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Abstract

In this work, the problem of Fault Detection and Isolation (FDI) and Fault Toler-
ant Control (FTC) of wind turbines is addressed. Fault detection is based on the
use of interval observers and unknown but bounded description of the noise and
modeling errors. Fault isolation is based on analyzing the observed fault signa-
tures on-line and matching them with the theoretical ones obtained using structural
analysis and a row-reasoning scheme. Fault tolerant control is based on the use
of virtual sensors/actuators to deal with sensor and actuator faults, respectively.
More precisely, these FTC schemes, that have been proposed previously in state
space form, are reformulated in input/output form. Since an active FTC strategy
is used, the FTC module uses the information from the FDI module to replace the
real faulty sensor/actuator by activating the corresponding virtual sensor/actuator.
Virtual actuators/sensors require additionally a fault estimation module to com-
pensate the fault. In this work, a fault estimation approach based on batch least
squares is used. The performance of the proposed FDI and FTC schemes is as-
sessed using the proposed fault scenarios considered in the wind turbine bench-
mark proposed at IFAC SAFEPROCESS 2009. Satisfactory results have been
obtained in both FDI and FTC.
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1. Introduction

Wind turbines stand for a growing part of power production. The future of
wind energy passes through the installation of offshore wind farms. In such loca-
tions a non-planned maintenance is very costly. Reducing the cost of wind energy
is a key factor in driving successful growth of the wind energy sector. One way
of reducing this cost is to use more refined control systems to balance load reduc-
tion and power production in an optimal way (Bossanyi, 2003; Simani & Castaldi,
2013). Hence, the detailed modeling of wind turbines has been a hot topic of re-
search in the last years (van der Veen et al., 2013). Another way of reducing the
costs is developing wind turbines that require less scheduled and especially non-
scheduled service and have less downtime due to failure (Tabatabaeipour et al.,
2012). Therefore, a fault-tolerant control (FTC) system that is able to maintain
the wind turbine connected after the occurrence of certain faults can avoid major
economic losses (Sloth et al., 2010). An important part of an active FTC system is
the implementation of a Fault Detection and Isolation (FDI) system that is able to
detect, isolate and, if possible, estimate the faults (Isermann, 2006). Model-based
FDI is often necessary to obtain a good diagnosis of faults.

The problem of model-based fault diagnosis in wind turbines has recently been
addressed (Odgaard & Stoustrup, 2012b), the main motivation being the impor-
tance gained in many countries by this technology for electricity generation. So
far, revising the literature, methods ranging from Kalman filters (Wei et al., 2008),
observers (Odgaard et al., 2009), parity equations (Dobrila & Stefansen, 2007),
dynamic weighting ensembles (Razavi-Far & Kinnaert, 2013) and fuzzy model-
ing and identification methods (Badihi et al., 2013) have already been suggested
as possible model-based techniques for fault diagnosis of wind turbines.

The problem of model-based fault tolerant control in wind turbines has been
addressed even more recently. In Sloth et al. (2010) and Sloth et al. (2011), active
and passive fault tolerant control designs for wind turbines are presented. The
Linear Parameter Varying (LPV) control design method is applied, which leads
to LMI based optimization in case of active fault tolerant and Bilinear Matrix In-
equalities (BMIs) in case of passive fault tolerant problems. It is shown through
simulations that both active and passive controllers have better performance than
classical PI controller and that active fault-tolerant controller is better than passive
FTC in faulty condition. However, the authors conclude that the choice between
active and passive FTC should also take into account the tolerance to errors in the
fault diagnosis system. In Sami & Patton (2012), a robust FTC strategy that opti-
mizes the wind energy captured by a wind turbine operating at low wind speeds

2



(5 MW), using an adaptive gain Sliding Mode Control (SMC) is proposed. The
proposed method involves a robust descriptor observer design that can provide si-
multaneously a robust estimation of the states and the ”unknown outputs” (sensor
faults and noise) in order to guarantee the robustness of the sliding surface against
unknown output effects. In Odgaard & Stoustrup (2012a), an FTC scheme based
on estimates of the generator speed using a bank of unknown input observers, and
considering faults in the rotor and generator speed sensors, is proposed. One ob-
server is designed for each of the sets of non faulty rotor and generator speed sen-
sors. The unknown input observers are used to detect and isolate these faults too.
In Kamal et al. (2012), a multiobserver switching control strategy for robust active
fault tolerant fuzzy control of variable-speed wind energy conversion systems in
the presence of wide wind variation, wind disturbance, parametric uncertainties
and sensor faults is proposed. In Badihi et al. (2013), fault tolerance is achieved
using a gain-scheduled Proportional Integral control system based on Fuzzy Gain
Scheduling. A projection-based approach is used by Jain et al. (2013) in order to
obtain an active FTC system that neither uses a priori information about the model
of the wind turbine in real-time nor an explicit fault diagnosis scheme. An active
FTC scheme based on adaptive filters obtained via the nonlinear geometric ap-
proach is proposed in Simani & Castaldi (2013), allowing to obtain an interesting
decoupling property with respect to uncertainty affecting the wind turbine system.

The use of on-line fault estimation is essential for all active fault compensation
approaches. A number of suitable estimation methods, essentially observer-based
or Kalman filter-based fault estimation are proposed in the literature (Wang &
Daley, 1996; Edwards et al., 2000; Patton & Klinkhieo, 2009). In Montes de
Oca et al. (2011), a recursive least square method is applied for actuator fault
estimation in LPV systems.

In Odgaard et al. (2013), a benchmark model for fault detection and isolation
as well as fault tolerant control of wind turbines has been proposed. The bench-
mark model describes a realistic generic three blade horizontal variable speed
wind turbine with a full scale converter coupling and a rated power of 4.8MW.
Solutions to FDI and FTC for this benchmark model have been published re-
cently: (Chen et al., 2011), (Blesa et al., 2011), (Tabatabaeipour et al., 2012) and
(Rotondo et al., 2012), among others, and compared in Odgaard et al. (2013).

In this paper, the problem of fault diagnosis in wind turbines is addressed ap-
plying the interval observer based approach proposed in Puig et al. (2006). The
proposed model based fault detection methodology relies on the use of interval
observers and assumes an unknown but bounded description of the noise and the
modeling errors. Fault isolation is based on analyzing the observed fault signa-
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tures on-line and matching them with the theoretical ones obtained using structural
analysis and a row-reasoning scheme. On the other hand, the fault tolerant control
approach considered in this work uses the idea of virtual sensors/actuators. The
paper suggests the reformulation of these FTC schemes, previously proposed in
state space form by Lunze et al. (2003), in an input/output form. A fault estimation
scheme based on batch least squares approach is also suggested. The performance
of the proposed FTC schemes is assessed using the fault scenarios considered in
the FTC benchmark presented in Odgaard et al. (2013).

In Section 2 the proposed fault detection and isolation based on interval ob-
servers is presented. In Section 3, the proposed fault tolerant control approach
based on virtual sensors and actuators is introduced. In Section 4, the wind tur-
bine used in the FDI/FTC competition is briefly introduced and the set of residu-
als generated using structural analysis. Results of the application of the proposed
FDI/FTC approaches to the wind turbine benchmark are presented in Section 5.
Finally, some conclusions are drawn in Section 6.

