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Abstract. A 4D rotation can be decomposed into a left- and a right-
isoclinic rotation. This decomposition, known as Cayley’s factorization
of 4D rotations, can be performed using Elfrinkhof-Rosen method. In
this paper, we present a more straightforward alternative approach using
the corresponding orthogonal subspaces, for which orthogonal bases can
be defined. This yields easy formulations, both in the space of 4×4
real orthogonal matrices representing 4D rotations and in the Clifford
algebra C4,0,0.

Cayley’s factorization has many important applications. It can be
used to easily transform rotations represented using matrix algebra to
different Clifford algebras. As a practical application of the proposed
method, it is shown how Cayley’s factorization can be used to efficiently
compute the screw parameters of 3D rigid-body transformations.
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1. Introduction

Any rotation in R4 can be seen as the composition of two rotations in a pair
of orthogonal two-dimensional subspaces [1]. When the values of the rotation
angles in these two subspaces are equal, the rotation is said to be isoclinic. It
can be proved that any rotation in R4 can be factored into the commutative
composition of two isoclinic rotations. Cayley realized this fact when study-
ing the double quaternion representation of rotations in R4 [2]. This is why
this factorization is herein named after him. It is actually Cayley whom we
must thank for the correct development of quaternions as a representation
of rotations, and for establishing the connection with the results published
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by Rodrigues three years before the discovery of quaternions [3]. Although
Cayley’s papers contain enough information to derive a practical method
to perform this factorization, he wrote them before the full development of
matrix algebra thus remaining somewhat cryptic to most modern readers.

The development of the first effective procedure for computing Cayley’s
factorization is attributed in [4] to Van Elfrinkhof [5]. Since this work, written
in Dutch, remained unnoticed, other sources (see, for example, [6]) attribute
to Rosen, a close collaborator of Einstein, the first procedure to obtain it
[7]. The methods of Elfrinkhof and Rosen are equivalent. They are based
on a clever manipulation of the 16 algebraic scalar equations resulting from
imposing the factorization to an arbitrary 4D rotation matrix (see [4, 8] for a
detailed explanation of this method). More recently, an alternative approach
based on the computation of eigenvalues has been proposed in [16].

In this paper, it is shown how Cayley’s factorization admits an explicit
formula that can be expressed using matrix algebra or Clifford algebras. It is
thus shown that, contrarily to what seemed unavoidable in previous formula-
tions, there is no need to manipulate any set of algebraic equations in order
to perform this factorization.

Cayley’s factorization has important applications. Recently, it has been
shown how it allows converting a rigid-body transformation in homogeneous
coordinates to its corresponding dual quaternion representation in a very
straightforward way [8]. See also [9] for a matrix representation of the algebra
of double quaternions. This leads to a two-fold matrix and dual quaternion
formalism for the representation of rigid-body transformations that permits
a better understanding of dual quaternions and how they can be advanta-
geously used in Kinematics. In this paper, it is shown how the application of
the derived explicit formula leads to a neat way of obtaining the dual quater-
nion representation of rigid-body transformation, thus providing a simple
alternative to the standard approach based on the computation of screw pa-
rameters [10, p. 100]. Screw parameters can actually be seen as a by-product
of Cayley’s factorization.

This article is organized as follows. Section 2 summarizes some basic
facts about 4D rotations that are used in Sections 3 and 4 to derive a spec-
tral decomposition of isoclinic rotations and explicit formulas in matrix and
Clifford algebra for the computation of Cayley’s factorization. Section 5 gives
details on a mapping between general displacements in 3D and some 4D rota-
tions to obtain the dual quaternion expression for rigid-body transformations
and, as a by-product, their screw parameters. Sections 6 and 7 present an
example and conclusions respectively.

2. Isoclinic Rotations

The elements of the Lie group of rotations in four-dimensional space, SO(4),
can be either simple or double rotations. Simple rotations have a fixed plane
(a plane in which all the points are fixed under the rotation), while double
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rotations have a single fixed point only, the center of rotation. In addition,
double rotations present at least a pair of invariant planes that are orthogonal.
The double rotation has two angles of rotation, α1 and α2, one for each
invariant plane, through which points in the planes rotate. All points not in
these planes rotate through angles between α1 and α2. See [12] for details on
the geometric interpretation of rotations in four dimensions.

