry, as shown in the table, can collapse so all joiraad note that they can be solved analytically in this case. Fo
lie on a single line and and D coincide. If the input and example, ifL; = L, = 1, the C-space has a single connected
output are the velocities at join®s andC, ! o, and! ¢, the component composed of two ellipses intersecting onxige
mechanism can move from the con guration shown in gragxis (Fig. 2a), and the solutions of the systems in Eq. (Bakv
maintaining zero-velocity at both the input and output fein that the singularity set has six isolated con gurationsyked
Nonzero velocity is present only at the passive joRitandD. in red in Fig. 2a-bottom, with the following values qf

Hence, both mechanisms are shown in a singularity of RPM 0:0;1): (0:0; 1); ( 1 1,0)

type. (LiLO); (L L0); ( L10):
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Fig. 2. Con guration space (in blue) and singularities (@ats) of the 3-slider mechanism far; = L, (a) andL1 > L » (b) with some examples of
singular con gurations depicted. In this mechanism, the gumation space corresponds to the intersection of two dgh® at right angles.

All of these con gurations satisfy both systems in Eq. (3), s It must be noted that if a singularity identi cation were
that both the FIKP and the IIKP are indeterminate in them. #ttempted by means of an input-output velocity equation, fo
turns out, moreover, that the four con gurations wkh =0 instanceyava = Yg Vg, Which holds for all con gurations,
satisfy the systems in Egs. (6), (7) and (8), meaning thdien the singularities witkkc = 0 would not be detected.
they are singularities of 10, Il, and RPM type. The other two
con gurations, which lie in thexc axis, are singularities of V. |SOLATING THE SINGULARITY SETS
RI, RO, and IIM type because they satisfy the systems in|, the previous example, it was possible to solve all systems
Egs. (4), (5) and (9). These two con gurations are in fagh gqs. (3)-(9) analytically, because they are simple, big t
C-space singularities, i.e., points where the tangentespac js not the case in general. The need to resort to a numerical
ill-de ned. The C-space self-intersects at these point&] amethod is often imperative in complex manipulators, where
preser!ts a blfurcatlon. that aIonvs to change the_ mode Qfch systems are typically big and de ne positive-dimenaio
operation from both sliders moving on the same side of thg,qyjarity sets. This section provides such a method by
horizontal axisyays 0, to one slider moving on each side 4qapting a branch-and-prune strategy introduced eadier f
yays 0. position and workspace analysis [25, 26]. The method is
The topology of the C-space changes whené L. It 4564 on formulating the systems in a quadratic form, then
no longer presents any blfurca_tlon, and is ms;ead formed gy ning an initial box bounding all points of the solution
two connected components (Fig. 2b). By solving Eq. (3) fQlgts and nally exploiting the special form of the equatidn
L1 =1 andL, = 0:8, for example, eight singularities arejieratively remove portions of the box that contain no sohut
obtained: This approach is advantageous because our solution sets can
(1;0:8;0); ( 1, 0:8;0); (1; 0:8;0); ( 0:60;0:8); be of dimensions 0, 1, 2, or higher, and they are de ned in
( 1.080): (0:6:0, 08); (0:6:0,0:8); ( 06,00 08): e reql eld. Alternative approaches like homotopy method
As before, the con gurations witlic = 0 are singularities are mainly designed to isolate zero- or one-dimensionai-sol
of 10, Il, and RPM type, but the other four con gurations ardions, and they must compute the roots in the complex eld,
of RO and Il type, and there are no singularities of 1IM typewxhich may increase the solution dimension unnecessarily [2
In this case, to change the operation mode frgin 0 to  Methods based on elimination exhibit similar drawbacksg an
ya  0the mechanism has to be disassembled. easily explode in complexity with the problem size [28].



