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Abstract

Change detection is the most important task for video surviéance an-
alytics such as foreground and anomaly detection. Currenbrieground de-
tectors learn models from annotated images since the goaltisgenerate a
robust foreground model able to detect changes in all posk&tscenarios. Un-
fortunately, manual labelling is very expensive. Most adveced supervised
learning techniques based on generic object detection dsgés currently ex-
hibit very poor performance when applied to surveillance dasets because
of the unconstrained nature of such environments in terms ¢fpes and ap-
pearances of objects. In this paper, we take advantage of olga detection
for training multiple foreground detectors in an unsuperged manner. We
use statistical learning techniques which exploit the usd @atent parameters
for selecting the best foreground model parameters for a givscenario. In
essence, the main novelty of our proposed approach is to congbthe where

(motion segmentation) andwhat (learning procedure) in change detection in
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an unsupervised way for improving the speci city and geneliaation power
of foreground detectors at the same time. We propose a franmmaWw based
on latent Support Vector Machines that, given a noisy initiization based
on motion cues, learns the correct position, aspect rationd appearance of
all moving objects in a particular scene. Speci city is ackved by learning
the particular change detections of a given scenario, andgalization is
guaranteed since our method can be applied to any possiblese and fore-
ground object, as demonstrated in the experimental resultsutperforming

the state-of-the-art.
Keywords: Object detection, unsupervised learning, motion segmeitian,

latent variables, support vector machine, multiple appeance models, video

surveillance

1. Introduction

Change detection is a fundamental task for scene underst in the
surveillance domain. In the literature, motion segmentation[H, ,DB] has
been used for detectingvheremotion is present in a scene. Although motion
does not represent all the information in a scene, detectingoving objects
is very useful because motion is usually highly correlatedittv the interest-
ing objects of the scene, such as humans, animals and velidsee Fig.[1).
However motion segmentation has many drawbacks since, irstieof learn-
ing foreground objects, it computes a background model as aference for
performing change detection. This has been proven not rolusnough for
surveillance scenarios, where the usual changes in liglgtinviewpoint and

weather conditions are uncontrolled.



Figure 1. The approach is able to build multi-appearance degctors for unknown and
uncontrolled sequences in an unsupervised manner where naeptrained detectors are

available.

Instead, most recent approaches uswbject class detectiortechniques [4,
5] to learn what objects are present in the scene by modelling the highly
variable appearance of foreground objects. In this casesiaad of modelling
the background of a scene, a complex statistical model of g foreground
objects which are expected to appear in the scene is learnt.tiddugh learning
object categories overcomes the typical problems of motisegmentation [6]
(such as illumination changes, camera calibration, weatheonditions, and
background in motion), object learning is still an open prdiem due to the
enormous variability of the appearances that foreground gdxcts exhibit in the
surveillance domain. Also, existing approaches typicallgquires an extensive
collection of positive samples, i.e. annotations of foremund objects, which
in the surveillance domain implies an expensive manual labeg process for
each possible scene and deployed camera.

In this paper we propose a novel unsupervised methodology iah over-
comes the limitations of motion segmentation and appearamdearning by
combining the holistic knowledge obtained from change det#on by using
these two complementary strategies. On the one hand, motisgegmentation

provides an initial estimation of the foreground appearams i.e. statistically
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consistent motion changes are considered as objects of iat. These initial
hypotheses are then clustered into di erent appearances tgenerate the set
of foreground object models to be trained. On the other handh contrast to
current state-of-the-art, our approach does not make any @-ori assumption
about the type of foreground object which is expected to appein the scene:
learning the foreground appearance and position based oretblustering step
described before is achieved by means of an optimization pealure based on
latent variables. Thus we are able to train a specic foregund detector
based on the motion segmented in each particular scenario.

The contributions of our method are: (i) substituting the cstly manual-
labelling task with the use of motion and unsupervised leaimg for change
detection, and (ii) using a discriminative optimization tehnique based on
latent variables able to build accurate multi-class deteots even in the case
of noisy and missing motion segmentation. To the best of ounkwledge, no
method has been proposed to train multiple foreground objescfrom motion
cues in an unsupervised way. To better show the adaptabilitgenerality
and robustness of our proposed approach, we have consideteerent video
sequences with no assumptions about the type of foregrountject to be
detected.

This paper is structured as follows: the next section revieamhe works
most related to our research while highlighting the advantges of this pro-
posal with respect to the state-of-the-art. Section 3 prests an overview of
the methodology used, discusses several critical stepslikitialization and
the detector used, and describes the multiple appearanceieing frame-

work in terms of an optimization problem. The feasibility ofthe proposed



approach is demonstrated in the experimental results in d&mn 4, while the
nal discussion and an overview of future avenues of resehris presented in

section 5.