Isoclinic rotations are a particular case of double rotations in which
there are infinitely many invariant orthogonal planes, with same rotation
angles, that is, α1 = ±α2.

These rotations can be left-isoclinic, when the rotation in both planes
is the same (α1 = α2), or right-isoclinic, when the rotations in both planes
have opposite signs (α1 = −α2).

Isoclinic rotation matrices have several important properties:
1. The composition of two right- (left-) isoclinic rotations is a right- (left-)

isoclinic rotation.
2. The composition of a right- and a left-isoclinic rotation is commutative.
3. Any 4D rotation can be decomposed into the composition of a right-

and a left-isoclinic rotation.
Hence both form maximal and normal subgroups. Let us denote S3

R the
subgroups of right-isoclinic rotations, and S3

L the subgroup of left-isoclinic
rotations. The direct product S3

L × S3
R is a double cover of the group SO(4),

as four-dimensional rotations can be seen as the composition of rotations of
these two subgroups, and there are two expressions for each element of the
group.

3. Matrix Algebra Representation of Isoclinic Rotations

After a proper change in the orientation of the reference frame, an arbitrary
4D rotation matrix (i.e., an orthogonal matrix with determinant +1) can be
expressed as [11, Theorem 4]:

R =


cosα1 − sinα1 0 0
sinα1 cosα1 0 0

0 0 cosα2 − sinα2

0 0 sinα2 cosα2

 . (3.1)

This expression shows the 4D rotation as defined by the two mutually
orthogonal planes of rotation with rotation angles α1 and α2, each of the
planes being invariant in the sense that points in each plane stay within the
planes.

The left- and right-isoclinic rotations can be represented by rotation
matrices of the form

RL =

 l0 −l3 l2 −l1
l3 l0 −l1 −l2
−l2 l1 l0 −l3

l1 l2 l3 l0

 , (3.2)
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and

RR =

 r0 −r3 r2 r1

r3 r0 −r1 r2

−r2 r1 r0 r3

−r1 −r2 −r3 r0

 , (3.3)

respectively. Since (3.2) and (3.3) are rotation matrices, their rows and columns
are unit vectors. As a consequence,

l20 + l21 + l22 + l23 = 1 (3.4)

and
r20 + r21 + r22 + r23 = 1. (3.5)

Without loss of generality, we have introduced some changes in the signs
and indices of (3.2) and (3.3) with respect to the notation used by Cayley
[2, 6] to ease the treatment given below and to provide a neat connection
with the standard use of quaternions for representating rotations in three
dimensions.

According to the properties in Section 2, a 4D rotation matrix, say R,
can be expressed as:

R = RLRR = RRRL, (3.6)
with

RL = l0I + l1A1 + l2A2 + l3A3 (3.7)
and

RR = r0I + r1B1 + r2B2 + r3B3, (3.8)
where I stands for the 4× 4 identity matrix and

A1 =

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , A2 =

 0 0 1 0
0 0 0 −1
−1 0 0 0

0 1 0 0

 , A3 =

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,

B1 =

 0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 , B2 =

 0 0 1 0
0 0 0 1
−1 0 0 0

0 −1 0 0

 , B3 =

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 .

Therefore, {I,A1,A2,A3} and {I,B1,B2,B3} can be seen, respectively, as
bases for left- and right-isoclinic rotations.

Now, it can be verified that

A2
1 = A2

2 = A2
3 = A1A2A3 = −I, (3.9)

and
B2

1 = B2
2 = B2

3 = B1B2B3 = −I. (3.10)

Expression (3.9) determines all the possible products of A1, A2, and
A3, resulting in

A1A2 = A3, A2A3 = A1, A3A1 = A2,

A2A1 = −A3, A3A2 = −A1, A1A3 = −A2. (3.11)
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Likewise, all the possible products of B1, B2, and B3 can be derived
from expression (3.10). All these products can be summarized in multiplica-
tion tables 1 and 2.