A. Equation formulation (@)

In order to formulate the equations, note that the structure
of all systems in Egs. (3)-(9) is very similar. The rst ling i Xk
always Eg. (1), because all solution points must correspo
to feasible con gurations of the manipulator. The secome li
always involvesL or one of its sub-matrices, and the third
line constrains the norm of some vector. For a manipulato
involving non-helical lower pairs, the formulation progos
in [25] makes Eg. (1) directly adopt the form of a polynomial
system of quadratic equations, and allows writing the com-
ponents ofL using linear terms only [23]. Thus, the secondig. 3. Polytope bounds within bd&. for a parabola (a) and for a hyperbolic
equation of all systems will be quadratic too, and the thiffaboloid (b).
equation is directly a quadratic expression. The helicat pa

could also be treated using the developments in [25], but itsI lusi ¢ the Cartesi duct of all h
treatment is here omitted for ease of explanation. __In conclusion, from the Larteésian product of all suc

Written in the previous way, any one of the systems Onflgtervals.it is possiblle to de. ne an initial boB bounding
involves monomials of the fornx;, x?, or XiXj, whereXx; e location of all pointsc satisfying Eq. (11).
andx; refer to any two of their variables. Thus, by introducing
changes of variables of the forry = xi2 andx; = XiXj, it ¢ Numerical solution

is possible to expand the systems into the form ] ] ]
The algorithm for solving Eq. (11), together with Egs. (12)

(x)=0 (11) or (13) in the case of Egs. (4)-(7), applies two operation8on

x)=0 box shrinkingand boxsplitting. Using box shrinking, portions
wherex is a vector encompassing the variables of the originaf B containing no solution are eliminated by narrowing
system and the newly-introducegt andx, ones, (x)= 0 some of its de ning intervals. This process is repeatedlunti
is a collection of linear equations ik, and (x) = 0 is either (1) the box is found to contain no solution and is
a collection of scalar quadratic equations In the systems mfirked asempty (2) the box is “suf ciently” small and
Egs. (4)-(7) there is a vector that must be different fronozercan be considered solution box, or (3) the box cannot be
but since the technique can also handle non-strict inesli “signi cantly” reduced. In the latter case, the box is bitest
as explained below, this later condition can be enforced bia box splitting and the whole process is recursively agpli
setting to the resulting sub-boxes until all box sides are below amiv

k 2k? (12) threshold .

The crucial operation in this scheme is box shrinking, which
is implemented as follows. The solutions falling in some
k °k? (13) sub-boxB. B must lie in the linear variety de ned by

(x) = 0. Thus, we may shriniB. to the smallest possible

for sy§tems ©) ".md (6)’. \_/vhereis a suf ciently small value. hox bounding this variety insidB;. The limits of the shrunk
By using these inequalities, whose terms are also quadraHBX along dimension; can be found by solving the linear
some singularities might be overlooked, butan be made programs

arbitrarily small, reducing the set of missed solutions to a
negligible size. LP1: Minimize x;; subject to: (x) = 0;x 2 B¢
LP2: Maximizex;; subject to: (x)= 0;x 2 B¢:

Vi Ui

for systems (4) and (7), and

B. Initial bounding box

It can be shown that all variables in the systems can orfPwever, observe thaB. can be further reduced because
take feasible values within bounded intervals. For exampi&€ solutions must also satisfy all equations = x? and
from the results in [25] one can readily de ne such interva$l = XiXj in (x) = 0. These equations can be taken into
for the variables irg, and the vector in the last line of eachfccount by using their linear relaxations [25]. Note that, i
system has all of its components in the rafigd; 1]. In the [Vi:Ui] denotes the interval d. along dimensiorx;, then:
case of Eq. (6), the feasibility intervals for the entries df 1) The portion of the parabobe, = x? lying inside B, is
can be readily obtained by mapping the known intervals  bound by the triangleA;A;A3, whereA; and A, are
usingAlu = °, whereA, is formed by the columns the points where the parabola intercepts the lines v;
of L corresponding to the output velocity vector. A similar andx; = uj, andAs is the point where the tangent lines

mapping, but using the columns of the input velocity, allows atA; andA, meet (Fig. 3a).

the determination of feasibility intervals for? in Eq. (7). 2) The portion of the hyperbolic paraboloi = X;Xx;
Finally, by propagating the intervals of the previous \bles lying insideB. is bound by the tetrahedrd®, B,B 3B,
through the expressiongy = xi2 and x; = xixj, it is where the point8,;:::;B,4 are obtained by lifting the
straightforward to de ne bounded intervals for thg andx corners of the rectanglpi;ui]  [vj;u;] vertically to

variables. the paraboloid (Fig. 3b).



