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Abstract

Change detection is the most important task for video surveillance an-

alytics such as foreground and anomaly detection. Current foreground de-

tectors learn models from annotated images since the goal isto generate a

robust foreground model able to detect changes in all possible scenarios. Un-

fortunately, manual labelling is very expensive. Most advanced supervised

learning techniques based on generic object detection datasets currently ex-

hibit very poor performance when applied to surveillance datasets because

of the unconstrained nature of such environments in terms oftypes and ap-

pearances of objects. In this paper, we take advantage of change detection

for training multiple foreground detectors in an unsupervised manner. We

use statistical learning techniques which exploit the use of latent parameters

for selecting the best foreground model parameters for a given scenario. In

essence, the main novelty of our proposed approach is to combine the where

(motion segmentation) andwhat (learning procedure) in change detection in
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an unsupervised way for improving the speci�city and generalization power

of foreground detectors at the same time. We propose a framework based

on latent Support Vector Machines that, given a noisy initialization based

on motion cues, learns the correct position, aspect ratio, and appearance of

all moving objects in a particular scene. Speci�city is achieved by learning

the particular change detections of a given scenario, and generalization is

guaranteed since our method can be applied to any possible scene and fore-

ground object, as demonstrated in the experimental resultsoutperforming

the state-of-the-art.

Keywords: Object detection, unsupervised learning, motion segmentation,

latent variables, support vector machine, multiple appearance models, video

surveillance

1. Introduction

Change detection is a fundamental task for scene understanding in the

surveillance domain. In the literature, motion segmentation[1, 2, 3] has

been used for detectingwheremotion is present in a scene. Although motion

does not represent all the information in a scene, detectingmoving objects

is very useful because motion is usually highly correlated with the interest-

ing objects of the scene, such as humans, animals and vehicles (see Fig. 1).

However motion segmentation has many drawbacks since, instead of learn-

ing foreground objects, it computes a background model as a reference for

performing change detection. This has been proven not robust enough for

surveillance scenarios, where the usual changes in lighting, viewpoint and

weather conditions are uncontrolled.
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Figure 1: The approach is able to build multi-appearance detectors for unknown and

uncontrolled sequences in an unsupervised manner where no pre-trained detectors are

available.

Instead, most recent approaches useobject class detectiontechniques [4,

5] to learn what objects are present in the scene by modelling the highly

variable appearance of foreground objects. In this case, instead of modelling

the background of a scene, a complex statistical model of those foreground

objects which are expected to appear in the scene is learnt. Although learning

object categories overcomes the typical problems of motionsegmentation [6]

(such as illumination changes, camera calibration, weather conditions, and

background in motion), object learning is still an open problem due to the

enormous variability of the appearances that foreground objects exhibit in the

surveillance domain. Also, existing approaches typically requires an extensive

collection of positive samples, i.e. annotations of foreground objects, which

in the surveillance domain implies an expensive manual labelling process for

each possible scene and deployed camera.

In this paper we propose a novel unsupervised methodology which over-

comes the limitations of motion segmentation and appearance learning by

combining the holistic knowledge obtained from change detection by using

these two complementary strategies. On the one hand, motionsegmentation

provides an initial estimation of the foreground appearance, i.e. statistically
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consistent motion changes are considered as objects of interest. These initial

hypotheses are then clustered into di�erent appearances togenerate the set

of foreground object models to be trained. On the other hand,in contrast to

current state-of-the-art, our approach does not make any a-priori assumption

about the type of foreground object which is expected to appear in the scene:

learning the foreground appearance and position based on the clustering step

described before is achieved by means of an optimization procedure based on

latent variables. Thus we are able to train a speci�c foreground detector

based on the motion segmented in each particular scenario.

The contributions of our method are: (i) substituting the costly manual-

labelling task with the use of motion and unsupervised learning for change

detection, and (ii) using a discriminative optimization technique based on

latent variables able to build accurate multi-class detectors even in the case

of noisy and missing motion segmentation. To the best of our knowledge, no

method has been proposed to train multiple foreground objects from motion

cues in an unsupervised way. To better show the adaptability, generality

and robustness of our proposed approach, we have considereddi�erent video

sequences with no assumptions about the type of foreground object to be

detected.

This paper is structured as follows: the next section reviews the works

most related to our research while highlighting the advantages of this pro-

posal with respect to the state-of-the-art. Section 3 presents an overview of

the methodology used, discusses several critical steps like initialization and

the detector used, and describes the multiple appearance learning frame-

work in terms of an optimization problem. The feasibility ofthe proposed
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approach is demonstrated in the experimental results in section 4, while the

�nal discussion and an overview of future avenues of research is presented in

section 5.