Table 1. Multiplication table for the basis of the left-
isoclinic rotations.

I A1 A2 A3

I I A1 A2 A3

A1 A1 −I A3 −A2

A2 A2 −A3 −I A1

A3 A3 A2 −A1 −I

Table 2. Multiplication table for the basis of the right-
isoclinic rotations.

I B1 B2 B3

I I B1 B2 B3

B1 B1 −I B3 −B2

B2 B2 −B3 −I B1

B3 B3 B2 −B1 −I

Moreover, it can be verified that

AiBj = BjAi, (3.12)

which is actually a consequence of the commutativity of left- and right-
isoclinic rotations. Then, in the composition of two 4D rotations, we have:

R1R2 = (RL
1 RR

1 )(RL
2 RR

2 ) = (RL
1 RL

2 )(RR
1 RR

2 ). (3.13)

3.1. A spectral decomposition

The set of matrices {I,A1,A2,A3} form an orthogonal basis in the sense of
Hilbert-Schmidt for the real Hilbert space of 4 × 4 real orthogonal matrices
representing left-isoclinic rotations. Then, Eq.(3.7) can be seen as a spec-
tral decomposition. If we left-multiply it by each of the elements of the set
{I,A1,A2,A3}, to obtain the different projection coefficients, we have that

l0I = −RL + l1A1 + l2A2 + l3A3, (3.14)

l1I = −A1RL + l0A1 + l2A3 − l3A2, (3.15)

l2I = −A2RL + l0A2 − l1A3 + l3A1, (3.16)

l3I = −A3RL + l0A3 + l1A2 − l2A1. (3.17)
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By iterative substituting and rearranging terms in (3.14)-(3.17), we conclude
that the coefficients of the spectral decomposition (3.7) can be expressed as:

l0I = −1
4
(
−RL + A1RLA1 + A2RLA2 + A3RLA3

)
, (3.18)

l1I = −1
4
(
RLA1 + A1RL + A3RLA2 −A2RLA3

)
, (3.19)

l2I = −1
4
(
RLA2 + A2RL + A1RLA3 −A3RLA1

)
, (3.20)

l3I = −1
4
(
RLA3 + A3RL + A2RLA1 −A1RLA2

)
. (3.21)

Likewise, we can consider the set of matrices {I,B1,B2,B3} as an or-
thogonal basis in the sense of Hilbert-Schmidt for right-isoclinic rotations.
Then, the coefficients in (3.8) could also be obtained as above.

3.2. Matrix formulation of Cayley’s factorization

Let us define the following matrix linear operators for arbitrary 4D rotation
matrices:

L0(R) = −1
4

(−R + A1RA1 + A2RA2 + A3RA3) ,

L1(R) = −1
4

(RA1 + A1R + A3RA2 −A2RA3) ,

L2(R) = −1
4

(RA2 + A2R + A1RA3 −A3RA1) ,

L3(R) = −1
4

(RA3 + A3R + A2RA1 −A1RA2) . (3.22)

According to (3.18)-(3.21), Li(RL) = liI, i = 0, . . . , 3. Using the com-
mutativity property of left- and right-isoclinic rotations, it is straightforward
to prove that

Li(R) = Li(RLRR) = Li(RL)Li(RR) = liRR. (3.23)

We arrive at an important conclusion: Li(R) and RR are equal up to a
constant factor. Moreover, since RR is a rotation matrix, the 2-norm of any
of the rows and columns of Li(R) is li. This provides a straightforward way
to compute Cayley’s factorization. Indeed,

RR =
Li(R)

[det(Li(R))]1/4
(3.24)

and

RL = R(RR)T =
RLi(R)T

[det(Li(R))]1/4
. (3.25)

Observe that we have two possible solutions for the factorization de-
pending on the sign chosen for the quartic roots in (3.24)-(3.25), correspond-
ing to the double covering of the space of rotations.
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4. Clifford Algebra of Isoclinic Rotations

Four-dimensional rotations can also be expressed using the Clifford algebra
of the four-dimensional Euclidean space, C4,0,0. Let {e1, e2, e3, e4} be the ele-
ments corresponding to an orthonormal basis of R4. The 2-blades created as
the product of the elements of the basis, eiej = ei ∧ ej , are denoted eij and
are such that e2ij = −1. The pseudoscalar satisfies e21234 = 1. It is sometimes
denoted as the double unit ; we use the notation e = e1234.