Fig. 4. Progression of the numerical algorithm on computirgdbn guration space of the 3-slider mechanismlifar= L. From left to right the sequence
shows four stages of the computation, with the computed samigieks of the mechanism shown overlaid in the right plot @d)r The method provided in
this paper allows computing such boxes directly, withoutdireg to isolate the whole con guration space. The boxes weagni ed for clarity, because the
box shrinking process yields too small boxes to be discerned.

Thus, linear inequalities corresponding to these bounds azase. For a xed , however, the amount of solution boxes

be added to LP1 and LP2. This usually produces a mughows exponentially withd, so that an initial guess on the

larger reduction oBc, or even its complete elimination if oneexecution time is usually made on the basisdobnly. The

of the linear programs is found unfeasible. In this step, th@lue ofd can be estimated by noting that the singularity set

inequalities needed to model the conditions in (12) or (18 typically of codimension one relative to the C-space, and

can also be taken into account by adding them to the linassing the Giibler-Kutzbach formula ony, andn; to determine

programs. the C-space dimension. Detailed properties of the alguorith
As it turns out, the previous algorithm explores a binarg trancluding an analysis of its completeness, correctnesd, an

of boxes whose internal nodes correspond to boxes that haeavergence order, are given in [25].

been split at some time, and whose leaves are either sokution

empty boxes. The collectidB of all solution boxes is returned VI. TEST CASES

as output, and it is said to form lzox approximationof the , ) .

singularity set, because it forms a discrete envelope of the! '€ Performance of the approach is next illustrated in two

set whose accuracy can be adjusted through tiparameter. test cases. The results were obtained using a parallelized

Notice that the algorithm is complete, in the sense thatlit wi/€rsion of the method implemented in C [30]. Table Il sum-
succeed in isolating all solution points accurately, pded Marizes the main performance data on the various singglarit
that a small-enough value for is used. sets analyzed. For each set we indicate its dimenghrtt{e

The application of the method to the 3-slider mechanisRMPer of equationsNeq) and variablesMyer ) in its de ning
can be seen in Fig. 4. The gure shows box approximatior?é’Stem’ the number of solution boxes returned by the method
of the C-space in blue color, obtained by applying the methéljboxes). the accuracy threshold assumedq, the parameter
to Eq. (10) only. The red boxes correspond to singular C()W_here applicable, and the time required to compute thet}et (

gurations obtained by solving the systems in Egs. (4)-(9). " sec0|r|1dls, on a Xeon processor grid able to 160 threads
in parallel.

D. Computational cost

. . . Apl ipulat
The computational cost of the algorithm can be evaluated @y planar manipuiator

analyzing the cost of one iteration, and the number of ilemat ~ The 2-DOF mechanism shown in Fig. 5 is used to illustrate
to be performed, both in terms of the number of bodigg ( the computation of each one of the singularity sets in detail
and joints ;) of the manipulator. On the one hand, we can

consider that an iteration includes the box shrinking pssce TABLE I

for a given box. This involves solving ny linear programs, PERFORMANCE DATA ON THE REPORTED TEST CASES
where ny is the number of variables in Eq. (11). Sinog

depends linearly om, and n;, and Karmarkar‘s bound for Sing. Set d  Neg-Nvar  Nooes t ()
the complexity of linear programming B(n:®) [29], we can RI 1 19-20 14903 0:01 10 ° 12
conclude that the cost of one iteration is worst-case patyab RO 1 19-20 12773 0:01 10 ° 12
in ny andn; . On the other hand, it is dif cult to predict how i nar 10 1 19-20 14906 0:01 10 ° 14
many iterations will be required to isolate all solution$ieT . o 1920 13062 0:01 10 ° 13
number of iterations largely depends on the choserand 'T’I';AM _0 ;i;i ﬁ gfgi ) ‘21

on the dimensiord of the singularity subset considered. For edon 2 2527 146420 0-02 - e
d = 0 the algorithm is quadratically convergent to the roots.Sratial pos. 2 37-39 195982  0:25 . 2554
Ford 1, the cost is inversely proportional to in the best




