
Learning the Hidden Human Knowledge of UAV Pilots when navigating
in a cluttered environment for improving Path Planning

Ignacio Alzugaray and Alberto Sanfeliu1

Abstract— We propose in this work a new model of how the
hidden human knowledge (HHK) of UAV pilots can be incor-
porated in the UAVs path planning generation. We intuitively
know that human’s pilots barely manage or even attempt to
drive the UAV through a path that is optimal attending to some
criteria as an optimal planner would suggest. Although human
pilots might get close but not reach the optimal path proposed
by some planner that optimizes over time or distance, the
final effect of this differentiation could be not only surprisingly
better, but also desirable. In the best scenario for optimality,
the path that human pilots generate would deviate from the
optimal path as much as the hidden knowledge that its perceives
is injected into the path. The aim of our work is to use
real human pilot paths to learn the hidden knowledge using
repulsion fields and to incorporate this knowledge afterwards
in the environment obstacles as cause of the deviation from
optimality. We present a strategy of learning this knowledge
based on attractor and repulsors, the learning method and a
modified RRT* that can use this knowledge for path planning.
Finally we do real-life tests and we compare the resulting paths
with and without this knowledge.

I. INTRODUCTION
Rescue missions in natural disasters or accidents in in-

dustrial plants usually involve inspection tasks to evaluate
the level of damage of the injured items. While these tasks
might be hazardous for humans or their nature make them
unfeasible in relatively quick time, an UAV might be sent to
evaluate the losses. Although its flight may be supervised by
a security pilot, it might be required to fly autonomously, in
which case path planning algorithms become necessary.

Most of the path planners used nowadays for guiding
UAVs [1] are based on RRT [2] due to their great perfor-
mance in terms of computational time, low parametrization
and efficiency [3][4]. Such planners are usually based on
a minimum-distance criteria so that the solution converges
to an optimal or approximately optimal minimum distance
path. Although the generated paths might effectively avoid
obstacles in the environment, attempting to use such planners
for the aforementioned tasks could be risky: if the generated
path is such that the UAV passes very close, for example, to
high-temperature gas line leaks, fire or any other source of
danger, the integrity of the robot may result damaged.

Although the humans might be aware of these risks, the
aforementioned path planners do not typically include this
knowledge during path generation. Instead, they generate

*This work was supported by the Spanish Ministry of Science and Inno-
vation, project Rob-Int-Coop DPI2013-42458-P and AEROARMS European
project H2020-ICT-2014-1-644271

1The authors are with Institut de Robotica i Informàtica In-
dustrial (CSIC-UPC). Llorens Artigas 4-6, 08028 Barcelona, Spain.
{ialzugaray,sanfeliu}@iri.upc.edu

Fig. 1. In a) the blue line represents the human pilot path when guiding
an UAV. The green line represents the generated RRT path without taking
into account the HHK. One of the environment object (the one with the
big red ‘R’) entails risk. The pilot is aware of it and thus deviates largely
the path in order to separate the UAV from the risk. In b) the magenta line
represents the generated RRT path including the HHK learned by means
of the blue path in a). Additionally, the learned risk level is extrapolated
to another object in the scene, which the human knows that has the same
level of hazardous than the first one. In consequence, the UAV automatically
avoids passing close to that object as well.

a path by minimizing some other features, i.e. number of
nodes, number of iterations or distance to the goal.

The knowledge that a human can provide about the envi-
ronment could be not only valuable, but sometimes strictly
necessary for ensuring the success of the mission and for
keeping the robot intact. This knowledge could be learned
if a human pilot, who is aware of the risks, guides the UAV
to a local destination avoiding with sufficient security the
risky obstacles or areas. Specifically, the risk level of each
dangerous item could be learned individually and then use
this prior knowledge to label further items in the scene that
are known to have a similar level of riskiness. See Figure 1.

In this paper we propose a method that learns the HHK
when they perform a path by teleoperating the robot. The
learned knowledge can the adapted and applied to a clas-
sical planner in order to modify the solution such that the
resulting path looks similar to a human path. The proposed
method is in between the path planning and the learning by
demonstration method framework. This method embeds the
learned knowledge from the humans in the map in which
the robot navigates. Using this approach, the knowledge can

be reused with independence of the chosen planner prior
adaptation.