The even subalgebra, C+4,0,0 has dimension eight and its elements are
created as the linear combination of blades of grade zero, two and four. A
general element of the subalgebra can be written as

Q =q0 + q1e23 + q2e31 + q3e12 + q4e41 + q5e42 + q6e43 + q7e1234

=q0 + q1e23 + q2e31 + q3e12 + e(q4e23 + q5e31 + q6e12 + q7). (4.1)

4.1. Bivectors and Orthogonal Components

Bivectors are linear combinations of the 2-blade basis elements, which are
organized as follows: {e23, e31, e12, e41, e42, e43}. The geometric product of
bivectors can be written as

B1B2 = B1 ∗B2 +B1 ×B2 +B1 ∧B2, (4.2)

where ∗ corresponds to the scalar product and × is the commutator product.
The subspace of bivectors is closed under the commutator product B1×B2 =
1
2 (B1B2 −B2B1).

There are two types of bivectors in the algebra of the 4D space: simple
and non-simple, or compound.

Simple bivectors can be written as the outer product of 1-vectors, and
effectively define planes in 4D. Non-simple bivectors are those that cannot
be simplified as the outer product of 1-vectors; they are linear combinations
of planes that not all share 1-D subspaces. The square of a bivector is, in
general, the sum of a scalar plus a pseudoscalar component,

BB = k + k0e, (4.3)

however in the case of a simple bivector, the square has only scalar part,
and k0 = 0. Alternatively, this can be checked using the outer product, as
B ∧B = 0 for simple bivectors.

The orthogonal component of a plane P in 4D space is another plane,
and corresponds to the dual P ∗, computed using the contraction c as

P ∗ = P ce−1 = P ce = Pe (4.4)

when P is a simple bivector [15]. In this fully orthogonal plane P ∗, every
direction is orthogonal to the plane P . The two orthogonal components in-
tersect only at the origin. These components generate the whole 4D space as
a direct sum.

There is a distinction to be made between orthogonal planes sharing a
component of grade 1 and fully orthogonal planes. The geometric product
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of orthogonal planes has zero scalar, while the geometric product of fully
orthogonal planes has only pseudoscalar component,

P1P2 = P1 ∧ P2 = p7e, (4.5)

if P1, P2 are fully orthogonal.
A non-simple bivector can be written as the sum of two simple bivectors.

In C4,0,0, there are many ways of expressing a general bivector as the sum
of two simple bivectors. However there is only one way of decomposing a
bivector as the sum of two orthogonal components, B = B1 + B2, with B1,
B2 simple and fully orthogonal bivectors.

This decomposition is calculated by solving the following conditions:

B = B1 +B2,

B1B2 = ke,

B1B1 = k1, B2B2 = k2, (4.6)

and noticing that
BB = (k1 + k2) + 2ke. (4.7)

The simple bivectors are obtained as

B1 = (k1 + ke)B−1,

B2 = (k2 + ke)B−1, (4.8)

with

k1,2 =
1
2
(
‖< BB >0‖ ±

√
‖< BB >0‖2 − ‖< BB >4‖2

)
, (4.9)

where the operator <>m selects the grade-m part of the element.

4.2. Versors and Rotations

A unit even versor is the geometric product of an even number of 1-vectors
whose norm is one. Notice that the geometric product of an even number of
1-vectors yields an element of the even subalgebra C+4,0,0.

A rotation R in 4D corresponds to an even unit versor of the algebra,
called a rotor, such that RR̃ = 1. The product of two and four unit 1-vectors
vi yields

v1v2 = k +B,

v1v2v3v4 = k1 +B + k2e, (4.10)

where B is a bivector. Rotors can be generated as the exponentiation of
bivectors.