2. Related Work

Recently there has been a signi�cant interest in semi-supervised and un-

supervised learning for object detection, exploiting bothlabelled and unla-

belled data. There are a number of representative approaches that assume

di�erent levels of supervision when training object detectors or classi�ers.

Among the semi-supervised methods we can �nd some that use thein-

formation from labelled and unlabelled data for co-training manner, such as

[7, 8]. Levin et al. [7] use a quantity of labelled data to train two di�erent de-

tectors. Then they use the known relationship between prediction con�dence

and margin to retrain an improved classi�er. However, when the correlation

between the two types of inputs is relatively high, co-training does not re-

ally improve the detector performance. Javed et al. [8] alsoused co-training

to improve the performance of an initial classi�er by selecting new training

examples based on PCA. Background subtraction is also used inorder to

prune stationary-objects in the image. However, the base classi�er, which is

based on one dimension of a learned PCA model, is relatively weak. Nair

and Clark [9] in their approach proposed an on-line detectortrained based

on an automatic labeller. However, in contrast to ours, this approach needs

a manually pre-de�ned aspect ratio for the automatic labeller. In [10], Wu

and Nevatia presented an unsupervised on-line learning approach to improve

the performance of boosted object detectors trained from a small labelled
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training set by using a large amount of unlabelled data.

Exploiting tracking information, Kalal et al. [11, 12] present a tracker

based on a continuously re�ned detector. The structure of the data is ex-

ploited by positive and negative constraints that restrictthe labelling of the

unlabelled data. These constrains provide a feedback aboutthe performance

of the classi�er which is iteratively improved in a bootstrapping fashion.

Other approaches such as [13, 14, 15] also use tracking to improve the object

detector then used for extracting positive and negative examples from the

current frame. Babenko et al. [13] use multiple instance learning (MIL),

Zhang et al. [14] use sparse representation, and Lu et al. [15] use weighted

multiple instance learning (WMIL). However, these tracking-by-detection ap-

proaches are trained with the aim of tracking a single objectgiven an initial

bounding box, while in our case, foreground detectors are trained to detect

at the same time multiple and di�erent object categories in an unsupervised

way and without any speci�c initialization. Also, in our approach we do

not use tracking because visual trackers [16] can introducemore noise to the

detection results if the tracker is not reliable enough for random motions.

Ali et al. [17] present a method that learns objects of a singlecategory

from sparsely annotated videos using boosting. The boosting procedure to-

gether with a convex formulation of the objects ow can iteratively improve

the detector using the unannotated data considering the constraints gener-

ated from the video trajectories. The main limitations of this method are

the lack of dealing with multiple object classes, which is quite common in

unconstrained scenarios, the sequentiality of the training images, and the

need for some object annotations, although sparse.
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Methods which train class object detectors in a weakly supervised manner

[18] or using random ferns [19] have a very di�erent goal thanour approach.

Their objective is to improve generic class detectors. Instead, our goal is

to train the best object detectors for a speci�c scenario. More recently,

[20, 21, 22] improve generic o�ine trained detectors using speci�c scenarios.

However, they need pre-trained detectors to be initialized.In contrast Hoai

et al. [23] use weakly labelled data to build better object detectors.

The advantages of our approach with respect to all the aforementioned

approaches are that our model is trained based on totally unlabelled data

and does not require pre-trained detectors. Likewise, there are other methods

which also present a fully unsupervised approach. Celik et al. [24] propose

training a detector of the most dominant object class (the most repeated

class) in the observed scene that is able to select useful training samples

in an autonomous manner. Other techniques for training object detectors

without the necessity of hand-label examples are presentedin [25, 26] where

a virtual scenario or a 3d model are used to train a pedestriandetector.

These approaches rely on the strong assumption that only onetarget [24]

or a prede�ned target [25, 26] can be present in the scene. In contrast, we

rely on a global optimization procedure which allows our system to handle

an unknown number of objects and unconstrained categories of targets.