2. Related Work

Recently there has been a signi cant interest in semi-supgsed and un-
supervised learning for object detection, exploiting botltabelled and unla-
belled data. There are a number of representative approachthat assume
di erent levels of supervision when training object detedirs or classi ers.

Among the semi-supervised methods we can nd some that use thre
formation from labelled and unlabelled data for co-trainig manner, such as
[7, 8]. Levin et al. [7] use a quantity of labelled data to trai two di erent de-
tectors. Then they use the known relationship between prexion con dence
and margin to retrain an improved classi er. However, when th correlation
between the two types of inputs is relatively high, co-traimg does not re-
ally improve the detector performance. Javed et al. [8] alagsed co-training
to improve the performance of an initial classi er by seleatg new training
examples based on PCA. Background subtraction is also usedarder to
prune stationary-objects in the image. However, the base sk er, which is
based on one dimension of a learned PCA model, is relativelyeak. Nair
and Clark [9] in their approach proposed an on-line detectdrained based
on an automatic labeller. However, in contrast to ours, this@roach needs
a manually pre-de ned aspect ratio for the automatic labedir. In [10], Wu
and Nevatia presented an unsupervised on-line learning appach to improve

the performance of boosted object detectors trained from ansall labelled



training set by using a large amount of unlabelled data.

Exploiting tracking information, Kalal et al. [11, 12] preent a tracker
based on a continuously re ned detector. The structure of # data is ex-
ploited by positive and negative constraints that restrictthe labelling of the
unlabelled data. These constrains provide a feedback abdbe performance
of the classi er which is iteratively improved in a bootstrgping fashion.
Other approaches such as [13, 14, 15] also use tracking to roye the object
detector then used for extracting positive and negative ergples from the
current frame. Babenko et al. [13] use multiple instance le@ng (MIL),
Zhang et al. [14] use sparse representation, and Lu et al. [15e weighted
multiple instance learning (WMIL). However, these trackingby-detection ap-
proaches are trained with the aim of tracking a single objegiven an initial
bounding box, while in our case, foreground detectors areatned to detect
at the same time multiple and di erent object categories in a unsupervised
way and without any speci c initialization. Also, in our approach we do
not use tracking because visual trackers [16] can introdungre noise to the
detection results if the tracker is not reliable enough forandom motions.

Ali et al. [17] present a method that learns objects of a singleategory
from sparsely annotated videos using boosting. The booggiprocedure to-
gether with a convex formulation of the objects ow can iterévely improve
the detector using the unannotated data considering the cetraints gener-
ated from the video trajectories. The main limitations of ths method are
the lack of dealing with multiple object classes, which is de common in
unconstrained scenarios, the sequentiality of the trainghimages, and the

need for some object annotations, although sparse.



Methods which train class object detectors in a weakly supgsed manner
[18] or using random ferns [19] have a very di erent goal thaour approach.
Their objective is to improve generic class detectors. Iresd, our goal is
to train the best object detectors for a specic scenario. Me recently,
[20, 21, 22] improve generic o ine trained detectors usingpgci ¢ scenarios.
However, they need pre-trained detectors to be initializedn contrast Hoai
et al. [23] use weakly labelled data to build better object dectors.

The advantages of our approach with respect to all the aforeationed
approaches are that our model is trained based on totally watbelled data
and does not require pre-trained detectors. Likewise, theeare other methods
which also present a fully unsupervised approach. Celik et §24] propose
training a detector of the most dominant object class (the nsi repeated
class) in the observed scene that is able to select usefulitiag samples
in an autonomous manner. Other techniques for training obge detectors
without the necessity of hand-label examples are presentad[25, 26] where
a virtual scenario or a 3d model are used to train a pedestriamhetector.
These approaches rely on the strong assumption that only omarget [24]
or a prede ned target [25, 26] can be present in the scene. lontrast, we
rely on a global optimization procedure which allows our siam to handle
an unknown number of objects and unconstrained categoriektargets.