Simple rotations are generated as the exponentiation of simple bivectors.
In those, the simple bivector defines the plane in which the rotation takes
place. Recalling that the square of a simple bivector yields a scalar, the
exponentiation can be calculated to be

R = ekB = cos k + sin kB (4.11)

for B a bivector of norm equal to one.



Cayley’s Factorization of 4D Rotations 9

The exponentiation of non-simple bivectors yields a double rotation. It
is easy to distinguish between a simple and a double rotation by the fact that
the pseudoscalar component in a simple rotation is zero.

For a double rotation, computed as the exponential of a non-simple
bivector, we can apply the decomposition of the non-simple bivector B in
simple, orthogonal bivectors,

R = eB = eB1+B2 = eB1eB2 = R1R2, (4.12)

where R1 and R2 are the simple rotations in orthogonal planes. This deriva-
tion is possible because B1 and B2 commute, and make the simple rotations
commutative too, R = R1R2 = R2R1.

The bivector and rotation angle can be recovered for simple rotations
using the log map. Given a simple rotation R, the simple (unit) bivector B
defining the rotation plane, and the rotation angle φ, are

B =
< R >2

‖< R >2‖
,

φ = arctan (‖< R >2‖, ‖< R >0‖). (4.13)

A similar solution cannot be immediately obtained for double rotations.
However it is possible to find a simpler solution if the double rotation is
decomposed into two commutative double rotations, the isoclinic rotations.

4.3. Non-simple Orthogonal Bivectors

In order to decompose a four-dimensional double rotation in the product of
two orthogonal double rotations, two sets of bivectors are considered that
form separate ideals. A general bivector B can be written as the sum of
elements B1 and B2 of these two ideals. Notice that the bivectors B1 and B2

do not have to be simple.
Assigning the bivectors to their respective ideal, decomposing B = B1 +

B2 and exponentiating, we obtain

R = eB = eB1+B2 = eB1eB2 = eB2eB1 = R1R2 = R2R1. (4.14)

The 4D double rotation is expressed as the product of two double rotations
that commute.

The ideals are created, according to [14], using two mappings called
the projectors, defined as P± = 1

2 (1 ± e). These two mappings create the
elements of each of the ideals when applied to the basis blades {e23, e31, e12}
or {e41, e42, e43},

P+e23 =
1
2

(e23 + e41), P+e31 =
1
2

(e31 + e42), P+e12 =
1
2

(e12 + e43),

P−e23 =
1
2

(e23 − e41), P−e31 =
1
2

(e31 − e42), P−e12 =
1
2

(e12 − e43).

(4.15)

The geometric product of these elements yields the multiplication tables
(3) and (4). It is worth noting that the elements P+1 = 1

2 (1 + e) and P−1 =
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1
2 (1 − e) act as units in their respective ideals. The product of elements of
different ideals is equal to zero, including 1

2 (1 + e) 1
2 (1− e) = 0.

Table 3. Multiplication table for the basis of the P+ ideal.

1
2 (e23 + e41) 1

2 (e31 + e42) 1
2 (e12 + e43) 1

2 (1 + e)
1
2 (e23 + e41) − 1

2 (1 + e) − 1
2 (e12 + e43) 1

2 (e31 + e42) 1
2 (e23 + e41)

1
2 (e31 + e42) 1

2 (e12 + e43) − 1
2 (1 + e) − 1

2 (e23 + e41) 1
2 (e31 + e42)

1
2 (e12 + e43) − 1

2 (e31 + e42) 1
2 (e23 + e41) − 1

2 (1 + e) 1
2 (e12 + e43)

1
2 (1 + e) 1

2 (e23 + e41) 1
2 (e31 + e42) 1

2 (e12 + e43) 1
2 (1 + e)

Table 4. Multiplication table for the basis of the P− ideal.