2. Fault Detection, Isolation and Estimation

2.1. Problem set-up
Let us consider that the wind turbine to be monitored can be described by a

MIMO linear uncertain dynamic model expressed as follows:

x(k + 1) = A(θ̃)x(k) + B(θ̃)u(k) + Fa(θ̃) fa(k) (1)
y(k) = C(θ̃)x(k) + Fy(θ̃) fy(k) + ṽ(k) (2)

where u(k) ∈ Rnu is the system input, y(k) ∈ Rny is the system output, x(k) ∈ Rnx is
the state-space vector, ṽ(k) ∈ Rny is the output noise that is assumed to be bounded
|ṽi(k)| < σi with i = 1, . . . , ny, fa(k) ∈ Rnu and fy(k) ∈ Rny represent faults in the
actuators and output sensors, respectively. A(θ̃), B(θ̃), C(θ̃), Fa(θ̃) and Fy(θ̃) are
matrices of appropriate dimensions where θ̃ ∈ Rnθ is the parameter vector.

The system (1)-(2) is monitored using a linear observer with Luenberger struc-
ture that uses an interval model of the system, i.e., a model with parameters
bounded by intervals1:

θ ∈ Θ =
{
θ ∈ Rnθ | θi ≤ θi ≤ θ̄i, i = 1, . . . , nθ

}
(3)

1The intervals for uncertain parameters can be inferred from real data using set-membership
parameter estimation algorithms (Milanese et al., 1996; Ploix et al., 1999).
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that represent the uncertainty about the exact knowledge of the real parameters θ̃.
This observer, known as an interval observer, is expressed as follows (Meseguer
et al., 2010):

x̂(k + 1, θ) = (A(θ) − LC(θ)) x̂(k, θ) + B(θ)u(k) + Ly(k)
= A0(θ)x̂(k, θ) + B(θ)u(k) + Ly(k) (4)

ŷ(k, θ) = C(θ)x̂(k, θ)

where x̂(k, θ) is the estimated system state vector, ŷ(k, θ) is the estimated system
output vector and A0(θ) = A(θ) − LC(θ) is the observer matrix.

The observer gain matrix L ∈ Rnx×ny is designed to stabilize the matrix A0(θ)
and to guarantee a desired performance regarding fault detection for all θ ∈ Θ
using the LMI pole placement approach (Chilali & Gahinet, 1996).

The input/output form of the system (1)-(2) using the shift operator q−1 and
assuming zero initial conditions is given by:

y(k) = y0(k, θ̃) +G fa(q
−1, θ̃) fa(k) +G fy(θ̃) fy(k) + ṽ(k) (5)

where y0(k, θ̃) is the system output when the system in not affected by faults,
disturbances and noises:

y0(k, θ̃) = Gu(q−1, θ̃)u(k) (6)
Gu(q−1, θ̃) = C(θ̃)(qI − A(θ̃))−1B(θ̃) (7)
G fa(q

−1, θ̃) = C(θ̃)(qI − A(θ̃))−1Fa(θ̃) (8)
G fy(θ̃) = Fy(θ̃) (9)

The input/output form of the observer (4) is expressed as follows:

ŷ(k, θ) = G(q−1, θ)u(k) + H(q−1, θ)y(k) (10)

with:

G(q−1, θ) = C(θ)(qI − A0(θ))−1B(θ) (11)
H(q−1, θ) = C(θ)(qI − A0(θ))−1L (12)

The effect of the uncertain parameters θ on the observer temporal response
ŷ(k, θ) will be bounded using an interval satisfying:

ŷ(k, θ) ∈
[
ŷ(k), ŷ(k)

]
(13)
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Such interval can be computed independently for each output i = 1, . . . , ny,
neglecting couplings among outputs, as follows:

ŷi(k) = min
θ∈Θ

ŷi(k, θ) and ŷi(k) = max
θ∈Θ

ŷi(k, θ) (14)

subject to the observer equations given by (4). The optimization problems (14)
could be solved using numerical methods as in Puig et al. (2003). However, in
this paper, a zonotopic approach (Puig et al., 2013), whose complexity is linear
with respect to the system dimension since it involves only matricial operation,
and therefore is more efficient from the computational point of view, will be used
as described below.

Finally, taking into account that the additive noise in the system (2) is bounded,
the following condition should be satisfied in a non-faulty scenario:

yi(k) ∈
[
ŷi(k) − σi, ŷi(k) + σi

]
i = 1, . . . , ny (15)

2.2. Implementation using zonotopes
In order to compute the interval (13) at present instant from previous intervals

determined in previous time instants using zonotopes, the observer (4) can be
formulated as follows:

x̂(k, θ) = A0(θ)x̂(k − 1, θ) + B0(θ)u0(k − 1) (16)
ŷ(k, θ) = C(θ)x̂(k, θ) (17)

where: A0(θ) = A(θ) − LC(θ), B0(θ) = [B(θ) L] and u0(k) =
[
u(k) y(k)

]T .

Definition 1. Given the sequence of measured inputs {u(i)}k−1
0 and outputs

{y(i)}k−1
0 and assuming that the initial states are bounded by a known compact

set X0. Then, the exact uncertain estimated state set Xk using at time k (16) is
expressed by:

Xk = {x̂(k, θ) : (x̂(i, θ) = A0(θ)x̂(i − 1, θ) + B0(θ)u0(i − 1))k
i=1 | x̂0 ∈ X0, θ ∈ Θ}

(18)

The uncertain state set described in Definition 1 at time k can be computed
approximately by admitting the rupture of the existing relations between variables
of consecutive time instants. This allows to compute an approximation of this set
from the approximate uncertain set at time k−1.
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Definition 2. Consider the interval observer given by (16), the set of uncertain
states at time k−1 (Xk−1) and the input/output values {u(k − 1), y(k − 1)}, then the
approximate set of estimated states Xe

k at time k based on the measurements up to
time k−1 is defined as:

Xe
k = {x̂(k, θ) : x̂(k, θ) = A0(θ)x̂(k−1, θ) + B0(θ)u0(k−1) | x̂(k−1, θ) ∈ Xk−1, θ ∈ Θ}

(19)

Definition 1 and Definition 2 can be easily adapted to describe the exact uncer-
tain estimated output set Yk at time k and the approximate set of estimated outputs
Ye

k.
Since the exact set of estimated states Xe

k and outputs Ye
k are difficult to com-

pute, one way is to bound them using some zonotopes as in Alamo et al. (2005).
Here, the set of estimated states Xe

k (or outputs Ye
k) introduced in Definition

2 will be approximated iteratively using zonotopes. From these zonotopes, an
interval for each state variable and output can also be obtained by computing the
interval hull of the zonotope Z, denoted as �Z. The sequence of interval hulls �Xe

k
and �Ye

k with k ∈ [0,N] will be called the interval observer estimation of the sys-
tem (16)-(17) where N is the number of measurement data considered. Following
the previous idea, Algorithm 1 is proposed to determine an approximation of the
set of uncertain estimated states and outputs.