An approach also based on motion cues for the detection of inésting
objects is [27]. In that work, the input received from the mabn segmen-
tation is considered the ground truth and a clustering prockire is used to
separate the examples for each detector. A further re nemeaf the clusters

is e ectuated in order to avoid wrong clusters assignment. Keever, unlike



our method, the selection of the training examples and the bsequent object
model training are done in two separate and independent predures. This
produces quite poor results, especially when the input data noisy. This is
because the foreground regions are estimated in a bottom-tgshion, with-
out using important information about the nal aim, that is distinguishing
among foreground objects and background. In contrast, in ounethod the
selection of the positive examples to use for each class, @il &s their correct
location, are optimized at the same time in a discriminativéashion. More-
over, authors in [27] manually de ned the classes which aresed to train
independents SVM for each class. Once they have de ned the pitde clus-
ters with some re ned examples for each of the appearancesey manually
group them in two classes: car and pedestrian. In contrastuoapproach
uses the data directly by performing a global optimization &sed on latent
variables, thereby being able to train a unique detector wbih can work with
di erent appearances at the same time.

Summarizing, our proposal is di erent from the aforementioed approaches
because it (i) is fully unsupervised, since there is no neear fhand-labelled
annotations, (i) can learn objects never seen before as ib&s not rely on
any a-priori trained detector, and (iii) works with multiple and unlabelled

objects.

3. Our Approach

The technique proposed in this paper combines in an unsup&®d way
where to learn (motion segmentation) andwhat (learning procedure) from

change detection to improve the speci city and generalizain power of trained



foreground detectors at the same time. Thehere will be given by a mo-
tion segmentation procedure to subsequently initialize #hdetectors (section
3.1). In addition, the what will be the unsupervised procedure to train the
detectors based on the segmented motion, that is what objsctio we have?
(section 3.2). Consequently, the appearance and positiof foreground ob-
jects will be learnt by means of an optimization procedure Is&d on latent
variables.

An overview of the method is shown in Fig. 2. In the rst stage mibon
cues are used to roughly segment the moving objects. In oupeximents this
is done by learning a background model and segmenting thosgions that
have a local motion with respect to the background. Subsequty, based on
the statistical distribution of the bounding boxes of the muing regions, the
number and appearance of the required detectors are estiradtand given as
input to the learning procedure. During training, with a gldal optimization
we iteratively and simultaneously learn the correct objeclocation, aspect
ratio, and appearance to associate a detector to each moviregion.

Since the main purpose of our approach is the detection of tiere-
ground objects in surveillance scenarios instead of the egbrization of those
detected foreground objects, our approach is not limited ta speci ¢ num-
ber of categories. That means, di erent foreground objectedectors will be
trained based on the variance in aspect ratio of foregroundgions instead of
based on the nature of the object being learnt. The approactses the vari-
ance in aspect ratio to initialize the foreground detectorsAs an example,
we can train detectors able to detect pedestrians and carstimut explic-

itly inferring the category the moving objects belong to. Foinstance, quite



Figure 2: Approach Overview: Firstly, moving objects are raughly segmented using motion
cues. This is used as input for the initialization of the leaning procedure and the cluster
number estimation. Finally, a global optimization iterati vely learns the correct object
location, aspect ratio, and appearance simultaneously foeach of the detectors. See text

for more details.

commonly in the surveillance domain, pre-trained detectsrare not able to
detect a speci c category because of occlusions with othdpjects; however
in our scenario the occluded object has an aspect ratio that di erent and
therefore another detector will be learnt.

In the following sections we give a detailed explanation ohé model

initialization and the multi-appearance learning.

3.1. Initialization

In our framework the learning procedure is based on latent SV6]. We
consider object position, and appearance as latent variasl. In this way, the
latent variables can assume the value that is most discrimative in order
to distinguish moving foreground objects from backgroundHowever, the

optimization problem is not convex due to the latent varial#s. This means
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that the yielded solution is local and an optimal solution rquires a proper
initialization of the latent variables. For initializatio n, the detected moving
regions are considered as the initial candidates for leangi appearances as
well as the shape of the detectors that will model those foneind regions.

Motion The estimation of the objects location is provided by bottorup
information. The key idea is that motion segmentation subgutes the te-
dious hand-labelling task. Speci cally, in our approach wase a background
subtraction technique to obtain a rough initial estimationof the presence of
one or more objects in a certain location of the image.

In order to obtain the moving foreground objects we have engpjled [28].
It uses a hybrid architecture which exploits the bene ts oftising a chromatic-
invariant cone model for colour segmentation, an invariangradient model
which fuses magnitude and orientation for edge segmentaticand intensity
cues together with temporal di erence. Furthermore, takig advantage of
these cues it also detects and removes shaddwsAn example of the motion
segmentation results obtained from CLEARO06 database can bees in the
Fig. 3.(a).