1
2 (e23 − e41) 1

2 (e31 − e42) 1
2 (e12 − e43) 1

2 (1− e)
1
2 (e23 − e41) − 1

2 (1− e) − 1
2 (e12 − e43) 1

2 (e31 − e42) 1
2 (e23 − e41)

1
2 (e31 − e42) 1

2 (e12 − e43) − 1
2 (1− e) − 1

2 (e23 − e41) 1
2 (e31 − e42)

1
2 (e12 − e43) − 1

2 (e31 − e42) 1
2 (e23 − e41) − 1

2 (1− e) 1
2 (e12 − e43)

1
2 (1− e) 1

2 (e23 − e41) 1
2 (e31 − e42) 1

2 (e12 − e43) 1
2 (1− e)

The bivectors of each ideal can be used to generate rotations. Let us
call B± the bivectors formed as linear combination of the P± basis bivectors.
A general bivector

B = b1e23 + b2e31 + b3e12 + b4e41 + b5e42 + b6e43 (4.16)

can be seen as the sum or difference of the B± bivectors, B = B+ − B− or
B = B+ +B−. In particular, the bivectors

B+ =
b1+
2

(e23 + e41) +
b2+
2

(e31 + e42) +
b3+
2

(e12 + e43),

B− =
b1−
2

(e23 − e41) +
b2−
2

(e31 − e42) +
b3−
2

(e12 − e43), (4.17)

have coefficients

B = B+ +B− : b1+ = b1 + b4, b2+ = b2 + b5, b3+ = b4 + b6,

b1− = b1 − b4, b2− = b2 − b5, b3− = b4 − b6.
B = B+ −B− : b1+ = b1 + b4, b2+ = b2 + b5, b3+ = b4 + b6,

b1− = −b1 + b4, b2− = −b2 + b5, b3− = −b4 + b6.
(4.18)

The decomposition of a non-simple bivector into bivectors of the two
ideals can be easily obtained as

B+ =
1
2

(1 + e)B,

B− =
1
2

(1− e)B. (4.19)
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4.4. Isoclinic Rotations

Using the decomposition in Eq.(4.19), the general 4D rotation can be written
as

eB = eB+eB− . (4.20)

To prove this, construct the exponential of a bivector of each ideal, with

B2
+ = −(b21+ + b22+ + b23+)

1
2

(1 + e),

B3
+ = −(b21+ + b22+ + b23+)B+,

B4
+ = (b21+ + b22+ + b23+)2

1
2

(1 + e),

B5
+ = (b21+ + b22+ + b23+)2B+,

. . . (4.21)

and likewise for B−.

Consider bivectors Bu+ = 1
k+
B+, with k+ =

√
b21+ + b22+ + b23+, so that

B2
u+ = − 1

2 (1 + e) . Then,

R+ = ek+Bu+ =
1
2

(1− e) + cos k+
1
2

(1 + e) + sin k+Bu+,

R− = ek−Bu− =
1
2

(1 + e) + cos k−
1
2

(1− e) + sin k−Bu−, (4.22)

and their product yields the general double rotation,

R =ek+Bu++k−Bu− = ek+Bu+ek−Bu−

= cos k−
1
2

(1− e) + cos k+
1
2

(1 + e) + sin k−Bu− + sin k+Bu+. (4.23)

This decomposition is commutative.

4.5. Invariant Planes for Isoclinic Rotations

Isoclinic rotations can be decomposed as the product of simple rotations for
which the angles of rotation about the fully orthogonal planes have the same
value, with same or opposite sign. In Eq.(4.9) we can see that, in order to
obtain the same or opposite value for the rotation angles, ‖< BB >0‖ =
±‖< BB >4‖. For the non-simple bivectors in each ideal, we have

B2
+ = −(b21+ + b22+ + b23+)

1
2

(1 + e),

B2
− = −(b21− + b22− + b23−)