An approach also based on motion cues for the detection of interesting

objects is [27]. In that work, the input received from the motion segmen-

tation is considered the ground truth and a clustering procedure is used to

separate the examples for each detector. A further re�nement of the clusters

is e�ectuated in order to avoid wrong clusters assignment. However, unlike

7



our method, the selection of the training examples and the subsequent object

model training are done in two separate and independent procedures. This

produces quite poor results, especially when the input datais noisy. This is

because the foreground regions are estimated in a bottom-upfashion, with-

out using important information about the �nal aim, that is d istinguishing

among foreground objects and background. In contrast, in our method the

selection of the positive examples to use for each class, as well as their correct

location, are optimized at the same time in a discriminativefashion. More-

over, authors in [27] manually de�ned the classes which are used to train

independents SVM for each class. Once they have de�ned the possible clus-

ters with some re�ned examples for each of the appearances, they manually

group them in two classes: car and pedestrian. In contrast, our approach

uses the data directly by performing a global optimization based on latent

variables, thereby being able to train a unique detector which can work with

di�erent appearances at the same time.

Summarizing, our proposal is di�erent from the aforementioned approaches

because it (i) is fully unsupervised, since there is no need for hand-labelled

annotations, (ii) can learn objects never seen before as it does not rely on

any a-priori trained detector, and (iii) works with multipl e and unlabelled

objects.

3. Our Approach

The technique proposed in this paper combines in an unsupervised way

where to learn (motion segmentation) andwhat (learning procedure) from

change detection to improve the speci�city and generalization power of trained
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foreground detectors at the same time. Thewhere will be given by a mo-

tion segmentation procedure to subsequently initialize the detectors (section

3.1). In addition, the what will be the unsupervised procedure to train the

detectors based on the segmented motion, that is what objects do we have?

(section 3.2). Consequently, the appearance and position of foreground ob-

jects will be learnt by means of an optimization procedure based on latent

variables.

An overview of the method is shown in Fig. 2. In the �rst stage motion

cues are used to roughly segment the moving objects. In our experiments this

is done by learning a background model and segmenting those regions that

have a local motion with respect to the background. Subsequently, based on

the statistical distribution of the bounding boxes of the moving regions, the

number and appearance of the required detectors are estimated and given as

input to the learning procedure. During training, with a global optimization

we iteratively and simultaneously learn the correct objectlocation, aspect

ratio, and appearance to associate a detector to each movingregion.

Since the main purpose of our approach is the detection of thefore-

ground objects in surveillance scenarios instead of the categorization of those

detected foreground objects, our approach is not limited toa speci�c num-

ber of categories. That means, di�erent foreground object detectors will be

trained based on the variance in aspect ratio of foreground regions instead of

based on the nature of the object being learnt. The approach uses the vari-

ance in aspect ratio to initialize the foreground detectors. As an example,

we can train detectors able to detect pedestrians and cars without explic-

itly inferring the category the moving objects belong to. For instance, quite
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Figure 2: Approach Overview: Firstly, moving objects are roughly segmented using motion

cues. This is used as input for the initialization of the learning procedure and the cluster

number estimation. Finally, a global optimization iterati vely learns the correct object

location, aspect ratio, and appearance simultaneously foreach of the detectors. See text

for more details.

commonly in the surveillance domain, pre-trained detectors are not able to

detect a speci�c category because of occlusions with other objects; however

in our scenario the occluded object has an aspect ratio that is di�erent and

therefore another detector will be learnt.

In the following sections we give a detailed explanation of the model

initialization and the multi-appearance learning.

3.1. Initialization

In our framework the learning procedure is based on latent SVM[5]. We

consider object position, and appearance as latent variables. In this way, the

latent variables can assume the value that is most discriminative in order

to distinguish moving foreground objects from background.However, the

optimization problem is not convex due to the latent variables. This means
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that the yielded solution is local and an optimal solution requires a proper

initialization of the latent variables. For initializatio n, the detected moving

regions are considered as the initial candidates for learning appearances as

well as the shape of the detectors that will model those foreground regions.

Motion The estimation of the objects location is provided by bottom-up

information. The key idea is that motion segmentation substitutes the te-

dious hand-labelling task. Speci�cally, in our approach weuse a background

subtraction technique to obtain a rough initial estimationof the presence of

one or more objects in a certain location of the image.

In order to obtain the moving foreground objects we have employed [28].

It uses a hybrid architecture which exploits the bene�ts of fusing a chromatic-

invariant cone model for colour segmentation, an invariantgradient model

which fuses magnitude and orientation for edge segmentation, and intensity

cues together with temporal di�erence. Furthermore, taking advantage of

these cues it also detects and removes shadows1. An example of the motion

segmentation results obtained from CLEAR06 database can be seen in the

Fig. 3.(a).

Even though many of the problems of motion segmentation are solved by

the approach presented in [28], the detection of moving objects in complex

environments is still far from being completely solved [35]since noise and

other segmentation errors occur frequently. However our system is robust to

such errors thanks to the re�nement of the global discriminative optimization,

as described next.