The inputs of the manipulator are the joint velocities Aof
andE, and the output is the velocity of poif. By gathering
the loop-closure equations of the mechanism, and introduci
two further equations to include the position®f Eq. (1) can
be formulated as follows

cos A +cos g 2cosp 1

sin o +sin g 2sin p
2cosp + 3cos c +2cos ¢ 3cosg 1=
2sin p + ¥sin ¢ +2sin ¢ 3sin
X+2c0S p + 3cos ¢

y+2sin p + 3sin ¢

where A, B, c, b, e and g are the counterclockwise
angles of linksAB , BC, CG, DC, EF , andGF, respectively,
relative to the ground, and andy are the coordinates of
point G relative to a xed frame centered iD. The velocity
equation of the manipulator may now be obtained by differen-
tiating Eq. (14) with respect to all variables, but it couldca
be obtained using the twist loop equations, or by any other
means. In order to achieve the desired quadratic formulati¢'9: 8- Two-dimensional con guration space of the manipuldfoFig. 5

. . computed at = 0:1. Two holes can be seen, whose boundary corresponds
the changes of variables = cos ands = sin  can (o con gurations whereE, F, andG are aligned.
now be applied for all 2 fA;B;C;D;E;G g. Since the
variablesc ands represent the cosine and sine of a variable,
the circle equations® + s> = 1 need also to be introduced(X, y, a), and onto the output only, respectively. In Fig. 7, the
into the systems, for every angle. con guration space is shown in blue, separated in two parts

Given that the manipulator has two degrees of freedo®Q that a cross-section can be seen, but both parts arelwactual
its con guration space is a surface, which is shown projgcte€onnected through and as shown in Fig. 6. The gray
onto thex, y, and A variables in Fig. 6. This surface wasarea in Fig. 8 represents all attainable positions of pGint
obtained from the computation of all solutions of Eq. (1)€., the workspace of the manipulator.
using the same numerical technique presented in the peviouAs it turns out, this manipulator contains no 1IM con gura-
section. Note that by xingx, y, and a, there are still two tions, and the computation of this type of singularity gives
possible positions of poirf, so that most of the points in thisbox as output. On the contrary, there are eight distinct RPM
projection correspond, in fact, to two different con gurats ~ Singularities, which in these projections appear coinuide
of the manipulator. Only the points wheEe, F, andG are pairs as four orange boxes, corresponding to the two pessibl
aligned represent a single con guration, and these aretlgxadocations ofF . Using a different projection, for instance onto
the boundaries of the two “holes” that the surface presents( A, e. b). the eight boxes appear separated.

The singularity set is generally of lower dimension than the The green curves correspond to singularities that are oth o
con guration space, so that only curves or points are to B&l and 10 type. These con gurations can be seen to contour
expected in the solution set of all systems of equations. THt two “holes” of the con guration space in this projection
result of the computation of each singularity type is showhhe red curves correspond to con gurations simultaneously

in Figs. 7 and 8, projected onto the output and one inpbelonging to the RO and Il type. Even if the curves for
RI and 10 seem to coincide everywhere, there are some IO

con gurations that are not of RI type, and the same happens
for Il and RO singularities, respectively. This is illuged in
Fig. 7 with a close-up on the left that shows only the output
of computing RI singularities. These gaps on the curves of
RI and RO, which can be found by properly adjusting the
parameter, coincide with the location of the RPM singuilesit
and, hence, the RPM singularities are also of Il and 10 type
(but not of RI or RO type). Fig. 8a shows an example of an
(RPM, I, 10) singularity, while Fig. 8b and Fig. 8c show
examples of (RI, 10) and (RO, II) singularities, respediive
Figure 7 also shows yellow (arcs of) curves that correspond
to con gurations where point®, B and G are aligned. For

X each yellow-marked triplex( y, a), with D, B and G
collinear, there are two possible locations of pdhtin con-
Fig. 5. A 2-DOF planar manipulator. The link dimensions A = AD = trast, pointC is uniquely determined for any othex,(y, a).