1
2

(1− e),

(4.24)

which shows that k1 = k2 in Eq.(4.9) for both B+ and B−.
Each of the non-simple, orthogonal bivectors B+ and B− can be easily

decomposed into the sum of two simple, orthogonal planes. Let B+ be as in



12 Alba Perez-Gracia and Federico Thomas

Eq.(4.17), then simple, orthogonal planes can be computed as

B1+ =
b1+
2
e23 +

b2+
2
e31 +

b3+
2
e12,

B2+ =
b1+
2
e41 +

b2+
2
e42 +

b3+
2
e43 (4.25)

for B+, and

B1− =
b1−
2
e23 +

b2−
2
e31 +

b3−
2
e12,

B2− = −b1−
2
e41 −

b2−
2
e42 −

b3−
2
e43, (4.26)

for B−.
The decomposition into simple, orthogonal planes

k+Bu+ = k1+B1u+ + k2+B2u+,

k+Bu− = k1−B1u− + k2−B2u−, (4.27)

where

k1+ = k2+ =
k+

2
,

k1− = −k2− =
k+

2
, (4.28)

are used to calculate the exponentials

ek+B+ = ek1+B1u++k2+B2u+ = (cos k1+ + sin k1+B1u+)(cos k2+ + sin k2+B2u+),

ek−B− = ek1−B1u−+k2−B2u− = (cos k1− + sin k1−B1u−)(cos k2− + sin k2−B2u−),
(4.29)

which yield Eq.(4.22) if we notice that B1u+ +B2u+ = 2Bu+, B1u−−B2u− =
2Bu− and B1u+B2u+ = B1u−B2u− = −e.

4.6. Isoclinic Decomposition of 4D Rotations

Given a double rotation obtained as the product of rotations on planes in the
ideal, it is easy to recover these rotations. Let R be a double rotation that
can be expressed as in Eq.(4.23). The products

1
2

(1 + e)R+
1
2

(1− e) = R+,

1
2

(1− e)R+
1
2

(1 + e) = R− (4.30)

can be used to find the corresponding left- and right- isoclinic rotations.

5. A useful mapping

Chasles’ theorem states that the general spatial motion of a rigid body can be
expressed as a rotation about an axis and a translation along the direction
given by the same axis. Such a combination of translation and rotation is
called a general screw motion [13]. In the definition of screw motion, a positive
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rotation corresponds to a positive translation along the screw axis according
to the right-hand rule.

n

p

a

Figure 1. Geometric parameters used to describe a general
screw motion.

In Fig. 1, a screw axis is defined by n = (nx, ny, nz)T , a unit vector
defining its direction, and qp, the position vector of a point lying on it,
where p = (px, py, pz)T is also a unit vector. The angle of rotation θ and the
translational distance d are called the screw parameters. These screw param-
eters together with the screw axis completely define the general displacement
of a rigid body.

In [8], the following mapping between 3D transformations in homoge-
neous coordinates and a subset of 4D rotation matrices was proposed:

T =
(
R3×3 t

0T 1

)
� T̃ =

(
R3×3 εt

−εtTR3×3 1

)
, (5.1)

where ε is the standard dual unit (ε2 = 0). The interesting thing about this
mapping is that Cayley’s factorization of T̃ can be expressed as T̃LT̃R where

T̃R = cos
(
θ̂
2

)
I + sin

(
θ̂
2

)
(n̂xB1 + n̂yB2 + n̂zB3) (5.2)

where n̂ = (n̂x, n̂y, n̂z)T = n + ε q (p×n) and θ̂ = θ+ ε d (see [8] for details).
Thus, the coefficients of the Cayley’s factorization of T̃ give us the screw
parameters of T. This is exemplified in the next section.
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6. Example

Let us consider, as an example, the transformation in homogeneous coordi-
nates

T =


0 0 1 4
1 0 0−3
0 1 0 7
0 0 0 1

 . (6.1)

Then, according to (5.1),

T̃ =

 0 0 1 4ε
1 0 0 −3ε
0 1 0 7ε
3ε −7ε −4ε 1

 , (6.2)

and, according to (3.22),

L0(T̃) = −1
4

(
−T̃ + A1T̃A1 + A2T̃A2 + A3T̃A3

)
= −1

4

 1 −1− 11ε 1 + 4ε 1 + ε
1 + 11ε 1 −1− ε 1 + 4ε
−1− 4ε 1− ε 1 1 + 11ε
−1− ε −1− 4ε −1− 11ε 1