1In fact, any motion segmentation algorithm such as those presented in [29, 30, 31, 32,

33, 34] could be used instead to obtain the moving regions to be learnt by the detectors
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Figure 3: a) Motion segmentation results from CLEAR06 sequence. b) histogram of

bounding box ratios computed from the objects segmented in the CLEAR06 sequence.

Detectors Initialization In order to detect objects of di�erent shapes

and sizes, an initial analysis of the objects that most frequently appear in

the scene is necessary. In particular we estimate the detector's size and ap-

pearance. We evaluate the most distinctive appearances of all objects that

appear in the scene, and tailor a set of detectors to best reproduce this distri-

bution. In practice, we obtain the optimal trade-o� betweenrepresenting all

the appearances of the objects in the scene and getting enough samples. The

initial object clustering could contain clusters with a reduced set of samples.

A model trained with that reduced set of samples would in general produce

a poor detector. In order to obtain a trade-o� between representing all the

appearances of the objects in the scene and obtaining good detectors, those

clusters with too few samples will be discarted. For doing sowe extract a

smoothed histogram of the distribution of the bounding boxes aspect ratios

obtained from motion segmentation. We take the local maximum of the his-

tograms as the aspect ratio of our detectors. We also split each aspect ratio
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to left-right facing samples. To do that we randomly ip a sample and check

if the global variance of the HOG [4] features on the samples issmaller than

before. In that case we maintain the change. We continue thatprocedure

until no more ips are applied. An example of the bounding box aspect ratios

histogram obtained from CLEAR06 sequence can be seen in Fig. 3.(b).

We are interested in estimating the sizes of the objects thatappear in the

scene to obtain the best trade-o� between a high resolution representation of

the object (more discriminative) and the risk of not detecting small objects

(more robust). For this we set for each appearance a detectorwith a size

that allows it to detect 90% of the samples in the training set.

Some regions are erroneously segmented as belonging to an object. How-

ever, in our approach these false positives are statistically considered as out-

liers given the whole segmented sequence. In the case that the number of

di�erent appearances are erroneously considered due to a failure in segmenta-

tion or in clustering, these problems do not modify considerably the detection

results as later discussed in the experimental results.

3.2. Multi-Appearance Learning

The strength of our approach relies on the learning procedure. Instead of

dividing the learning procedure in two separate tasks,clustering and appear-

ance learning, we propose to learn both tasks in a single, global optimization

procedure. In essence, cluster assignment as well as the accurate object po-

sition estimation are represented as so-calledlatent variableswhich can be

jointly estimated during training using the latent SVM algorithm as proposed

in [5].

In our case, the assignment of the latent variables is based on two joint
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Figure 4: Example of assignment of latent variables. The assignment of the latent variables

is e�ectuated based on two rules: (i) the overlap with the motion segmentation, and (ii)

the scoring function of the latent SVM. (a) Motion Segmentation results. (b) Localization:

for each object model, the object location is chosen based onthe location that maximizes

the detection score. (c) Cluster membership: as both objectmodels have enough overlap

with the segmentation, the model is chosen based on the maximum score it can obtain.

Note that the assignment of two latent variables is e�ectuated jointly.

rules: (i) the overlapping intersection area between the ground truth and the

detected bounding boxes obtained from motion segmentation, and (ii) the

scoring function given by the latent SVM, see Fig. 4. Indeed this procedure

works well since both tasks are highly interconnected: the object appearance

is used to compute a better estimation of the cluster that belongs to each

foreground object and its localization, as well as when the foreground objects

are well separated into di�erent aspect ratio clusters, object appearances can

be better learned by the detectors.

Unfortunately, in our problem the estimation of the object appearance,

the cluster membership and the object position cannot be estimated at the
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same time because they are mutually dependent. This implies, in contrast to

normal SVM, that the corresponding energy function is not convex and its

optimization should be performed in an iterative way composed of two parts:

a convex optimization of the object model using the current estimation of the

latent variables, in addition to a concave optimization of the object model

corresponding to a new estimation of the latent variables which minimize the

energy function. These two iterative steps are detailed next.

Inference In our framework the inference procedure corresponds to the

detection of the objects in the scene. This procedure is usedin an uncon-

strained way during testing, where the objects can be found at any location

of the image, and in a constrained way during training, wherea region of

the image is used for training only if a minimum overlap with the motion

segmentation is reached. That is, each motion segmentationregion repre-

sents a sample and then during inference the class of the object as well as

its location are estimated. To have an optimal trade-o� between speed and

accuracy, inference is applied using the coarse-to-�ne procedure as proposed

in [36]. Notice that this approach, similarly to [5], is also based on parts and

therefore can deal with object deformations.