Even though many of the problems of motion segmentation arelsed by
the approach presented in [28], the detection of moving olgjs in complex
environments is still far from being completely solved [39ince noise and
other segmentation errors occur frequently. However our ggm is robust to
such errors thanks to the re nement of the global discrimin@e optimization,

as described next.

LIn fact, any motion segmentation algorithm such as those preented in [29, 30, 31, 32,

33, 34] could be used instead to obtain the moving regions todlearnt by the detectors
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Bounding Box Ratios

() (b)

Figure 3: a) Motion segmentation results from CLEARO06 sequace. b) histogram of

bounding box ratios computed from the objects segmented inle CLEARO6 sequence.

Detectors Initialization In order to detect objects of di erent shapes
and sizes, an initial analysis of the objects that most fregutly appear in
the scene is necessary. In particular we estimate the detecs size and ap-
pearance. We evaluate the most distinctive appearances df @bjects that
appear in the scene, and tailor a set of detectors to best reluce this distri-
bution. In practice, we obtain the optimal trade-o betweenrepresenting all
the appearances of the objects in the scene and getting enbwgmples. The
initial object clustering could contain clusters with a redced set of samples.
A model trained with that reduced set of samples would in gere produce
a poor detector. In order to obtain a trade-o between repremnting all the
appearances of the objects in the scene and obtaining goodedéors, those
clusters with too few samples will be discarted. For doing sse extract a
smoothed histogram of the distribution of the bounding box®easpect ratios
obtained from motion segmentation. We take the local maximm of the his-

tograms as the aspect ratio of our detectors. We also split@aaspect ratio
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to left-right facing samples. To do that we randomly ip a sanple and check
if the global variance of the HOG [4] features on the samplesdmaller than
before. In that case we maintain the change. We continue thatrocedure
until no more ips are applied. An example of the bounding boxspect ratios
histogram obtained from CLEARO6 sequence can be seen in Fig(b3.

We are interested in estimating the sizes of the objects thajppear in the
scene to obtain the best trade-o between a high resolutiorepresentation of
the object (more discriminative) and the risk of not detectig small objects
(more robust). For this we set for each appearance a detectaith a size
that allows it to detect 90% of the samples in the training set

Some regions are erroneously segmented as belonging to geab How-
ever, in our approach these false positives are statistiatonsidered as out-
liers given the whole segmented sequence. In the case thag¢ thumber of
di erent appearances are erroneously considered due to ddee in segmenta-
tion or in clustering, these problems do not modify considably the detection

results as later discussed in the experimental results.

3.2. Multi-Appearance Learning

The strength of our approach relies on the learning procedair Instead of
dividing the learning procedure in two separate taskglustering and appear-
ance learning we propose to learn both tasks in a single, global optimizan
procedure. In essence, cluster assignment as well as theusaie object po-
sition estimation are represented as so-callddtent variableswhich can be
jointly estimated during training using the latent SVM algoiithm as proposed
in [5].

In our case, the assignment of the latent variables is based two joint
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Motion Segmentation Localitzation Cluster Membership

(@) (b) (©)

Figure 4: Example of assignment of latent variables. The asgnment of the latent variables
is e ectuated based on two rules: (i) the overlap with the motion segmentation, and (ii)
the scoring function of the latent SVM. (a) Motion Segmentation results. (b) Localization:
for each object model, the object location is chosen based ahe location that maximizes
the detection score. (c) Cluster membership: as both objectmodels have enough overlap
with the segmentation, the model is chosen based on the maxiom score it can obtain.

Note that the assignment of two latent variables is e ectuated jointly.

rules: (i) the overlapping intersection area between the gund truth and the
detected bounding boxes obtained from motion segmentatioand (ii) the
scoring function given by the latent SVM, see Fig. 4. Indeed itk procedure
works well since both tasks are highly interconnected: théect appearance
is used to compute a better estimation of the cluster that behgs to each
foreground object and its localization, as well as when thereground objects
are well separated into di erent aspect ratio clusters, olejct appearances can
be better learned by the detectors.

Unfortunately, in our problem the estimation of the object apearance,

the cluster membership and the object position cannot be @stated at the
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same time because they are mutually dependent. This impliga contrast to
normal SVM, that the corresponding energy function is not caex and its
optimization should be performed in an iterative way compesl of two parts:
a convex optimization of the object model using the currentstimation of the
latent variables, in addition to a concave optimization of he object model
corresponding to a new estimation of the latent variables vi¢h minimize the
energy function. These two iterative steps are detailed nex

Inference In our framework the inference procedure corresponds to the
detection of the objects in the scene. This procedure is usgdan uncon-
strained way during testing, where the objects can be found any location
of the image, and in a constrained way during training, whera region of
the image is used for training only if a minimum overlap with he motion
segmentation is reached. That is, each motion segmentatioagion repre-
sents a sample and then during inference the class of the attjas well as
its location are estimated. To have an optimal trade-o betwen speed and
accuracy, inference is applied using the coarse-to- ne medure as proposed
in [36]. Notice that this approach, similarly to [5], is also ased on parts and
therefore can deal with object deformations.