BC =DE =1,CD = FG=2,CG=1:5andEF =3. Thus, a point on a yellow curve corresponds to four different



Fig. 7. The singular con gurations of the mechanism in Fig.H®wsn overlaid onto a projection of its con guration spaceff@ent colors are used to
identify the several singularity types encountered: greerthe RI, and IO types, red for the RO and Il types, and oraogehe RPM type.

(b)

©

Fig. 8. A projection of the plot in Fig. 7 to the; y) plane. (a) A singularity of RPM, 10, and Il type. (b) A singtitg of RI and 10 type. (c) A singularity
of RO and Il type.

con gurations, because each of poifisandF can have two space, or [IM-type, singularities. The yellow points ardyon
positions. As is visible in the gure, these are the points dfingularities of the projection map. The four orange vesic
self-intersection of theprojection of the con guration space of the yellow curve arcs in Fig. 7 correspond to the eight
on the &,y, a) space. The four con gurations for eachcon gurations whereD, B, G, andC are collinear. These are
point can be identi ed with the two sides (“in” and “out”) the mechanism's RPM-type singularities. They are brargchin
of the two sheets that intersect. The con guration spagmints for the inverse kinematics solution, because p@int
itself has no self-intersections as there are no con garati can move in two different ways out of such a con guration.
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Fig. 9. A projection of the con guration space and the comgusengularities to thg A; g; p) space, together with two con gurations whe@e G,
andF are aligned. Green corresponds to the Rl and 10 types, rdtet®D and Il types, and orange to the RPM type. There are nalarities of [IM type.

The other con gurations where the working mode changes are
those wheree, F, andG are aligned.

Using the same color code, Figs. 9 and 10 show the
projection of the results onto the the 3-dimensional spdce o
the two input angles and one passive joint angle, (g, p)
and onto the 2-dimensional input space only. The eight RPM
singularities appear separated. As before, for xed valoks

/J
%
A, E, and p, there are still two possible locations of /
point C in general, and almost all points in this projection
correspond to two distinct con gurations of the maniputatb (/%
A

can be seen that the con guration space presents four “holes

in these projections. These four contours are made of those

con gurations wheres, C, andF are aligned and there is only

one possibility forC. Note that none of these “holes” coincides E

with one in the previous projection, but, once again, crassi

each curve allows the transition between two different wagk

modes. One can imagine the two working modes as the tw@. 10. A projection of the plot in Fig. 9 to the o; £) Space.

“sides” of the surface of the con guration-space projectio

To “get to the opposite side”, i.e., to change working mode,

the motion curve must “go through a hole”. joints are actuated, allowing to control the six degreegedf

dom of the platform, and the remaining joints are passivé [31
The assembly constraints can be formulated as follows.

Let A;j and B; be the center points of the universal and
To illustrate the method on a spatial manipulator, we nespherical joints. Let alsd=; and F, be xed and mobile

apply it to the Stewart-Gough platform. For the sake of comeference frames, centered@andP respectively. Then, the

ciseness we concentrate on computing the forward sin@ulaiéonstraints imposed by each leg on the moving plate can be
locus only, which is the most relevant and representative @fitten as

the kind of complexity to be confronted in the spatial case.