An object model is trained for the detection of the foregroundobjects

in the scene. This model contains the parameters w trained using the la-

tent SVM procedure. It is composed of several components, each one with

a di�erent appearance. Also, each appearance is decomposed into several

resolution levels. An example of object model with di�erent components and

the corresponding parts is shown in Fig. 5.

The multiple resolutions are employed sequentially in a locally greedy
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(a) (b) (c) (d)

Figure 5: Object models learned from HoustonZooRino sequence; The model consists

of four components (four di�erent appearances), with two levels of resolution. The high

resolution is divided into deformable parts.

fashion to �nd the object model. As the scoring function is locally smooth,

the method gets solutions very close to the exact search but in a fraction

of the time. To increase the capability of the detector to deal with object

deformations, the model is divided into subparts that can move relatively to

each other with a certain degree of sti�ness that is leaned attraining time.

For more details see [36].

The scoring function f, for a latent SVM is de�ned as:

f (x; s; w) = max
h

hw; �( x; h; s)i (1)

where each examplex is scored giving a vector of model parametersw, and a

region s represented as a bounding box. � is a function that given an image

x, the location of the bounding boxs and the set of latent variablesh returns

a corresponding feature vector (HOG features in our case).

In our model the latent variableh represents the position of the detected

object in the image, the relative deformation of each objectpart with respect
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to its rigid position, as well as the cluster membership of the model.

To properly train a foreground object detector, the parameters w of the

SVM that minimize the energy function are �rst computed. As stated before,

since this energy function is not convex, a piecewise linearupper bound of

the loss is used instead: next we de�ne the resulting energy function and the

optimization procedure for such as function.

Energy De�nition. We now de�ne the energy function that we want

to optimize. Consider a set of input imagesX = f x0; x1; ::xN g and a set of

associated bounding boxesY = f y0; y1; ::yM g representing the foreground

segmentation obtained from motion. That is, we consider themotion seg-

mentation as our ground truth annotations. However, these annotations can

have errors that are corrected with the latent localizationof the object of

interest. As in general we can �nd more than one bounding box ina single

image, we associate each bounding boxi with the corresponding imagek

through the function l(i ) = k.

We want to �nd the model parametersw and the bounding box locations

s 2 S, that minimize the following regularized energy function:

E(X ; Y; w) = �
1
2

jjwjj2 + �
X

i

� � (y i ; si ) (2)

where� is the trade-o� between loss and regularization.

The sum of Eq.(2) represents the loss �� which punishes detectionssi

that do not overlap2 with the associated foreground segmentationy i . The

2Here, we considered overlap the intersection area between the ground truth y and the

detected bounding boxess, normalized by the area of the union of the bounding boxes as

de�ned in Eq.3.
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loss is de�ned as follows:

� � (y ; s) =

8
<

:
0 area(y \ s)

area(y [ s) � �

1 otherwise
(3)

where� is the overlapping coe�cient3 and area is a function that computes

the area of a given bounding box. In this way we specify that any detec-

tion s with a su�cient overlap with the foreground segmentation y would

be selected as a positive example, while a detection that falls outside the

foreground segmentation or that has too small of an overlap is considered a

negative example, and therefore penalized.

Optimization. In order to optimize Eq. (2) we build a piece-wise linear

upper bound of the previously de�ned loss:

� 0
� (y i ; si ; x l ( i ) ; w) = max

si

�
f (x l ( i ) ; si ; w) + � � (y i ; si )

�
(4)

� max
s2S (y i )

�
f (x l ( i ) ; si ; w)

�
: (5)

The �rst term of Eq.(5) is the maximization of a linear function and is

therefore convex inw, while the second term is the negation of the maxi-

mization of a linear function so it is concave.

Now we rewrite Eq.(2) asE(X ; Y; w) = E(X ; Y; w)convex+ E(X ; Y; w)concave

where:

E(X ; Y; w)convex = �
1
2

jjwjj2+
X

i

(max
si

�
f (x l ( i ) ; si ; w) + � � (y i ; si )

�
(6)

3Empirically � is set to 0:75, see experimental results
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E(X ; Y; w)concave = �
X

i

max
si 2S (y i )

�
f (x l ( i ) ; si ; w)

�
(7)

Similarly to [37], the minimization of Eq. (2) can be minimized using the

well known CCCP procedure [38]. For the convex optimizationof w in Eq.

(6), we use stochastic gradient descent [39] and for the concave part in Eq.