An object model is trained for the detection of the foregrounabjects
in the scene. This model contains the parameters w trained ing the la-
tent SVM procedure. It is composed of several components, bamne with
a di erent appearance. Also, each appearance is decomposetb iseveral
resolution levels. An example of object model with di erent amponents and
the corresponding parts is shown in Fig. 5.

The multiple resolutions are employed sequentially in a laly greedy
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(@) (b) (€) (d)

Figure 5: Object models learned from HoustonZodrino sequence; The model consists
of four components (four di erent appearances), with two levels of resolution. The high

resolution is divided into deformable parts.

fashion to nd the object model. As the scoring function is loally smooth,
the method gets solutions very close to the exact search but a fraction
of the time. To increase the capability of the detector to ddawith object
deformations, the model is divided into subparts that can me relatively to
each other with a certain degree of sti ness that is leaned dtaining time.
For more details see [36].

The scoring function f, for a latent SVM is de ned as:
f(x;s;w):mﬁx hw; ( x;h;s)i (1)

where each exampl& is scored giving a vector of model parametevs, and a
regions represented as a bounding box. is a function that given an irage
X, the location of the bounding boxs and the set of latent variablesh returns
a corresponding feature vector (HOG features in our case).

In our model the latent variableh represents the position of the detected

object in the image, the relative deformation of each objegtart with respect
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to its rigid position, as well as the cluster membership of gnmodel.

To properly train a foreground object detector, the parameatrsw of the
SVM that minimize the energy function are rst computed. As stéed before,
since this energy function is not convex, a piecewise lineapper bound of
the loss is used instead: next we de ne the resulting energyriction and the
optimization procedure for such as function.

Energy De nition. We now de ne the energy function that we want
to optimize. Consider a set of input imageX = fXg;X1;::Xnyg and a set of
associated bounding boxe¥ = fyg;y1;::ym g representing the foreground
segmentation obtained from motion. That is, we consider thenotion seg-
mentation as our ground truth annotations. However, these amotations can
have errors that are corrected with the latent localizatiorof the object of
interest. As in general we can nd more than one bounding box ia single
image, we associate each bounding boxwith the corresponding imagek
through the function I(i) = k.

We want to nd the model parametersw and the bounding box locations
s 2 S, that minimize the following regularized energy function:

1 X
E(X;Y;w) = EJ'J'WJ'J'2+ (Yi;si) (2)
i
where is the trade-o between loss and regularization.
The sum of Eq.(2) represents the loss which punishes detectionss;

that do not overlap? with the associated foreground segmentatiop;. The

2Here, we considered overlap the intersection area betweemhé ground truth y and the
detected bounding boxess, normalized by the area of the union of the bounding boxes as
de ned in Eq.3.
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loss is de ned as follows:
8
<

area(y[ s) (3)

0 area(y\ s)
1 otherwise

(y;s) = :

where is the overlapping coe cient® and area is a function that computes
the area of a given bounding box. In this way we specify that gndetec-
tion s with a su cient overlap with the foreground segmentationy would
be selected as a positive example, while a detection thatlfabutside the
foreground segmentation or that has too small of an overlap considered a
negative example, and therefore penalized.

Optimization. In order to optimize Eq. (2) we build a piece-wise linear

upper bound of the previously de ned loss:

O(Yi;Si;Xl(i);W)=m§_X f (Xigy s w)+ (Yissi) (4)
sgrs]%/)i() f (Xigy; sisw) - (5)

The rst term of Eq.(5) is the maximization of a linear function and is
therefore convex inw, while the second term is the negation of the maxi-
mization of a linear function so it is concave.

Now we rewrite Eq.(2) aE(X;Y;w) = E(X;Y;W)convext E(X;Y;W)concave

where;:

1. .
E(X; Y W)convex = E”W”2+
X
(max f (xig);ssw)+ - (viis) (6)

SEmpirically is set to 075, see experimental results
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X
E(XY;W)concave = max f (Xl(i); S, W) (7)
Si2S(yi)

Similarly to [37], the minimization of Eq. (2) can be minimied using the
well known CCCP procedure [38]. For the convex optimizationf w in Eq.
(6), we use stochastic gradient descent [39] and for the came part in Eq.
7 we x w and optimize overs which represents the object location as well

as the remaining latent variables.