Algorithm 1 Interval Observer using Set Computations
1: k ← 0
2: Xe

k ⇐ X0

3: while k < N do
4: Obtain and store input-output data {u(k), y(k)}
5: Compute the approximated estimated state set, Xe

k+1
6: Compute the approximated estimated output set, Ye

k
7: Compute the interval hull of the approximated estimated output set, �Ye

k =[
ŷ(k), ŷ(k)

]
8: k ← k + 1
9: end while

The implementation of steps 5-8 in the Algorithm 1 using zonotopes is de-
scribed in detail in Puig et al. (2013).
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2.3. Parameter uncertainty estimation
One of the key points in passive robust model based fault detection is how

models and their uncertainty bounds are obtained. Classical system identification
methods (Ljung, 1987) are formulated under a statistical framework. Assuming
that the measured variables are corrupted by additive noises with known statis-
tical distributions and that the model structure is known, a parameter estimation
algorithm will provide nominal values for the parameters together with descrip-
tions of the associated uncertainty in terms of the covariance matrix or confidence
regions for a given probability level (Kendall & Stuart, 1979; Dalai et al., 2005).
However, this type of approaches cannot be applied when measurement errors
are described as unknown but bounded values and/or modeling errors exist. Re-
cently, some methodologies that provide a model with its uncertainty have been
developed for control applications (Reinelt et al., 2002). One of the methodolo-
gies assumes the bounded but unknown description of the noise and parametric
uncertainty. This methodology is known as bounded-error or set-membership es-
timation (Milanese et al., 1996), which produces a set of parameters consistent
with the selected model structure and the pre-specified noise bounds. This ap-
proach is used for estimating parametric uncertainty of the interval observers in
(4).

Regarding the uncertain variables in (4), it is assumed that a priori theoretical
or practical considerations allow to obtain useful intervals associated to measure-
ment noises, leading to an estimation of the noise bound σ. The goal of the
parameter estimation algorithm is to characterize the parameter set Θ (here a box)
consistent with the data collected in a fault-free scenario. Given N measurements
of system inputs y(k) and outputs u(k) from a scenario free of faults and rich
enough from the identifiability point of view, and a nominal model described by
a vector θn obtained using least-squares parameter estimation algorithm (Ljung,
1987), the uncertain parameter estimation algorithm proceeds by solving the fol-
lowing optimization problem:

min α
subject to :

yi(k) ∈
[
ŷ

i
(k) − σi, ŷi(k) + σi

]
i = 1, ..., ny k = 1, ...,N

ŷ
i
(k) = min

θ∈Θ
ŷi(k, θ) i = 1, ..., ny k = 1, ...,N

ŷi(k) = max
θ∈Θ

ŷi(k, θ) i = 1, ..., ny k = 1, ...,N

ŷ(k, θ) = G(q−1, θ)u(k) + H(q−1, θ)y(k) k = 1, ...,N
Θ = [θn(1 − α), θn(1 + α)]

(20)
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2.4. Fault detection test
Fault detection is based on generating a nominal residual comparing the mea-

surements of physical system variables y(k) with their estimation ŷ(k) provided by
the observer (4):

ro(k) = y(k) − ŷ(k, θn) (21)

where r(k) ∈ Rny is the residual set and θn the nominal parameters.
According to Gertler (1998), the computational form of the nominal residual

generator, obtained using (4), is:

ro(k) =
(
I − H(q−1, θn)

)
y(k) −G(q−1, θn)u(k) (22)

that has been derived taking into account the input/output form of the observer
(10).

When considering model uncertainty located in parameters, the residual gen-
erated by (21) will not be zero, even in a non-faulty scenario. To cope with the
parameter uncertainty effect, a passive robust approach based on adaptive thresh-
olding can be used (Puig et al., 2006). Thus, using this passive approach, the
effect of parameter uncertainty in the components ri(k) of residual r(k) (associ-
ated to each system output yi(k)) is bounded by the interval (Puig et al., 2003):

ro
i (k) ∈ [ri(k) − σi, ri(k) + σi] i = 1, ..., ny (23)

where:
ri(k) = ŷ

i
(k) − ŷi(k, θn) and ri(k) = ŷi(k) − ŷi(k, θn) (24)

where ŷ
i
(k) and ŷi(k) are the bounds of the system output estimation computed

component-wise using the interval observer (4) and obtained according to (14).
Then, the fault detection test could be based on checking if the residuals satisfy

or not the condition given by (23). In case that this condition does not hold, a fault
can be indicated.

Remark 2.1. As discussed in Meseguer et al. (2010), fault detection based on
interval observers may suffer from missed detection because of the uncertainty.
This is due to the fact that there exists a minimum fault size that guarantees the
activation of the fault detection test (23) despite the uncertainties. The minimum
fault size depends on the uncertainty bounds in such a way that the performance
of the fault detection test will decrease when those bounds increase. On the other
hand, interval observers guarantee that there are no false alarms since uncertainty
bounds are determined to explain the data collected in non-faulty scenarios, as
described previously.
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2.5. Fault isolation
Fault isolation consists in identifying the faults affecting the system. It is car-

ried out on the basis of fault signatures, generated by the detection module, and
their relation with all the considered faults, f (k) =

{
fa(k), fy(k)

}
. Robust resid-

ual evaluation presented in Section 2.4 allows obtaining a set of fault signatures
ϕ(k) = [ϕ1(k), ϕ2(k), . . . , ϕny(k)], where each fault indicator is given by:

ϕi(k) =
{

0 if ro
i (k) ∈ [ri(k) − σi, ri(k) + σi]

1 if ro
i (k) < [ri(k) − σi, ri(k) + σi]

(25)

Standard fault isolation reasoning exploits the knowledge about the binary
relation between the set of fault hypothesis and the set of residuals that is stored
in the so called Fault Signature Matrix (FSM), denoted as M. An element mi, j of
M is equal to 1 if the fault f j affects the computation of the residual ri; otherwise
mi, j = 0. A column of M is known as a theoretical fault signature and indicates
which residuals are affected by a given fault. A set of faults is isolable if all the
columns in M are different (two identical columns indicate two indistinguishable
faults).

Based on the use of FSMs, different reasoning procedures have been proposed
in the literature (Cordier et al., 2004). The most common one involves finding
a matching between the observed fault signature and one of the theoretical fault
signatures. However, this reasoning is not appropriate in an unknown but bounded
context. Due to the uncertainty, when a fault is present in the system, an undefined
number of the residuals affected by the fault can be found inconsistent, mainly de-
pending on the sensitivity of each residual to the fault and on the fault magnitude.
In other words, the observed fault signature will not exactly match the theoreti-
cal signature of the present fault. In this case, if the column-matching procedure
is used, then the particular fault will not be identified. An appropriate reasoning
should only consider the residuals that are inconsistent when searching for the
fault, since consistency is not relevant. A residual that is found inconsistent indi-
cates that one of the faults that affect the residual is acting on the system. But the
contrary is not true, if a residual is satisfied, it does not assure that none of the as-
sociated faults is present. According to the established terminology (Cordier et al.,
2004), the used algorithm must avoid single-fault exoneration, which is implicit
in the column matching reasoning.

Under single-fault assumption, this can be easily achieved by taking into ac-
count that the fault that is actually present in the system has to affect all the resid-
uals that have been found inconsistent according to the observed fault signature (if
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not, the single fault hypothesis can not explain the observed behavior). Algorithm
2 summarizes an isolation procedure based on this idea.

Remark 2.2. Due to the uncertainty, it is possible that the observed fault signature
may be attributed to more than one fault and hence more than one fault candidate
is provided by Algorithm 2. The most probable candidate is selected at the end
taking into account the number of activated residuals with respect to the expected
ones. On the other hand, it can always be assured that the real fault present in the
system is one of the proposed fault candidates.

2.6. Fault estimation
In this paper, fault estimation is formulated as a parameter estimation problem

in such a way that any parameter estimation algorithm can be used. In this paper,
the sliding window blockwise least-squares method (Jiang & Zhang, 2004) is used.

In order to apply the block least-squares, the model including faults must be
rewritten in a linear regression form:

z(k) = φ(k)ϑ (26)

where z(k) and φ(k) are signals that are either directly measured or obtained using
some mathematical or physical relationship between the measured variables, and
ϑ is the parameter to be estimated, that is, the fault.