7 we �x w and optimize overs which represents the object location as well

as the remaining latent variables.

4. Experimental Results

In order to show the unconstrained nature of our approach, three dif-

ferent video sequences have been considered. As the approachis generic,

we do not assume any prior information about the scene, aboutthe objects

that will appear in the sequence, nor about their motion. These sequences

correspond to di�erent sources such as a well-known standard database, and

publically available web-cam and a synthetically generated video, to show

the robustness and generality of the proposed approach.

Databases. In essence,CLEAR06 PV 4 dataset shows a real urban scene

with multiple people and vehicles at the same time. It is partof a well-

known public i-LIDS5 database previously used in AVSS20076 conference.

It contains 13; 167 frames for training and 3; 929 frames for testing with

more than 236 pedestrian and 357 cars annotated, ground truth from [27].

4http://figment.csee.usf.edu/ ~psoundar/Videos/Surveillance/
5https://www.gov.uk/imagery-library-for-intelligent- detection-systems
6http://www.eecs.qmul.ac.uk/ ~andrea/avss2007_ss_challenge.html
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FishTank dataset shows �sh in an arti�cially generated �sh tank. This is

a very challenging dataset due to the multiple occlusions, where �sh are

constantly splitting and grouping, and the small size of the�sh. It contains

1; 360 frames for training and 1; 000 frames for testing. HoustonZoorhino

dataset is directly recorded from an internet web-cam placed in the zoo of

Houston 7 that contains rhinos and deer. This challenging dataset contains

a lot of camouage and occlusions in the environment. It has 14; 360 frames

for training and 1; 860 for testing8.

Metrics. For the purpose of comparison we use average precision (AP),

which is computed as the average of the detector precision atdi�erent values

of recall, from 0 to 1. To distinguish between true positive detections and

false positive detections we use the VOC overlapping criteria [40]. This is a

common metric used for object detection, which evaluates the intersection

area between the ground truth and the detection bounding boxes, normalized

by the area of the union of the bounding boxes. If it is greaterthan 0:5 the

detection is considered correct, otherwise it is a false detection.

Comparative Analysis. In table 1 we evaluate the AP of our detection

algorithm on CLEAR06 PV database which have been previously used in

[27]. For a fair comparison, the same training, test, and ground truth (GT)

as de�ned in the [27] have been considered, although the provided GT is not

7http://www.houstonzoo.org/webcam/
8Sequences FishTank and HoustonZooRhino and their hand-segmented GroundTruth

are available in http://www.cvc.uab.es/ ~ivanhc/ObjDect/huertaDect.html for the

purpose of comparison
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method person car both

Pre-trained detector [4] 76 39 -

Celik et al. [27] 58 85 -

Our method w/o latent 64 88 63

Our method w/ latent 77 91 81.5

Table 1: Detection Rate at 1 FPPI on CLEAR06 of multiple objects. See text for more

details.

.

complete9. In this sequence there are mainly two categories of objects: per-

son and car. While in [27] the method learns each object classindependently,

our approach learns each moving object without even knowingto which cat-

egory it belongs to, in a single optimization as explained inSec. 3. In the

�rst row of Table 1 we report the AP of a supervised generic detector [4]

pre-trained with an independent set of images of cars and pedestrians. In

the same way, in the second row of Table 1 we show the AP obtainedfor cars

and pedestrians with the method proposed in [27]10.

Our method, does not assume any knowledge about the number and

appearance of the di�erent classes that will appear in the scene. As expected,

we can not distinguish between cars and pedestrians but we can detect most

of them. In order to be able to compare our method with the pre-trained

9Annotations of small, partially occluded or partially out o f the screen object are

missing.
10The training and testing methodology as the values for the pre-trained detector [4],

and [27] are extracted from [27]
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detectors as well as with [27], as in this case the aspect ratio of the objects

bounding box is highly correlated with the class (i.e vertical box, pedestrian

and horizontal box, car), we manually separate the 4 models generated by our

method into one group of 1 cluster containing the car category and another

one composed of 3 clusters representing the person category.

Our method clearly outperforms both the pre-trained detectors [4] as well

as [27] in both categories. In the third column of Table 1 we also show the

global performance of the method without distinguishing between classes.

This task cannot be performed by the other methods, as they need to train

each class independently.