The idea behind the method is that the HHK when per-
forming an UAV path can be transferred to the environment
obstacles, in such a way that the obstacles are repulsion
fields, represented as potential field functions, that deviate
the planned path in a human-like path (see Figure 1). What
we learn from the human path is the modification of the
repulsion parameters to adjust the planned path to the human
one. These parameters are learned using real trajectories
generated by a human pilot guiding an UAV through a
cluttered environment. Although we know that this is a risky
assumption, we will prove through the real life experiments
that could be a good approximation.

In this work we are applying these ideas using a RRT
planner, which takes into account the influence of the objects
in the planned path. There exist several path planners able
to consider an explicitly given analytic function as the one
that we propose. For instance, in [5] the exploratory strength
of the RRT algorithm is combined with the flexibility of a
cost function defined over the configuration space such that
the robot is able to navigate through its valleys and saddle
points. We can easily think on our potential field function as
the cost function required by [5] and use this planner in order
to simulate the trajectories needed for our learning process.
Other methods that combine RRT algorithms with potential
fields are proposed in [6][7]. In the latter, the potential field
is used as a cost function in order to penalize those nodes
generated by an RRT planner that are far away from the
valleys of the function.

In the following sections we first explain the general
approach, then the obstacle representation and the repulsion
field. In section III we describe the learning algorithm,
describing the identification of the relevant repulsors, the
interaction between them and the optimization procedure to
obtain the best parameters. In section IV we explain the
adaptation of a RRT based algorithm to take into account the
influence of the repulsion fields. In section V we describe the
experiments using two different UAV pilots that teleoperates
the UAVs from different starting points, but following a
similar path. Finally, in section VI, we summarize the work.

II. HHK LEARNING METHOD
A. General approach

The proposed method learns the HHK when the human
pilots are executing a path, using a general strategy based
on attractors and repulsors, in a similar way that is used in
Learning from Demonstration [8] since a path generated by
a human pilot is used as reference to learn the parameters of
a model. However, in our case we learn the HHK through
the repulsion field related to the environment objects.

To introduce the method, we define that any path P
obtained from a path planner is guided by two elements:
the attractors ✓

att

and the repulsors ✓
rep

.

P = f(✓
att

, ✓
rep

) (1)

where the f depends strictly on the planner.

The attractor ✓
att

represents the planner strategy to gen-
erate a path to the goal location. The repulsors ✓

rep

usually
represents the obstacles and prevents the robot to navigate
in the zones where collision may happen.

The most straightforward example of this formulation is
the potential path planner where ✓

att

and ✓
rep

apply an
attractive and repulsive force respectively to the robot at
each point. In this case, the repulsors ✓

rep

are explicit in the
obstacles and the attractor ✓

att

is the force exerted by the
goal (see also [9] in the framework of dynamical movement
primitives, DMPs, or [10] in the framework of planning in a
human-like manner). In the classic RRT, the repulsors ✓

rep

are implicit in the obstacles to provide obstacle avoidance
paths whereas the implicit attractor ✓

att

is the force to reach
a solution path toward the goal if it exists. In this paper we
present a modified version of the RRT* [3] where the planner
is partially guided by the repulsors.

The characteristics of the repulsors are modified accord-
ingly by means of the learning algorithm to capture the
HHK. Each of the map repulsors represents as a source
of the repulsion field and the global repulsion field is
computed combining the effect of the different repulsors.
The navigation plan at each point of the path is guided
by the repulsion field and the robot navigates following the
regions with lowest magnitude in the repulsion field, this is,
the valleys.

B. Obstacle representation
In robot navigation, the map is represented by several ob-

jects which, in this work, are static obstacles. Each obstacle
is defined by one or more repulsors placed in relevant parts
of the obstacle such as the centroid or parts of the perimeter.

The characteristics of each repulsor reflects directly the
danger of navigating close to this location. However it can
also encode other knowledge usually considered by humans
such as risk and uncertainty.

Let’s denote R
j

the j-th repulsor of the set M =

{R1, R2, . . . , Rn

} which represents the obstacles of the map.
The influence of the repulsor R

j

is completely defined by
the tuple of parameters ⇥

Rj =

�

A
Rj , BRj , r0Rj ,xRj

. The
parameters A

Rj and B
Rj represent respectively the intensity

and the decay factor of the repulsion. The repulsion includes
a safety area modeled by a ball of radius r0Rj in which
the robot cannot navigate. This parameter is set according to
the robot size to prevent collision with the obstacles in the
map during the navigation. Finally, the parameter x

Rj is the
position vector which represents the location of the repulsor
in the space.