Taking into account the last N samples (26) can be written as:

Z(k) = Φ(k)ϑ (27)

with:

Z(k) =


z(k)

z(k − 1)
...

z(k − N + 1)

 Φ(k) =


φ(k)
φ(k − 1)
...

φ(k − N + 1)

 (28)

the fault estimation can be obtained by:

ϑ̂ = Φ†(k)Z(k) (29)

where Φ†(k) denotes the pseudoinverse of Φ(k).
Notice that the design parameter in this algorithm is the length of the rect-

angular sliding window N. The choice of this parameter should be made taking
into account that small values of N lead to fault estimations that are faster but
more sensitive to noise, while with big values of N the obtained fault estimation
is slower but more robust against noise.
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Algorithm 2 Fault detection and isolation
1: f ault← FALSE
2: k ← 0
3: while f ault , TRUE do
4: k ← k + 1
5: Obtain input-output data {u(k), y(k)} at time instant k
6: Compute [yi(k), yi(k)], i = 1, · · · , ny using Algorithm 1
7: Obtain [ri(k), ri(k)], i = 1, · · · , ny using Eq. (24)
8: for i = 1 to ny do
9: if ro

i (k) < [ri(k) − σi, ri(k) + σi] then
10: ϕik = 1
11: f ault← TRUE
12: else
13: ϕik = 0
14: end if
15: end for
16: FC ←

{
f 1, f 2, . . . , f n f

}
17: for i = 1 to ny do
18: if ϕik = 1 then
19: for j = 1 to n f do
20: if mi, j = 0 then
21: FC ← FC − f j

22: end if
23: end for
24: end if
25: end for
26: end while
27: Fault candidate set FC
28: for j = 1 to | F C | do

29: π j(k) =

ny∑
i=1
ϕi(k)mi, j

ny∑
i=1

mi, j

30: end for
31: Candidate fault is: arg max

j=1,··· ,|FC|
π j(k)

3. Fault Tolerant Control

When designing fault-tolerant control systems, fault tolerance should be ad-
dressed either on the sensors or the actuators of the system. Fault-tolerance meth-
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ods generally assume redundancy, that is, the existence of redundant actuators or
sensors that can be used in faulty situations. In the case of actuators/sensors, there
are two ways of including fault-tolerance in the control loop: namely, by introduc-
ing auxiliary actuators/sensors (hardware redundancy) that will replace the faulty
ones, or by using the existing mathematical relationships that describe the system
behavior, in order to compensate the faults (analytical redundancy).

3.1. Hardware redundancy
Hardware redundancy is the most used way of introducing redundancy in ac-

tuators/sensors in industry (see Fig. 1). In real time, an FDI module checks if
the operating actuator/sensor that is operating is working properly or not. In case
it is not, such an actuator/sensor is disconnected and replaced by the redundant
one. This reconfiguration mechanism hides the fault from the controller side and
there is no need of retuning the controller parameters. However, this solution is in
general costly from the economical point of view.

Figure 1: Hardware redundancy.

3.2. Analytical redundancy
On the other hand, analytical redundancy tries to exploit the redundancy al-

ready existing in the system through the use of models, in order to correct the
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closed-loop behavior in such a way that it behaves as in the non-faulty case. There
are two ways to achieve this goal: (a) either by retuning the controller parameters
such that the performance of the closed loop in faulty situation tries to be as close
as possible to the one obtained in non-faulty situation. This method is known as
model matching approach (Blanke et al., 2006); (b) or by designing a virtual actu-
ator Ga(q−1) or virtual sensor Gs(q−1) block that is placed between the process and
the controller or between the sensors and the controller, respectively, allowing to
hide the fault with respect to the controller, that in this case should not be retuned
(Lunze & Steffen, 2003). In this paper, this second methodology is extended to
the input/output formulation and is used to achieve fault tolerance.

Given a multivariable system with m inputs and n outputs described by a trans-
fer matrix G(q−1), and controlled by a controller K(q−1), in case that a fault appears
in the system changing it to G f (q−1), the virtual actuator Ga(q−1) is placed between
the process and the controller (see Fig. 2) and is designed to satisfy:

Figure 2: Analytical redundancy.

G f (q−1)Ga(q−1) = G(q−1) (30)

leading to the following conditions:

m∑
k=1

g f
i,k(q

−1)ga
k, j(q

−1) = gi, j(q−1) i = 1, . . . , n j = 1, . . . ,m (31)

that can be used to calculate the elements ga
k, j(q

−1) of the virtual actuator transfer
matrix.
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Notice that, for a SISO system, (31) reduces to the following condition:

ga(q−1) = g−1
f (q−1)g(q−1) (32)

On the other hand, in the case of a fault appearing in the sensors changing
their transfer function from H(q−1) to H f (q−1), the virtual sensor Gs(q−1) is placed
after the faulty sensor (see Fig. 2) and is designed to satisfy:

Gs(q−1)H f (q−1) = H(q−1) (33)

leading to the conditions:

m∑
k=1

gs
i,k(q

−1)h f
k, j(q

−1) = hi, j(q−1) i = 1, . . . ,m j = 1, . . . , n (34)

that can be used to calculate the elements gs
i,k(q

−1) of the virtual sensor transfer
matrix.

Notice that looking at (30) and (33), the virtual actuator/sensor design problem
can be assimilated to an exact model matching problem (Kaczorek, 1982). Nec-
essary and sufficient conditions for the existence of solutions Ga(q−1) and Gs(q−1)
are (Chen, 1984):

rank G f (q−1) = rank
(

G f (q−1) G(q−1)
)

(35)

and:

rank H f (q−1) = rank
(

H f (q−1)
H(q−1)

)
(36)

over the field of rational functions of q−1 with coefficients in R. A method for
solving the minimal design problem, i.e. finding a proper transfer matrix with
a minimal degree that solves the exact model matching problem, is described in
Chen (1984).

In case of total failures of either an actuator or a sensor, conditions (30) and
(33) could not be satisfied, because it could be impossible to recover the non-
faulty transfer matrix using a virtual sensor and actuator approach. This is due to
the fact that after the fault there is not enough hardware redundancy to compensate
the faulty component with the remaining actuators/sensors. However, in cases
where redundant actuators/sensors are available, the hardware redundancy can be
exploited so as to achieve fault tolerance, by replacing the lost actuator/sensor
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with the redundant ones. In this case, some additional action is required and it is
useful to split the virtual actuator matrix in two blocks:

Ga(q−1) = GG
a (q−1)GK

a (q−1) (37)

where GG
a (q−1) is the part of the virtual actuator that has the function of trying to

reproduce the non-faulty system behavior, while GK
a (q−1) is the part of the virtual

actuator that redistributes the lost actuator control action on the redundant ones.
For example, consider the following system with (m+ 1) inputs and n outputs:

G(q−1) =


g1,1(q−1) g1,1(q−1) g1,2(q−1) . . . g1,m(q−1)
g2,1(q−1) g2,1(q−1) g2,2(q−1) . . . g2,m(q−1)
...

...
...

. . .
...

gn,1(q−1) gn,1(q−1) gn,2(q−1) . . . gn,m(q−1)

 (38)

where the first and the second input affect the outputs in the same way. Then, in
case of faults, among which the total loss of an actuator, for example the first, the
system transfer matrix changes to:

G f (q−1) =


0 g f

1,1(q−1) g f
1,2(q−1) . . . g f

1,m(q−1)
0 g f

2,1(q−1) g f
2,2(q−1) . . . g f

2,m(q−1)
...