4. Experimental Results

In order to show the unconstrained nature of our approach, the dif-
ferent video sequences have been considered. As the appraacheneric,
we do not assume any prior information about the scene, abotite objects
that will appear in the sequence, nor about their motion. Thee sequences
correspond to di erent sources such as a well-known standhadatabase, and
publically available web-cam and a synthetically generatievideo, to show
the robustness and generality of the proposed approach.

Databases. In essenceCLEARO06_PV * dataset shows a real urban scene
with multiple people and vehicles at the same time. It is parbf a well-
known public i-LIDS® database previously used in AVSS200%onference.
It contains 13,167 frames for training and 3929 frames for testing with

more than 236 pedestrian and 357 cars annotated, ground thufrom [27].

“4http://figment.csee.usf.edu/ ~psoundar/Videos/Surveillance/
Shttps://www.gov.uk/imagery-library-for-intelligent- detection-systems
Shttp://www.eecs.gmul.ac.uk/  ~andrea/avss2007_ss_challenge.html
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FishTank dataset shows sh in an arti cially generated sh tank. This is

a very challenging dataset due to the multiple occlusions, here sh are
constantly splitting and grouping, and the small size of thesh. It contains

1; 360 frames for training and 1000 frames for testing. HoustonZoarhino

dataset is directly recorded from an internet web-cam pladein the zoo of
Houston 7 that contains rhinos and deer. This challenging dataset ctains

a lot of camou age and occlusions in the environment. It has41360 frames
for training and 1; 860 for testing.

Metrics. For the purpose of comparison we use average precision (AP),
which is computed as the average of the detector precisionditerent values
of recall, from 0 to 1. To distinguish between true positive etections and
false positive detections we use the VOC overlapping critar[40]. This is a
common metric used for object detection, which evaluates ghintersection
area between the ground truth and the detection bounding bes, normalized
by the area of the union of the bounding boxes. If it is greatahan 0:5 the
detection is considered correct, otherwise it is a false @etion.

Comparative Analysis.  In table 1 we evaluate the AP of our detection
algorithm on CLEARO6_PV database which have been previously used in
[27]. For a fair comparison, the same training, test, and guod truth (GT)

as de ned in the [27] have been considered, although the prded GT is not

"http:/iwww.houstonzoo.org/webcam/
8Sequences FishTank and HoustonZa®&hino and their hand-segmented GroundTruth

are available in http://www.cvc.uab.es/  ~ivanhc/ObjDect/huertaDect.html for the

purpose of comparison
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method person car both
Pre-trained detector [4] 76 39 -
Celik et al. [27] 58 85 -
Our method w/o latent 64 88 63
Our method w/ latent 77 91 81.5

Table 1: Detection Rate at 1 FPPI on CLEARO6 of multiple objects. See text for more

details.

complete®. In this sequence there are mainly two categories of objectser-
son and car. While in [27] the method learns each object clasdependently,
our approach learns each moving object without even knowirtig which cat-
egory it belongs to, in a single optimization as explained iBec. 3. In the
rst row of Table 1 we report the AP of a supervised generic det¢or [4]
pre-trained with an independent set of images of cars and pestrians. In
the same way, in the second row of Table 1 we show the AP obtainful cars
and pedestrians with the method proposed in [27.

Our method, does not assume any knowledge about the numberdan
appearance of the di erent classes that will appear in the soe. As expected,
we can not distinguish between cars and pedestrians but wencdetect most

of them. In order to be able to compare our method with the pr&ained

9Annotations of small, partially occluded or partially out of the screen object are

missing.
10The training and testing methodology as the values for the pe-trained detector [4],

and [27] are extracted from [27]
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detectors as well as with [27], as in this case the aspect mbf the objects
bounding box is highly correlated with the class (i.e vertal box, pedestrian
and horizontal box, car), we manually separate the 4 modelsigerated by our
method into one group of 1 cluster containing the car categpind another
one composed of 3 clusters representing the person category

Our method clearly outperforms both the pre-trained deteatrs [4] as well
as [27] in both categories. In the third column of Table 1 we s show the
global performance of the method without distinguishing heveen classes.
This task cannot be performed by the other methods, as they eeé to train
each class independently.