This amounts to formulating and solving the left system in pFi=al* +ddi* Rb{?; (15)

Eq. (3) using the proposed approach. kdiFlkz =1; (16)
The platform consists of a moving plate connected to a

xed base by means of six legs, where each leg is a universalhere pFt, aipl, and bin are the position vectors of

prismatic-spherical chain (Fig. 11, left). The six prisioat points P, A;, andB; in the indicated frames, andliFl is a

B. A spatial manipulator
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Fig. 11. Left: The Stewart-Gough platform. Center and rigdlices of its forward singularity set for a constant ori¢ioiagiven by = 2, =30 ,
and = 87, and for the xed positionpF1 = [10;10;10]". The position and orientation variables of the platformenh&een limited to the ranges
[ 100;100] and[ 90 ;90 ] respectively.

unit vector along the-th leg, expressed in franfe;. Also, d; Two slices of the forward singularity locus are shown in
is the length of the leg, representing the displacement @f thig. 11, computed at a constant orientation and at a constant
prismatic joint, andR is the rotation matrix providing the position of the platform. Alternative slices could also be
orientation ofF, relative toF;. The pose of the platform is obtained if desired, simply by xing a different set of posa-p

given by (pF*;R). rameters. The geometric dimensions assumed here corcespon
In this case, Eq. (1) is the system formed by Egs. (15 the academic manipulator studied in [6]. The Euler angles
and (16) for all legs, together with the conditions ,and are those for whiclR = R,( )Ry( )Rx( ), which
also coincide with the ones assumed in [6]. From the results
ksk?=1; s t=0; in Table Il we note that it is computationally much harder to
ktk?=1; s t=wi; compute the constant position slice. This agrees with the fa

that the system to be solved is much larger, and its equations

which forceR =[s;t;w] to represent a valid rotation. are highly non-linear, in comparison to those of the cortstan
The velocity equation can be obtained by writing the gny ’ P

expression of the output twidt following each leg orientation slice.

P oegns x o &P @ VIl. CONCLUSIONS
j=1 This paper has proposed a method for the numerical compu-
tation and detailed classi cation of the entire singulaset of
where$? and theéi’;’j are the unit twists of the active and thea lower-pair manipulator with arbitrary geometry. Systeohs
ve passive joints of thei-th leg, respectively. By gathering equations have been de ned to compute the set, and each one
Egs. (17) for all legs, we obtain 8 42 matrix L, and a of the singularity subsets identi ed in [18]. To solve anytbé
velocity vectorm containing the six components of the outpusystems, a numerical method based on linear relaxations has
twist, the six active velocities of the prismatic joints,danbeen proposed, which can obtain a box approximation of the
the 30 passive joint velocities of the universal and sphericgblution set with the desired accuracy, even in the presehce
joints. This results in a relatively large system of equagio self-intersections or dimension changes in the set [23, 134
but by multiplying each side of Eq. (17) by a unit screvapproach is based on a recursive segmentation and redottion
reciprocal to all passive joint twists of the leg, we can dode the search space, and is particularly practical and usefldw
that the forward singularities are the con gurations forieth degree-of-freedom manipulators like the one in SectiorAVI-
the conventional screw Jacobidnis singular [18, 32]. This This example has been chosen for its high illustrative value
condition is advantageous becaudeis only 6 6, and since it allows a clear analysis and presentation of thdteeisu
generally produces a much smaller system. a moderate-dimensional case. It also shows how complex can
For some con gurations, the space of reciprocal screws bé the topology of the con guration space and its singuarit
a given leg may be of dimension larger than one, and Eq. (lidyluced partitions. As demonstrated in Section VI-B, thalan
should be multiplied by a whole basis of reciprocal screwssis of manipulators with higher-dimensional singulasists
of the leg [33]. In the Stewart-Gough platform this can onlgdoes not add fundamental dif culties to the method, othanth
happen when the center of the leg's spherical joint is in thecreasing the computation times, as with any other method.
plane of the two revolute-joint axes of the universal joinfThe detailed interpretation and visualization of the slagty
resulting in a singularity of RPM type. Since joint limitsdan sets of these and other manipulators will be the subject of
other constraints typically exclude such singularitiesréal future work. Additional work is envisaged to also extend the
platforms, we will not compute them here. developments to deal with redundant manipulators [18, 35].
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