...
...

. . .
...

0 g f
n,1(q−1) g f

n,2(q−1) . . . g f
n,m(q−1)

 (39)

and the resulting virtual actuator transfer matrix is the following:

Ga(q−1) = GG
a (q−1)GK

a (q−1) =



0 0 0 . . . 0
ga

1,1(q−1) ga
1,1(q−1) ga

1,2(q−1) . . . ga
1,m(q−1)

ga
2,1(q−1) ga

2,1(q−1) ga
2,2(q−1) . . . ga

2,m(q−1)
...

...
...

. . .
...

ga
m,1(q−1) ga

m,1(q−1) ga
m,2(q−1) . . . ga

m,m(q−1)


(40)

while (30) is written as:

G f (q−1)GG
a (q−1) = G0(q−1) =


0 g1,1(q−1) g1,2(q−1) . . . g1,m(q−1)
0 g2,1(q−1) g2,2(q−1) . . . g2,m(q−1)
...

...
...

. . .
...

0 gn,1(q−1) gn,2(q−1) . . . gn,m(q−1)

 (41)
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where G0(q−1) is the matrix obtained from the nominal system transfer matrix by
considering the effect of the actuator total loss. A similar approach is used in the
case of sensor loss.

Remark 3.1. There exists a connection between the rank conditions (35)-(36)
and their counterpart in the case of virtual actuators and sensors designed in state
space form following the approach proposed by Lunze & Steffen (2003). In fact,
in this latter case, if the fault appearance has changed the state space matrices
from (A, B,C) to (A, B f ,C) in the case of actuator faults, or to (A, B,C f ) in the
case of sensor faults, it is possible to recover the nominal system behavior using a
static compensation if and only if (Blanke et al., 2006):

rank B f = rank
(

B f B
)

(42)

or:

rank C f = rank
(

C f

C

)
(43)

respectively. Then, if we consider the following realizations of G(q−1) and H(q−1):

G
(
q−1

)
=

(
q−1I − AG

)−1
B (44)

H
(
q−1

)
= C

(
q−1I − AH

)−1
(45)

and only the faults affecting the matrices B and C, as follows:

G f

(
q−1

)
=

(
q−1I − AG

)−1
B f (46)

H f

(
q−1

)
= C f

(
q−1I − AH

)−1
(47)

the rank conditions (35)-(36) are equivalent to (42)-(43). In cases where (42)
or (43) were not satisfied, fault tolerance could still be achieved, even though at
the price of using a dynamical virtual actuator or virtual sensor, thus introducing
additional poles in the system.

4. Case study: Wind Turbine System

4.1. Wind Turbine Model
The wind turbine model of the FDI/FTC benchmark described in Odgaard

et al. (2013) comprises the Wind model, the Blade and Pitch model, the Drive
Train model, the Generator/Converter model and the Controller.
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The hydraulic pitch system can be modeled as (Merritt, 1967):

β(s)
βr(s)

=
ω2

n

s2 + 2ζωns + ω2
n

(48)

where β(s) and βr(s) are the pitch angle and its reference, and ωn and ζ are the
natural frequency and the damping ratio of the pitch actuator model.

The generator/converter dynamics can be modeled by:

τg(s)
τg,r(s)

=
αgc

s + αgc
(49)

where τg and τg,r are the generator torque and its reference and αgc is the generator
and converter model parameter.

The power produced by the generator Pg depends on the rotational speed of
the generator ωg and the applied load τg:

Pg(t) = ηgωg(t)τg(t) (50)

where ηg is the generator efficiency.
The drive train model consists of a low-speed shaft and a high-speed shaft

having inertias Jr and Jg, and friction coefficients Br and Bg. The shafts are inter-
connected by a transmission having a gear ratio Ng and an efficiency ηdt, combined
with a torsion stiffness Kdt, and a torsion damping Bdt. The model is described by
the following three differential equations (Sloth et al., 2011):

ω̇r(t) = −
(Bdt + Br)

Jr
ωr(t) +

Bdt

NgJr
ωg(t) − Kdt

Jr
θ∆(t) +

τr(t)
Jr

(51)

ω̇g(t) =
ηdtBdt

NgJg
ωr(t) −

ηdtBdt

N2
g Jg
+

Bg

Jg

ωg(t) +
ηdtKdt

NgJg
θ∆(t) −

τg(t)
Jg

(52)

θ̇∆(t) = ωr(t) −
ωg(t)

Ng
(53)

where ωr is the rotor speed, ωg is the generator speed, θ∆ is the torsion angle of
the drive train, τr is the aerodynamic torque and τg is the generator torque.

Since the turbine has three blades, all three pitch positions are measured. Such
measurements are done with two sensors in order to ensure physical redundancy
(variables defined as βr1, βr2, βr3 for the pitch reference to blade 1, 2 and 3; β1,m1,
β1,m2, β2,m1, β2,m2, β3,m1, β3,m2 are the pitch positions measurements starting from
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Table 1: Wind Turbine Fault Description
Fault Fault description Type Value Period

f1 Change in pitch 1 Fixed Value β1,m1 = 5o 2000s-2100s
measurement

f2 Change in pitch 2 Gain factor β2,m2 = 1.2β2,m2 2300s-2400s
measurement

f3 Change in Pitch 3 Fixed Value β3,m1 = 10o 2600s-2700s
measurement

f4 Change in Rotor Fixed value ωr,m1 = 1.4rad/s 1500s-1600s
speed sensor

f5 Change in Rotor and Gain factor ωr,m2 = 1.1ωr,m2 1000s-1100s
generator speed ωg,m2 = 0.9ωg,m2
measurements

f6 Parameter abrupt Changed dynamics ωn2 = 11.11→ ωn2 = 5.73 2900s-3000s
change in pitch 2 ζ2 = 0.6→ ζ2 = 0.45

f7 Parameter slowly Changed dynamics ωn3 = 11.11→ ωn3 = 3.42 3400s-3500s
change in pitch 3 ζ3 = 0.6→ ζ3 = 0.9

f8 Offset in converter Offset τg = τg + 2000Nm 3800s-3900s
system

the two measurements for the blade 1 followed by the two measurements for blade
2 and blade 3 in the end). The generator and rotor speeds are also measured
with two sensors each for the same reason (the two rotor speed measurements are
defined as ωr,m1, ωr,m2, while the two generator speed measurements are defined as
ωg,m1, ωg,m2). Details about the controller can be found in Odgaard et al. (2013).

In this paper, the different faults proposed in the FDI/FTC benchmark (Odgaard
et al., 2013) will be considered, as resumed in Table 1.