It is interesting to remark that the AP for the pre-trained detector for
car is relatively low. This is because the general detectora® not been
trained with this speci c car view, thereby producing a low ecall. One of
the problems of a general pre-trained detector vs. a speciabject detector
(our approach) is that it is not possible to train it for all the speci c object
appearances. This is the case in this scenario where the maned object de-
tector is trained with the car dataset formed by the frontal ad nearly frontal
images of cars from the publicly online available ETHZ set. @athat appear
in the current scenario are not from either frontal or laterhviews, therefore
the pre-trained detector is not able to properly detect thears. This experi-
ment shows that in surveillance it is not a good strategy to &in detectors for
speci c views of objects, but instead to train detectors fospeci ¢ scenarios.
As can be seen in Table 1, our approach obtains almost perfedtélction for
cars thus showing the advantages of an appositely-trainectector versus a

generic one. Finally, we show the performance of the methodtkout and
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Figure 6: Comparative analysis using our approach trained wh Ground Truth, and

trained with Motion cues from CLEARO06 sequence.

with latent variables. As expected the AP is lower without them
Initialization Test. We want to evaluate the e ect of substituting the
real bounding boxes of the objects of interest (hand annotd ground truth)
with the regions obtained by motion segmentation. To do thatwe trained
one model on CLEARO6 with the ground truth bounding boxes fronthe
original sequence (5700 frames), and another one with thensa frames but
using the noisy data obtained by the motion segmentation. $orisingly, the
model trained with motion obtains an AP slightly better than using ground
truth data, see Fig. 6. This is because the original annotatns from [27]
are quite conservative in the sense that they discard many axples, like
partially occluded and truncated examples. As our learningibased on an
iterative re nement of the location and appearance of eachxample, those
di cult examples can also be exploited, as is done when usingotion cue.
This is the reason why the training e ectuated with the initialization based

on motion is able to achieve slightly better recall. In contast, the training
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using ground truth obtains better precision at low recall beause fewer but
better examples are used.

Latent Variables Test.  In this experiment we show the e ect of varying
the amount of freedom assigned to the latent variables. In oyproblem
the space of valid con gurations of the latent variables is grametrized by
the overlapping coecient dened in section 3.2. For instance setting

= 0:5 means that only those detections with an overlap higher tma0:5
with the initialization given by motion segmentation can beconsidered as
valid con gurations. Fig. 7 (a) shows how the overlap critda a ect the
latent variables. When the overlapping is very high (®) the space of possible
variations of the latent variables is reduced and in the endis like considering
the initialization as ground truth and no latent estimation is computed. In
the other side, when the overlap threshold is set ta®the estimated detection
can be quite far from the initialization which can produce argining with
false positive data. This explains why in this case the AP is dow.

Number of Clusters Test. In Fig. 7 (b) we evaluate the performance
of our system changing the number of clusters used during inéng. As
expected, increasing the number of detectors increases {ecision of the
system and therefore its global performance. This is true uf a certain
limit (in this case 4 clusters). After that, more detectors tad to overt the
data. In general we can see that while the overlapping valughly a ects the
overall performance of the system, the number of used clustes a relatively
steady parameter. This justi es the heuristic explained irsec. 3.1 for the
selection of the number of clusters to use. Interestinglyndependently of the

chosen number of clusters, in all the con gurations our praysed approach
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() (b)

Figure 7: Comparative analysis from CLEARO6 sequence usingur approach with (a)

di erent overlapping criteria, and (b) di erent number of ¢ lusters.

Seq NumFTr NumFrTest NumClus Ini  Final
CLEAROG6 _PV 13167 3929 4 63.681.5
FishTank 1360 1000 3 55.962.3
HoustonZoo _rhino 14360 1860 4 61.368.6

Table 2: Performance analysis using di erent sequences. 8dext for more details.

obtains better results than using pre-trained generic det&ors [4] and using
the approach presented in [27].

Overall Evaluation.  We evaluate our method on two more challenging
sequences, where no pre-trained detectors are availableneGs a synthetic
video of a sh tank. The other is a a video collected from a wetam placed
in the zoo of Houston, HoutonZodRhino. Note that the pre-trained detector

cannot be evaluated in these sequences because the gendijiech detection
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Figure 8: Appearance models over iterations. During the laént variables iterations the
appearance model is re ned obtaining a better representatin of a car for CLEARO06_.PV

sequence.

datasets such as PASCAL VOCY, INRIA 2, Daimler'® does not contains
sh or rhinos, thereby showing one of the advantages of our pmach in
comparison with the ones that need a pre-trained object dedtor.

Training and testing with frames that are too similar are avaled as fol-
lows: for training just 1 out of 10 frames is considered, wikilfor testing
1 out of 20 for CLEAROGPV and FishTank datasets, 1 out of 15 for the
HoustonZoaRhino sequence.