It is interesting to remark that the AP for the pre-trained detector for

car is relatively low. This is because the general detector has not been

trained with this speci�c car view, thereby producing a low recall. One of

the problems of a general pre-trained detector vs. a speci�cobject detector

(our approach) is that it is not possible to train it for all the speci�c object

appearances. This is the case in this scenario where the pre-trained object de-

tector is trained with the car dataset formed by the frontal and nearly frontal

images of cars from the publicly online available ETHZ set. Cars that appear

in the current scenario are not from either frontal or lateral views, therefore

the pre-trained detector is not able to properly detect the cars. This experi-

ment shows that in surveillance it is not a good strategy to train detectors for

speci�c views of objects, but instead to train detectors forspeci�c scenarios.

As can be seen in Table 1, our approach obtains almost perfect detection for

cars thus showing the advantages of an appositely-trained detector versus a

generic one. Finally, we show the performance of the method without and
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Figure 6: Comparative analysis using our approach trained with Ground Truth, and

trained with Motion cues from CLEAR06 sequence.

with latent variables. As expected the AP is lower without them.

Initialization Test. We want to evaluate the e�ect of substituting the

real bounding boxes of the objects of interest (hand annotated ground truth)

with the regions obtained by motion segmentation. To do that, we trained

one model on CLEAR06 with the ground truth bounding boxes fromthe

original sequence (5700 frames), and another one with the same frames but

using the noisy data obtained by the motion segmentation. Surprisingly, the

model trained with motion obtains an AP slightly better than using ground

truth data, see Fig. 6. This is because the original annotations from [27]

are quite conservative in the sense that they discard many examples, like

partially occluded and truncated examples. As our learning is based on an

iterative re�nement of the location and appearance of each example, those

di�cult examples can also be exploited, as is done when usingmotion cue.

This is the reason why the training e�ectuated with the initialization based

on motion is able to achieve slightly better recall. In contrast, the training
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using ground truth obtains better precision at low recall because fewer but

better examples are used.

Latent Variables Test. In this experiment we show the e�ect of varying

the amount of freedom assigned to the latent variables. In our problem

the space of valid con�gurations of the latent variables is parametrized by

the overlapping coe�cient � de�ned in section 3.2. For instance setting

� = 0:5 means that only those detections with an overlap higher than 0:5

with the initialization given by motion segmentation can beconsidered as

valid con�gurations. Fig. 7 (a) shows how the overlap criteria a�ect the

latent variables. When the overlapping is very high (0:9) the space of possible

variations of the latent variables is reduced and in the end it is like considering

the initialization as ground truth and no latent estimation is computed. In

the other side, when the overlap threshold is set to 0:3 the estimated detection

can be quite far from the initialization which can produce a training with

false positive data. This explains why in this case the AP is solow.

Number of Clusters Test. In Fig. 7 (b) we evaluate the performance

of our system changing the number of clusters used during training. As

expected, increasing the number of detectors increases theprecision of the

system and therefore its global performance. This is true upto a certain

limit (in this case 4 clusters). After that, more detectors tend to over�t the

data. In general we can see that while the overlapping value highly a�ects the

overall performance of the system, the number of used clusters is a relatively

steady parameter. This justi�es the heuristic explained insec. 3.1 for the

selection of the number of clusters to use. Interestingly, independently of the

chosen number of clusters, in all the con�gurations our proposed approach
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(a) (b)

Figure 7: Comparative analysis from CLEAR06 sequence usingour approach with (a)

di�erent overlapping criteria, and (b) di�erent number of c lusters.

Seq NumFrTr NumFrTest NumClus Ini Final

CLEAR06 PV 13167 3929 4 63.6 81.5

FishTank 1360 1000 3 55.9 62.3

HoustonZoo rhino 14360 1860 4 61.3 68.6

Table 2: Performance analysis using di�erent sequences. See text for more details.

.

obtains better results than using pre-trained generic detectors [4] and using

the approach presented in [27].

Overall Evaluation. We evaluate our method on two more challenging

sequences, where no pre-trained detectors are available. One is a synthetic

video of a �sh tank. The other is a a video collected from a web-cam placed

in the zoo of Houston, HoutonZooRhino. Note that the pre-trained detector

cannot be evaluated in these sequences because the generic object detection

25



Figure 8: Appearance models over iterations. During the latent variables iterations the

appearance model is re�ned obtaining a better representation of a car for CLEAR06 PV

sequence.

datasets such as PASCAL VOC11, INRIA 12, Daimler13 does not contains

�sh or rhinos, thereby showing one of the advantages of our approach in

comparison with the ones that need a pre-trained object detector.

Training and testing with frames that are too similar are avoided as fol-

lows: for training just 1 out of 10 frames is considered, while for testing

1 out of 20 for CLEAR06PV and FishTank datasets, 1 out of 15 for the

HoustonZooRhino sequence.