4.2. Residual Generation
According to Blesa et al. (2011), after applying structural analysis (Blanke

et al., 2006) with the aid of the SaTool (Blanke & Lorentz, 2006) to the set of
equations provided in Odgaard et al. (2013), the following set of twelve residuals
expressed as reduced observers in input-output form can be obtained:
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r1(k) = ωr,m1(k) − ωr,m2(k)

r2(k) =
(
1 − l21q−1

1 − (a2,1 − l2,1)q−1

)
ωr,m2(k) −

b2,1q−1τr(k) + c2,1q−1τg,m(k)
1 − (a2,1 − l2,1)q−1

r3(k) = ωg,m1(k) − ωg,m2(k)

r4(k) =
(
1 − l4,1q−1

1 − (a4,1 − l4,1)q−1

)
ωg,m2(k) −

b4,1q−1τr(k) + c4,1q−1τg,m(k)
1 − (a4,1 − l4,1)q−1

r5(k) = β1,m1(k) − β1,m2(k)

r6(k) =
(
1 − l6,1q−1 + l6,2q−2

1 − (a6,1 − l6,1)q−1 − (a6,2 − l6,2)q−2

)
β1,m2(k)

− (b6,1q−1 + b6,2q−2)βr(k)
1 − (a6,1 − l6,1)q−1 − (a6,2 − l6,2)q−2

r7(k) = β2,m1(k) − β2,m2(k)

r8(k) =
(
1 − l8,1q−1 + l8,2q−2

1 − (a8,1 − l8,1)q−1 − (a8,2 − l8,2)q−2

)
β2,m2(k)

− (b8,1q−1 + b8,2q−2)βr(k)
1 − (a8,1 − l8,1)q−1 − (a8,2 − l8,2)q−2

(54)

r9(k) = β3,m1(k) − β3,m2(k)

r10(k) =
(
1 − l10,1q−1 + l10,2q−2

1 − (a10,1 − l10,1)q−1 − (a10,2 − l10,2)q−2

)
β3,m2(k)

− (b10,1q−1 + b10,2q−2)βr(k)
1 − (a10,1 − l10,1)q−1 − (a10,2 − l10,2)q−2

r11(k) =
(
1 − l11,1q−1

1 − (a11,1 − l11,1)q−1

)
τg,m(k) −

b11,1q−1τg,r(k)
1 − (a11,1 − l11,1)q−1

r12(k) = Pg,m(k) − ηgωg,m2(k)τg,m(k)

where ai, j, bi, j and ci, j are model parameters that have to be estimated (ηg is a
known coefficient) such that:

θ =
(

a2,1 b2,1 c2,1 a4,1 b4,1 c4,1 a6,1 a6,2 b6,1 b6,2

a8,1 a8,2 b8,1 b8,2 a10,1 a10,2 b10,1 b10,2 a11,1 b11,1

)T (55)

20



Table 2: Fault signature matrix
r f1 f2 f3 f4 f5 f6 f7 f8

r1 x x
r2 x x x x x x x
r3 x
r4 x x x x x x x
r5 x
r6 x
r7 x
r8 x x
r9 x
r10 x x
r11 x
r12 x

and li, j are the observer gains. This set of residuals will be used for fault detection
and isolation. It must be noticed that a non-linearity is hidden in some of the
residuals due to the use of the variable τr, which is estimated using the following
relation given in Odgaard et al. (2013):

τr(k) = ρπR3Cq(λ(k), β(k))vw(k)2/2. (56)

Moreover, SaTool provides the FSM represented in Table 2, which captures
the relation between residuals and faults, where a cross ’x’ indicates that a given
residual is affected by a given fault (according to the notation used in Section 2.5,
mi, j = 1 where there is a cross, mi, j = 0 elsewhere).

Notice that this paper is not focused on how to obtain the residuals. Structural
methods have actually been used to obtain the residuals for this application, but
other methods could be considered and the proposed method could be applied to
the resulting set of residuals, e.g. those obtained by Svärd & Nyberg (2012).

4.3. Uncertain parameter estimation
Residuals r1, r3, r5, r7 and r9 are static equations that involve the comparison

of the value of two different sensors measuring the same variable. In the same
way, residual r12 compares the value of a sensor with the one calculated using a
static relation with two other sensors. Residuals r2 and r4 are obtained from the
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drive train model. Residuals r6, r8 and r10 follow from the hydraulic pitch system
model. Finally, residual r11 is derived from the converter dynamics model.

In order to reduce the effect of the noise in fault detection and isolation pro-
cedures, the variables involved in the discretized regressor equations have been
filtered by second order low-pass filters. Nominal coefficients of dynamical resid-
uals have been obtained applying the least squares method to the data obtained
simulating the system in the fault free scenario. Once the nominal parameters have
been estimated, the observer gains li, j in the dynamical residuals are determined
taking into account that there is a trade-off between the observer convergence
towards the real system behavior and the fault indication persistence (Meseguer
et al., 2010). Changing the observer gain, observer poles can be shifted from a
location close to the ones of the system to a location close to the origin of the z
-plane. In particular, selecting the observer poles close to the ones of the system,
the persistence of the fault indication increases although the convergence towards
the real system behavior becomes slower. This is the location that has been used
in this paper. The use of this criterion has been motivated by the results that were
previously obtained in Blesa et al. (2011), where a deadbeat observer (predictor)
was used, that were not completely satisfactory (some of the faults in the wind
turbine benchmark were not detected, e.g. f6, while others were detected with a
big delay, e.g. f7). Notice that the deadbeat observer corresponds to the fastest
possible observer since it places the poles in the origin of the z -plane.

The uncertain parameter estimation procedure described in Section 2.3 has
been applied to the fault-free scenario specified in the benchmark in order to ob-
tain the intervals for the parameters of the residuals that will be used for fault
detection and isolation purposes. The noise bound σ is estimated using three
times the standard deviation of the nominal residual (21). On the other hand, the
parameter uncertainty bounds are estimated using the procedure described in Sec-
tion 2.3. This procedure guarantees that all data collected in non-faulty scenarios
used for estimation will be contained in the interval output produced by the in-
terval observer, avoiding in this way false alarms. After estimating the uncertain
parameters, the stability and the pole location of the observer are checked using
the LMIs of the regional pole placement approach proposed by Chilali & Gahinet
(1996), with a circular D region centered at the origin of the z-plane and with
radius long enough to contain the poles of the system. In this way, it is guaranteed
that the observer will not be slower than the plant.
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4.4. Fault Detection and Isolation
Fault detection has been implemented by means of (23) applied to the 12 resid-

uals obtained in Section 4.2. Fault isolation has been implemented using the Al-
gorithm 2 with the FSM presented in Table 2.

In order to improve the fault detection and isolation results the following prac-
tical enhancements could be introduced to the previous schemes:

• Pre-processing sensor data in order to detect stuck faults based on compar-
ing the current and previous measurements. If the same value is observed,
then the residuals that use these measurements are considered as violated.

• After a gain sensor fault is detected and isolated, if the sensor takes mea-
surements close to zero (within the interval [−10σ, 10σ]), the residual is
kept active. This trick is done to avoid that the fault is not persistently de-
tected and isolated.

• After a parametric fault in a dynamical residual is detected and isolated, the
fault detection test (23) is complemented with a test based on estimating
the residual parameters using the algorithm described in Section 2.6. This
complementary test checks if the residual parameters are inside a confidence
interval around the nominal parameter values. As in the previous case, this
enhancement helps the persistent fault detection and isolation.