The AP performance of our approach, as well as the number of iméng
frames, GT frames for test, and number of clusters employed shown in
Table 2. Ini values correspond to the AP for the rst estimation of the latat
SVM optimization where latent variables have not been corrég estimated
yet. Final values correspond the nal AP once the iterative optimizatia is

nished. In Fig. 8 how one appearance model changes duringethterations

http://pascallin.ecs.soton.ac.uk/challenges/VOC/
2http://pascal.inrialpes.fr/data/human/
Bhttp://www.science.uva.nl/research/isla/downloads/p edestrians/
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of the global optimization procedure for CLEAROGPV sequence can be seen.

Note that the AP performance obtained in Table 2 (85) is dierent
from the one presented in Fig. 6 (78) because we use a di erent amount
of training images. In the second case B00, those that come provided with
bounding box annotations, and 13167 in the rst case. This shows that, in
fact, when more data is feasible, detection performance che improved by
learning with longer sequences.

Fig. 9 shows the trained models and our detection results feach se-
guence. Lastly, Fig. 10 shows more detection results for @le sequences,
where people, cars, sh, rhinos are correctly detected resgtively for each
sequence.

Discussion First, some remarks on the computational complexity and
the execution time for a possible real-time application ardiscussed. Later,
a discussion of the limitations of the current approach is psented. In terms
of computational complexity, the motion segmentation has &ost that is
linear in the number of the pixels in the image. The speci ¢ iplementation
used in the experiments [28] runs at around 3 fps in matlab. Hewer, a
faster reimplementation or the use of other algorithm [29,(88 31] can lead
to more than real-time performance. Also, even if the image & very high
resolution, as we need just a rough segmentation of the mogimmbjects to
initialize the learning algorithm, real time performance &n be easily obtained
by subsampling the image. For detection, [5] runs at around.Dfps. The
coarse-to- ne detector [36] that has been used in the expeents already runs
around 10 times faster. Still, there is room for further impovements until

real-time performance is achieved, as recently shown in [4R, 43]. Finally
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Training Model Test

Figure 9: Experimental Results using CLEAROGPV, FishTank, and HoustonZoo_rhino

databases. First column shows one frame from the motion segemtation, the second
column shows the learned object models, and the third columishows our detection results.
The red bounding boxes are the ground truth annotations whik white bounding boxes are
our algorithm detections, thereby showing people, cars, &, rhinos are correctly learned

and detected respectively for each sequence.

the last step for a real-time application is a fast on-line &ining. This is easily
achievable with stochastic gradient descent whose comptitaal complexity
is independent on the number of samples [39].

Now, some advantages and drawbacks of our approach are pradr The

presented approach has some advantages and drawbacks. Tremadvan-
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Figure 10: Detection Results using our approach in CLEARO6PV, FishTank, and Hous-
tonZoo_rhino databases. The red bounding boxes are the ground truthand the white
bounding boxes are our detections, thereby showing that pgae, cars, sh, rhinos are

correctly detected.

tage of our approach is that it does not need any type of grourtduth anno-
tations of the objects bounding box and does not assume anyeptletermined
category; it can learn all the objects that appear in the scenin an unsuper-
vised manner. However, in contrast with generic object deters that are
trained for any possible view, our approach cannot learn a epi ¢ view of
an object that has not appeared in the training of the approdc Although,
in certain situations this is a disadvantage, it is also a wayo speci cally
tune the detector to the real content of the scene, avoidingrning views or

objects that will never appear and that can be a source of falsletections.
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5. Conclusions

In this paper we propose a new method for the detection of unéwn
and multiple moving objects in video sequences. It uses mmti cues for an
initial estimation of the object location thus avoiding anmtation tasks. Sub-
sequently, the system learns an appearance model of muléglusters using a
global discriminative optimization that re nes the initial object estimations.
Our proposal is unsupervised since there is no need of haati¢lled annota-
tions, works with unknown information since there is no needf any a-priori
information of the scene, and is able to deal with multiple gpearances while
learning multiple foreground regions at the same time.

This work creates an initial framework where multiple linesf future work
can be taken. At the moment the iterative learning procedurss o -line, when
all the data is already present. A possible extension of theovk would be to
modify the algorithm in such a way that it is possible to run iton-line.

Currently in the experimental part we have tested the propax method-
ology using motion data captured from a static camera usingabkground
subtraction. However, it would be possible to extend the predure to videos
obtained from moving cameras. In this case, motion cues cdule provided
from optical ow computation, but the motion clustering and detector learn-

ing steps would be quite similar.
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