The repulsion F

Rj (x), in the location x, generated due to
the repulsor R

j

, can be modeled as a force vector with the
following expression:

F

Rj (x) = A
Rj exp

✓

�
d
Rj (x)� r0Rj

B
Rj

◆

x� x

Rj

d
Rj (x)

(2)

where d
Rj (x) is the euclidean distance between the point

x and the location of the repulsor x

Rj and the last term
specifies the orientation of the force vector.

C. Repulsion field
The set M is composed by several repulsors which model

the influence of the obstacles in the map. The repulsion field
is obtained by computing the influence of these repulsors.
The learning of the set of HHK repulsor parameters depends
on how this repulsion field is defined.

Let’s denote M
x

✓ M the subset of visible repulsors
from the point x, i.e. the ones that are in the direct line
of sight from x. Then the repulsion field F , evaluated in
the point x, is defined as a scalar function using F

Rj (x) =

kF
Rj (x)k in the following expression:

F(x) = max

Rj

F
Rj (x), 8R

j

2 M
x

(3)

The projections of the set of points of the valleys in the
repulsion field, denoted by V

RiRj , are the ones that satisfy
the following:

V
RiRj =

8

<

:

x

�

�

�

�

�

�

F
Ri(x) = F

Rj (x)

^
F
Ri(x) � F

Rk(x), 8R
k

2 M
x

9

=

;

(4)

All the projections of the valleys which were generated
due to the influence of the repulsor R

j

, define the repulsor
border @

Rj .

@
Rj =

[

V
RjRk , 8R

k

2 M, j 6= k (5)

Finally, we define ⌦

Rj as the region in which the repulsor
R

j

applies the greatest repulsion force compared to all the
visible repulsors.

⌦

Rj =

�

x

�

�F
Rj (x) > F

Rk(x), 8R
k

2 M
x

(6)

Note that @
Rj does not represent the boundary of the

region ⌦

Rj due to the discontinuities in the mathematical
definition of the repulsion field.

III. LEARNING ALGORITHM
The proposed method assumes that the HHK is distributed

in two parts when navigating with a robot, one included in
the path planner and the other one in the obstacles in the
map. In this paper we will focus on learning the repulsors
parameters, ⇥

Rj =

�

A
Rj , BRj , r0Rj ,xRj

, that model these
obstacles using human pilot paths as reference. Therefore the
information embedded in the obstacles can be reused when
planning different new paths in the same map.

The proposed algorithm learns the parameters ⇥

Rj by
fitting iteratively the valleys of the defined repulsion field into
the pilot paths. In each learning iteration the algorithm first
identifies which repulsors have to be modified. Afterwards
this modification is obtained by means of an optimization
problem posed from an overconstrained system of equations
that represents the constraints between pairs of repulsors.

In order to simplify the learning process, the algorithm is
limited to learn only the parameter B

Rj (instead of B
Rj

and A
Rj at the same time) while maintaining the other

parameters equal and constant for all the repulsors. Usually
r0Rj is a constant value related to the dimensions of the
robot and x

Rj depends on the environment.

R2R1

R1

Xt

Xk

R3

R1 3 R

R2 3 R

Fig. 2. Identification of applicable repulsors.

A. Identification of applicable repulsors

The influence of the repulsors are limited to a local area.
This implies that the different segments of the pilot path
can be used to learn the parameters related to a subset of
repulsors. The following procedure identifies which are the
applicable repulsors in each of the learning iterations.

Let’s denote P = {x1,x2, . . . ,xm

} the human pilot path
and let us define the subset P

Rj = P \⌦

Rj . Then for each
point x

t

2 P
Rj we establish a correspondence to a point in

the border x
k

2 @
Rj using the following two conditions.

a) Distance condition: Only the points in the nearby
of the point x

t

are considered, i.e. the points that are within
a ball of radius dthresh centered in the point x

t

.

X
t,dist =

�

x

k

2 @
Rj

�

� kx
k

� x

t

k dthresh

(7)

b) Alignment condition: Let n
t

denotes the unitary vec-
tor tangent to the segment P

Rj at the point x
t

. Equivalently,
n

@Rj k
is defined as the tangent to the boundary @

Rj at the
point x

k

. Then, only the points x
k

such that human path and
boundary direction are aligned compared with a threshold
↵thresh are considered.