4.5. Fault Estimation
When a fault affects a sensor, this could be of two different natures depending

on if the sensor is stuck at a fixed value or is affected by a change of the gain. In
both cases, fault isolation could be enough to achieve fault tolerance by deactivat-
ing the faulty sensor and using the redundant healthy one. However, in the change
of gain case (multiplicative fault) the information coming from the faulty sensor
could be recovered if an estimation of the fault is available, improving the per-
formance of the control system. In this case, the regression equation is obtained
from the measurements of the redundant sensors, namely ym,1(k) and ym,2(k). For
example, in case of a fault in the first sensor, (26) is given by:

ym,1(k) = ym,2(k)κ (57)

where κ is the multiplicative sensor fault gain factor.
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Faults in the hydraulic pitch system change the values of ωn and ζ in (48), that
can be rewritten in the following differential form:

β̈(t) + 2ζωnβ̇(t) + ω2
nβ(t) = ω

2
nβr(t) (58)

which can be discretized using an Euler approximation and then brought to the
following regression form to be used for fault estimation:

β̈(k − 2) =
[
ω2

n ωnζ
] [ βr(k − 2) − β(k − 2)

−2β̇(k − 2)

]
(59)

with:
β̇(k − 2) �

β(k − 1) − β(k − 2)
Ts

(60)

β̈(k − 2) �
β(k) − 2β(k − 1) + β(k − 2)

Ts
(61)

Finally, the fault in the converter consists in an offset that can be estimated
using the following linear regression:

τg,m(k) − τ̂g(k) = ∆τg (62)

where ∆τg is the offset and τ̂g is the expected converter torque obtained from its
model (49).

4.6. Fault Tolerant Control
The idea behind the virtual actuators and sensors approach is that one can

achieve fault tolerance without touching the nominal controller that was designed
to work in non-faulty conditions. The nominal controller has the following inputs:
Pg, Pr and ωg, and the following outputs: βr1, βr2, βr3 and τg,r.

Fault 1 - The fault 1 is a stuck value, β1,m1 = 5o, in the time period 2000s-
2100s. The input to the first hydraulic pitch system is given by the following
expression:

u1 = β1,r + β1, f (63)

where β1,r is the controller output and β1, f = β1 − 0.5
(
β1,m1 + β1,m2

)
with β1 the

real angle of the first pitch system, and β1,m1, β1,m2 the values given by the sensors.
In the case of sensor failure to a stuck value, it is desired to eliminate the faulty
sensor from the overall control loop. In this case, the fault tolerance is achieved
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by adding an extra term to the input (63) such that its effect equals the fault effect,
that is:

uFTC
1 = β1,r + ∆β1,r + β1 − 0.5β1,m1 − 0.5β1,m2 = β1,r + β1 − β1,m2 (64)

Eq. (64) leads to the result that:

∆β1,r = 0.5
(
β1,m1 − β1,m2

)
(65)

Fault 2 - The fault 2 is a change of gain β2,m2 = κ2β2,m2 with κ2 = 1.2, in
the time period 2300s-2400s. In this case, the input to the second hydraulic pitch
system is given by an expression analogous to (63):

u2 = β2,r + β2, f (66)

The fault tolerance is achieved by adding an extra term to the input (66), in
order to eliminate the effect of the faulty sensor change of gain on the overall
control loop, such that:

uFTC
2 = β2,r+∆β2,r +β2−0.5

(
β2,m1 + κ2β2,m2

)
= β2,r+β2−0.5

(
β2,m1 + β2,m2

)
(67)

that leads to:
∆β2,r = 0.5 (κ̂2 − 1) β2,m2 (68)

where κ̂2 is the value obtained through the fault estimation method.
Fault 3 - The fault 3 is a stuck value, β3,m1 = 10o, in the time period 2600s-

2700s. This fault is very similar to the first one, and the fault tolerance is obtained
in a similar way by adding the term:

∆β3,r = 0.5
(
β3,m1 − β3,m2

)
(69)

Fault 4 - The fault 4 is a stuck value, ωr,m1 = 1.4rad/s, in the time period
1500s-1600s. As the measurements ωr,m1 and ωr,m2 are not used by the nominal
controller, no fault tolerance action is needed.

Fault 5 - The fault 5 is a change of gains of two sensors: ωr,m2 = κrωr,m2 and
ωg,m1 = κgωg,m1, with κr = 1.1 and κg = 0.9, in time period 1000s-1100s. No
action on the rotor speed measurement is needed, while fault tolerance for the
change of gain in the generator speed is achieved in a very similar way to fault 2.

In this case, the nominal controller uses a value ωg,m that is given by:

ωg,m = ωg,m1 + ωg,m2 (70)
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An additive term can be added so as to compensate the fault effect, that is:

0.5
(
ωg,m1 + κgωg,m2

)
+ ∆ωg,m = 0.5

(
ωg,m1 + ωg,m2

)
(71)

resulting in the expression for the additive term:

∆ωg,m = 0.5
(
1 − κ̂g

)
ωg,m2 (72)

where κ̂g is the value obtained through the fault estimation method.
Fault 6 - This fault is an abrupt change of the parameters that describe the

pitch actuator 2 dynamics, ωn2 and ζ2. Fault tolerance is obtained as follows:

βFTC
r,2 (s) =

s2 + 2ζ̂2ω̂n2s + ω̂2
n2

s2 + 2ζ2ωn2s + ω2
n2

βr,2(s) (73)

Since the fault tolerant control system works in discrete-time, a sample and
hold discretization is performed on βFTC

r,2 (s) in order to obtain βFTC
r,2 (z).

Fault 7 - This fault is an incipient change of the parameters that describe the
pitch actuator 3 dynamics, ωn3 and ζ3. Fault tolerance is obtained as follows:

βFTC
r,3 (s) =

s2 + 2ζ̂3ω̂n3s + ω̂2
n3

s2 + 2ζ3ωn3s + ω2
n3

βr,3(s) (74)

Since the fault tolerant control system works in discrete-time, a sample and
hold discretization is performed on βFTC

r,3 (s) in order to obtain βFTC
r,3 (z).

Fault 8 - The fault 8 is an offset in the converter system τg = τg + ∆τg with
τg = 2000Nm from 3800s to 3900s. In this case, the fault tolerance is achieved by
subtracting the estimated value ∆τ̂g from the converter system reference τg,r:

τFTC
g,r = τg,r − ∆τ̂g,r (75)

5. Results

The proposed FDI strategy has been applied to the Benchmark proposed in
Odgaard et al. (2013). The parameter bounds that determine the box Θ and the
observer gains that have been obtained in the identification and design processes
are presented in Table 3.

All the faults have been detected and isolated and it can be seen from the ob-
tained results (see Table 4) that the FDI system satisfies almost all detection time
requirements (Odgaard et al., 2013). On the other hand, the results achieved in

26



Table 3: Model Parameters and Observer Gains
Residual Model Parameters Observer Gains

r2(k)
a2,1 ∈ [0.97699, 1.0067]

b2,1 ∈ [8.54231, 8.80249] 10−10

c2,1 ∈ [3.6891, 3.8014] 10−7
l2,1 = 0.49594

r4(k)
a4,1 ∈ [0.98792, 1.0119]

b4,1 ∈ [1.6357, 1.6755] 10−8

c4,1 ∈ [−1.6240,−1.5855] 10−6
l4,1 = 0.49996

r6(k)

a6,1 ∈ [1.8608, 1.8664]
a6,2 ∈ [−8.7650,−8.7387] 10−1

b6,1 ∈ [5.8913, 5.9091] 10−3

b6,2 ∈ [5.6352, 5.6522] 10−3

l6,1 = 1.8636 × 10−3

l6,2 = −8.7518 × 10−4

r8(k)

a8,1 ∈ [1.8608, 1.8664]
a8,2 ∈ [−8.7650,−8.7387] 10−1

b8,1 ∈ [5.8913, 5.9091] 10−3

b8,2 ∈ [5.6352, 5.6522] 10−3

l8,1 = 1.8636 × 10−3

l8,2 = −8.7518 × 10−4

r10(k)

a10,1 ∈ [1.8608, 1.8664]
a10,2 ∈ [−8.7650,−8.7387] 10−1

b10,1 ∈ [5.8913, 5.9091] 10−3

b10,2 ∈ [5.6352, 5.6522] 10−3

l10,1 = 1.8636 × 10−3

l10,2 = −8.7518 × 10−4

r11(k)
a11,1 ∈ [0.60639, 0.60653]
b11,1 ∈ [0.39338, 0.39356]

l11,1 = 0.12131

this work are equal or better than the ones obtained in the FDI Benchmark com-
petition, which results are reported and compared in Odgaard et al. (2013). In
fact, the method proposed in this paper requires equal or less detection time than
some other approaches presented in Odgaard et al. (2013). The results obtained
have also been compared to the ones presented in Casau et al. (2012), where an
approach based on set-valued observers for FDI and FTC is used. The latter has
shown a good performance in detecting almost all the faults proposed in the bench-
mark (Odgaard et al., 2013) except f4 and f6 that were detected later (5.61s and
4.615s, respectively). However, the time detection obtained in this work has been
0.03s and 0.06s for f4 and f6, respectively.