= −1

4
[I + (1 + ε)B1 + (1 + 4ε)B2 + (1 + 11ε)B3] (6.3)

Therefore,

T̃R = − 1
4l0

[I + (1 + ε)B1 + (1 + 4ε)B2 + (1 + 11ε)B3]. (6.4)

Since, according to (3.5), r20 + r21 + r22 + r23 = 1, we have that

1
16l20

[
1 + (1 + ε)2 + (1 + 4ε)2 + (1 + 11ε)2

]
=

4 + 32ε
16l20

= 1. (6.5)

Thus,
l0 = ±

(
1
2 + 2ε

)
. (6.6)

If we take the negative sign (remember that the solution is unique up to a
sign change), we conclude that

r0 =
1

2 + 8ε
= 1

2 − 2ε, r1 =
1 + ε

2 + 8ε
= 1

2 −
3
2ε,

r2 =
1 + 4ε
2 + 8ε

= 1
2 , r3 =

1 + 11ε
2 + 8ε

= 1
2 + 7

2ε.

That is, the unit dual quaternion representing the transformation in homoge-
nous coordinates given by T can be expressed as:

T̃R =
(

1
2 − 2ε

)
I +

(
1
2 −

3
2ε
)
B1 +

(
1
2

)
B2 +

(
1
2 + 7

2ε
)
B3. (6.7)
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To obtain the corresponding screw parameters for this rigid-body trans-
formation, we can simply identify (6.7) with (5.2). This identification yields:

cos
(
θ̂
2

)
= 0.5− 2ε, (6.8)

n̂x sin
(
θ̂
2

)
= 0.5− 1.5ε, (6.9)

n̂y sin
(
θ̂
2

)
= 0.5, (6.10)

n̂z sin
(
θ̂
2

)
= 0.5 + 3.5ε. (6.11)

Solving (6.8) for θ̂ = θ + εd we get

θ = 2
3π and d = 8√

3
. (6.12)

Then, substituting θ̂ = 2
3π + ε 8√

3
in (6.9)-(6.11), we conclude that

n =
(

1√
3
, 1√

3
, 1√

3

)T
, (6.13)

and

q(p× n) =
(
− 6
√

3−1
6 ,− 1

6 ,
14
√

3−1
6

)T
. (6.14)

If p and n are assumed to be orthogonal, it is concluded from (6.14)

that q =
√

699−40
√

3
36 . As a consequence,

p× n = (−0.3742,−0.03984, 0.9264)T . (6.15)

Finally, using (6.13) and (6.15), we have that

p = n× (p× n) = (−0.5579, 0.7509,−0.1930)T . (6.16)

7. Conclusions

Rotations in three dimensions are determined by a rotation axis and the ro-
tation angle about it, where the rotation axis is perpendicular to the plane
in which points are being rotated. The situation in four dimensions is more
complicated. In this case, rotations are determined by two orthogonal planes
and two angles, one for each plane. Cayley proved that a general 4D rota-
tion can always be decomposed into two 4D rotations, each of them being
determined by two equal rotation angles up to a sign change.

In this paper, we have presented explicit formulas for this decomposi-
tion using both matrix algebra and the Clifford algebra C4,0,0. The use of so
different formalisms to solve the same problem has allowed us to provide a
more insightful view of this decomposition. The presented results reveal of
practical interest in kinematics as they provide, for example, a neat connec-
tion between the algebra of homogeneous transformations in three dimensions
and the algebra of dual quaternions. As an example, this connection has been
exploited to compute the screw parameters of a homogeneous transformation.



16 Alba Perez-Gracia and Federico Thomas

References

[1] J.L. Weiner and G.R. Wilkens, “Quaternions and rotations in E4,” The Amer-
ican Mathematical Monthly, Vol. 112, No. 1, pp. 69-76, 2005.

[2] A. Cayley, “Recherches ultérieures sur les déterminants gauches,” The Col-
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