X
t,alig =

n

x

k

2 @
Rj

�

�

�

�

�

�

n

i

· n
@Rj k

�

�

�

 ↵thresh

o

(8)

From all the points in the border that satisfy both condi-
tions, this is, X

t

= X
t,dist \ X

t,alig, the closest point to the
path point x

t

is selected (see figure 2).

x

k

= argmin

x

kx� x

t

k, x 2 X
t

(9)

If X
t

6= ;, there is a correspondence between the point
x

t

2 P
Rj and the point x

k

2 @
Rj . Since x

k

2 V
RiRj ✓

@
Rj , the point x

t

has to be considered for the correction of
the learning of the repulsors R

i

and R
j

. In case X
t

= ;
no correspondence has been found and the point x

t

is not
considered in the following steps of the learning algorithm.

B. Interaction between a pair of repulsors

Defining x

RiRj 2 T
RiRj ✓ P as a point such that a

correspondence to another point x
k

2 V
RiRj has been found

using the previous procedure. Then the set of n points in
T
RiRj are respectively used to learn the parameters B

Ri and
B

Rj of the repulsors R
i

and R
j

.

Let ˆd
Rj ,TRiRj

be the mean corrected distance from the
repulsor R

j

defined as

ˆd
Rj ,TRiRj

=

1

n

n

X

xRiRj2TRiRj

d
Rj (xRiRj)� d0Rj (10)

The location of the valley projection V
RiRj can be locally

modified by only using the first constraint of the definition
(4), i.e. F

j

(x) = F
i

(x). The proposed method modifies only
the decay ratio parameter B for that purpose and the other
parameters are maintained constant and equal for all the
repulsors. Using the model of the repulsors expressed in (2)
and the mean corrected distance, the following expression
can be obtained:

ˆd
Rj ,TRiRj

B
Ri =

ˆd
Ri,TRiRj

B
Rj (11)

Using this expression the relation between the B param-
eters of the pair of repulsors can be computed so that if it
is satisfied, the resulting valley projection V

RiRj lies in the
nearby of the points x

RiRj 2 T
RiRj .

C. Optimization

When the method is applied to the complete pilot path,
we have several expressions (11) that relate different pairs
of repulsors. The simultaneous fulfillment of all these mul-
tiple interconnected relations is usually impossible as they
represent an overconstrained system of equations. To solve
it, the solution of the system can be posed as an optimization
problem where the aim is to compute the parameter B of the
repulsors.

For each relation between a pair of repulsors R
i

and R
j

an expression is defined such as

f
RiRj (BRi , BRj) = w

RiRj (
ˆd
Rj ,TRiRj

B
Ri� ˆd

Ri,TRiRj
B

Rj)
2

(12)
where w

RiRj is a weight related to the importance of the
relation between the repulsors R

i

and R
j

, computed as the
number of considered n points, when obtaining ˆd

Rj ,TRiRj
in

(10).
All the different relations can be stacked in the same

function

f(⇥) =

X

f
RiRj (BRi , BRj), 8R

i

, R
j

2 M (13)

with the vector of parameters ⇥ = [B
R1 , BR2 , . . . , BRm]

T .
Additionally, another function is optimized in order to

maintain the values of the B parameters as low as possible.

g(⇥) =

m

X

i

B2
Ri

(14)

The optimization function is defined as

J(⇥) = ↵f(⇥) + �g(⇥) (15)

where ↵ � � to prioritize the fulfillment of the defined
relations.

Since the expression J is composed by squared terms and
squared differences, it can be rearranged so that:

J(✓) = ⇥

T

Q⇥ (16)

where Q matrix is composed by diagonal and off-diagonal
elements corresponding respectively to the terms multiplying
the squared parameters and the ones multiplying the cross
product between different parameters.

Using this expression, the optimization process can be
posed as a quadratic programming problem. Several opti-
mizers can be applied to solve this problem in which we
include the bound B 2 [Bmin, Bmax]. The initial value of the
B parameter in the repulsors is also set according to Bmin.