Fault Scenario 1
Fig. 3 and Fig. 4 show the nominal residuals r0

1, . . . , r
0
12 and the observed

fault signature components ϕ1, . . . , ϕ12 used in the proposed fault detection and
isolation procedure in fault scenario 1 (fixed value on pitch 1 position sensor from
t = 2000s to t = 2100s). The fault is detected at instant t = 2000.03s, as shown in
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Table 4: FDI results for the set of considered fault scenarios.
Fault scenario Fault appearance time FDI time

1 2000s 2000.03s
2 2300s 2300.06s
3 2600s 2600.03s
4 1500s 1500.03s
5 1000s 1000.03s
6 2900s 2900.06s
7 3400s 3411.60s
8 3800s 3800.04s

Fig. 5.
Fig. 6 shows that the proposed FTC strategy results in an improvement of the

generated power. Similar results have been obtained in fault scenario 4. In fault
scenario 3, it has been noticed that the fault is not so critical as in the other cases,
since the working point of the third pitch position nearly corresponds to the stuck
value of the faulty sensor (10o). Thus, in fault scenario 3 no visible differences
have been observed between the behavior with FTC and the one without FTC.

Fault Scenario 2
Fig. 7 and Fig. 8 show the nominal residuals r0

1, . . . , r
0
12 and the observed fault

signature components ϕ1, . . . , ϕ12 used in the proposed fault detection and isola-
tion procedure in fault scenario 2 (change of gain in the second pitch measurement
from t = 2300s to t = 2400s). The fault is detected at instant t = 2300.06s, as
shown in Fig. 9.

If the fault results in a change of sensor gain, as in the case of faults 2 and 5,
the tolerance is obtained multiplying the faulty output by the inverse of the gain
factor. Thus, the change in gain due to the fault must be estimated and the per-
formance of the proposed FTC strategy depends directly on such estimation. The
better the estimation is, the lower is the loss of performance due to the fault occur-
rence. Hereafter, results obtained in the second fault scenario are shown. Fig. 10
demonstrates the results with respect to the estimation, obtained by applying the
proposed least-square approach with N = 10. This value has been found as a good
trade-off between a lower value that would have made faster the estimation at the
expense of higher sensitivity to noise and a higher value that would have made the
estimation more robust to the noise but also slower. It is worth remarking that a
low-pass filter has been applied to the sensor data in order to remove some noise
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Figure 3: Nominal residuals r0
1, . . . , r

0
12 in fault scenario 1.
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Figure 4: Observed fault signature components in fault scenario 1.
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Figure 5: Fault detection results in fault scenario 1.
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before applying the fault estimation algorithm. Fig. 11 shows the effectiveness of
the proposed strategy. In this case, the performances with FTC are slightly better
than the ones obtained without FTC. Similar results have been obtained in fault
scenario 5.

Fault Scenario 6
Fig. 12 and Fig. 13 show the nominal residuals r0

1, . . . , r
0
12 and the observed

fault signature components ϕ1, . . . , ϕ12 used in the proposed fault detection and
isolation procedure in fault scenario 6 (abrupt change in the second order transfer
function parameters ωn and ζ). The fault is detected at instant t = 2900.06s, as
shown in Fig. 14.

In fault scenarios 6 and 7, the fault causes a change in the second order transfer
function parameters ωn and ζ. Such a change is abrupt in the sixth fault scenario
and incipient in the seventh scenario. The estimation of these parameters in fault
scenario 6 is shown in Fig. 15 and Fig. 16, respectively. It can be seen that a
good estimation of the natural frequency is achieved, while the algorithm does not
provide an accurate estimation of the damping ratio. The reason is probably due
to the effect of the low-pass filter used to remove noise from data before applying
the fault estimation algorithm.

However, in spite of the difficulty in estimating the real value of ζ2, the quality
of the fault estimation is good enough to allow the active fault tolerance mecha-
nism based on a virtual actuator to compensate the fault, as shown in Fig. 17. In
this figure, such a behavior corresponds to the pitch response getting as near as
possible to the nominal response (blue line). It can be seen that the response when
no fault tolerance mechanism acts on the system (green line) is quite different with
respect to the nominal one. The proposed FTC strategy can compensate the fault
resulting in an almost perfect matching between the response with FTC (red line)
and the nominal one.

Fault Scenario 8
Fig. 18 and Fig. 19 show the nominal residuals r0

1, . . . , r
0
12 and the observed

fault signature components ϕ1, . . . , ϕ12 used in the proposed fault detection and
isolation procedure in fault scenario 8 (converter offset from t = 3800s to t =
3900s). The fault is detected at instant t = 3800.04s, as shown in Fig. 20.

In Fig. 21, it can be seen that the generated power with FTC is approximately
the same as its reference value (4.8 MW), and the offset brought in by the fault
occurrence is corrected.
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Figure 7: Nominal residuals r0
1, . . . , r

0
12 in fault scenario 2.
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Figure 8: Observed fault signature components in fault scenario 2.
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Figure 9: Fault detection results in fault scenario 2.
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Figure 10: Change of gain estimation in fault scenario 2.
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Figure 11: Measurement β2,m2 with and without FTC in fault scenario 2.
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Figure 12: Nominal residuals r0
1, . . . , r

0
12 in fault scenario 6.
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Figure 13: Observer fault signature components in fault scenario 6.
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Figure 14: Fault detection results in fault scenario 6.
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Figure 15: ωn,2 estimation in fault scenario 6.
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Figure 16: ζ2 estimation in fault scenario 6.
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Figure 17: β2 response without and with FTC in fault scenario 6.

6. Conclusions

In this paper, the problem of FDI and FTC of the wind turbine benchmark
(Odgaard et al., 2013) has been addressed. The FDI scheme is based on the use of
interval observers, that consider an unknown but bounded description of the noise
and modeling errors, for fault detection and a row-reasoning approach for fault
isolation. The proposed FTC scheme relies on the use of virtual sensors/actuators
that are designed using an input/output model formulation and the model match-
ing principle. A fault estimation scheme is also proposed based on batch least
squares approach. The performance of the proposed FDI and FTC schemes has
been assessed using the fault scenarios considered in the wind turbine benchmark.
Satisfactory results have been obtained for both FDI and FTC schemes.
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Figure 18: Nominal residuals r0
1, . . . , r

0
12 in fault scenario 8.
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Figure 19: Observed fault signature components in fault scenario 8.
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Figure 20: Fault detection results in fault scenario 8.
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Figure 21: Generated power Pg without and with FTC in fault scenario 8.
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