The AP performance of our approach, as well as the number of training

frames, GT frames for test, and number of clusters employed is shown in

Table 2. Ini values correspond to the AP for the �rst estimation of the latent

SVM optimization where latent variables have not been correctly estimated

yet. Final values correspond the �nal AP once the iterative optimization is

�nished. In Fig. 8 how one appearance model changes during the iterations

11http://pascallin.ecs.soton.ac.uk/challenges/VOC/
12http://pascal.inrialpes.fr/data/human/
13http://www.science.uva.nl/research/isla/downloads/p edestrians/
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of the global optimization procedure for CLEAR06PV sequence can be seen.

Note that the AP performance obtained in Table 2 (81:5) is di�erent

from the one presented in Fig. 6 (76:3) because we use a di�erent amount

of training images. In the second case 5; 700, those that come provided with

bounding box annotations, and 13; 167 in the �rst case. This shows that, in

fact, when more data is feasible, detection performance canbe improved by

learning with longer sequences.

Fig. 9 shows the trained models and our detection results foreach se-

quence. Lastly, Fig. 10 shows more detection results for allthe sequences,

where people, cars, �sh, rhinos are correctly detected respectively for each

sequence.

Discussion First, some remarks on the computational complexity and

the execution time for a possible real-time application arediscussed. Later,

a discussion of the limitations of the current approach is presented. In terms

of computational complexity, the motion segmentation has acost that is

linear in the number of the pixels in the image. The speci�c implementation

used in the experiments [28] runs at around 3 fps in matlab. However, a

faster reimplementation or the use of other algorithm [29, 30, 31] can lead

to more than real-time performance. Also, even if the image isat very high

resolution, as we need just a rough segmentation of the moving objects to

initialize the learning algorithm, real time performance can be easily obtained

by subsampling the image. For detection, [5] runs at around 0.1 fps. The

coarse-to-�ne detector [36] that has been used in the experiments already runs

around 10 times faster. Still, there is room for further improvements until

real-time performance is achieved, as recently shown in [41, 42, 43]. Finally
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Training Model Test

Figure 9: Experimental Results using CLEAR06PV, FishTank, and HoustonZoo rhino

databases. First column shows one frame from the motion segmentation, the second

column shows the learned object models, and the third columnshows our detection results.

The red bounding boxes are the ground truth annotations while white bounding boxes are

our algorithm detections, thereby showing people, cars, �sh, rhinos are correctly learned

and detected respectively for each sequence.

the last step for a real-time application is a fast on-line training. This is easily

achievable with stochastic gradient descent whose computational complexity

is independent on the number of samples [39].

Now, some advantages and drawbacks of our approach are pro�ered. The

presented approach has some advantages and drawbacks. The main advan-
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Figure 10: Detection Results using our approach in CLEAR06PV, FishTank, and Hous-

tonZoo rhino databases. The red bounding boxes are the ground truthand the white

bounding boxes are our detections, thereby showing that people, cars, �sh, rhinos are

correctly detected.

tage of our approach is that it does not need any type of groundtruth anno-

tations of the objects bounding box and does not assume any pre-determined

category; it can learn all the objects that appear in the scene in an unsuper-

vised manner. However, in contrast with generic object detectors that are

trained for any possible view, our approach cannot learn a speci�c view of

an object that has not appeared in the training of the approach. Although,

in certain situations this is a disadvantage, it is also a wayto speci�cally

tune the detector to the real content of the scene, avoiding learning views or

objects that will never appear and that can be a source of false detections.
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5. Conclusions

In this paper we propose a new method for the detection of unknown

and multiple moving objects in video sequences. It uses motion cues for an

initial estimation of the object location thus avoiding annotation tasks. Sub-

sequently, the system learns an appearance model of multiple clusters using a

global discriminative optimization that re�nes the initia l object estimations.

Our proposal is unsupervised since there is no need of hand-labelled annota-

tions, works with unknown information since there is no needof any a-priori

information of the scene, and is able to deal with multiple appearances while

learning multiple foreground regions at the same time.

This work creates an initial framework where multiple linesof future work

can be taken. At the moment the iterative learning procedureis o�-line, when

all the data is already present. A possible extension of the work would be to

modify the algorithm in such a way that it is possible to run iton-line.

Currently in the experimental part we have tested the proposed method-

ology using motion data captured from a static camera using background

subtraction. However, it would be possible to extend the procedure to videos

obtained from moving cameras. In this case, motion cues could be provided

from optical ow computation, but the motion clustering and detector learn-

ing steps would be quite similar.
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