The learning algorithm is proposed as an iterative proce-
dure in which the repulsor field is to be gradually modified.
Therefore, instead of modify the values of the B parameters
according to the results of the proposed optimization prob-
lem, the new values are obtained restricting the variation of
the parameter value between successive iterations.

Let us define Bk)
Rj

as the value of the decay ratio of the
repulsor R

j

and as B⇤k)
Rj

the value obtained by means of the
optimization in the iteration k. The parameter for the next
iteration is computed as follows:

Bk+1)
Rj

= Bk)
Rj

+max

⇣

B⇤k)
Rj

�Bk)
Rj

,�B
⌘

(17)

where �B is a restriction in the change of the parameter B
between successive iterations. The �B parameter is directly
related to the learning rate of the algorithm. Nonetheless, it
is convenient to set this parameter to a low value so that the
number of points of the pilot path used in each iteration of
the algorithm (see section III-A) varies gradually.

IV. RRT* ADAPTATION
The aforementioned learning algorithm is able to learn the

parameters of the respulsors to capture the HHK. Then this
information can be used in any path planner as long as the
influence of the obstacles, i.e. the repulsors, can be taken
into account. In this paper, we have adapted the RRT* [3]
for this purpose.

Based on the original RRT algorithm, the RRT* defines
a cost function that is used to evaluate the different nodes.
The cost of a new node is computed when it is connected
to the parent node in the current tree, which includes the
cost of the parent node and the cost of the connection.
The possible changes in the current connections of the tree
are later evaluated in the rewiring step towards probabilistic
optimality. In our approach, we include in the cost function
the influence of the repulsors.

Let x

c

be the new sample that will be connected to
the current tree using the parent node x

p

. The cost of the
parent node is specified by c(x

p

). Let’s denote c⇤(x
c

,x
p

)

the connection cost between the nodes x

c

and the tree node
x

p

. Then the cost of the new node x

c

is computed as
c(x

c

) = c(x
p

) + c⇤(x
c

,x
p

). The cost of the connection c⇤

is defined as follows:

c⇤(x
c

,x
p

) = (1� �)c
d

(x

c

,x
p

) + �c
r

(x

c

) (18)

where c
d

(x

c

,x
p

) is computed as c
d

(x

c

,x
p

) = kx
c

�
x

p

k/d
max

, being d
max

the maximum distance in the con-
nection used during the steering and rewiring steps of the

algorithm. The cost due to the repulsors c
r

is defined as
the evaluation of repulsion field in that point with a nor-
malization factor c

r

(x

c

) = F(x

c

)/(max F(x)). Lastly, the
parameter � 2 [0, 1] weights the relative importance between
the length of the path and the influence of the repulsors.

V. EXPERIMENTS
A. Environment and pilot trajectories

In order to show the proposed framework for learning
the HHK of the pilots, data from real experiments in a
cluttered scenario produced by the team of FADA-CATEC
in the EU ARCAS project [11] has been used. Two different
pilots teleoperated the UAV following the same path but from
different starting points. These paths were captured using an
indoor positioning system (VICON).

The cluttered environment can be seen in Figure 3, where
the set of repulsors representing the obstacles of the mockup
are shown. Each repulsor shows its identifier, safety area
corresponding to r0Ri (light blue) and an area of influence
proportional to B

Ri (dashed green). Linear repulsors repre-
senting aligned group of obstacles have each side represented
by a different repulsor so that their properties can be de-
scribed independently. Each repulsor R

j

is initialized with
default values: A

Rj = 1 [N], B
Rj = 0.3 [m] and r0Rj =

0.25 [m]. The navigation in the map is constrained through
fictitious barriers also represented in the figure (dashed black
lines).

The whole set of paths obtained during the experiments
were classified in two different scenarios. In the first sce-
nario, represented by the experiment E1 N, the pilots simply
navigate through the map avoiding the collision with the
obstacles. In the second scenario, the pilots were told to con-
sider additional risk regarding the obstacles located in the top
or bottom (repulsors R4 and R2 in our representation) part
of the upper narrow passage represented by the experiments
E3 R and E2 R respectively. The aforementioned paths can
be visualized in Figure 3.

B. Learning of the parameters

The proposed learning algorithm is applied to each one of
the pilot paths up to 25 iterations. During the identification
of applicable repulsors, the thresholds d

thresh

= 1.5 [m] and
↵
thresh

= 0.9 were used in (7)-(8). The weights in of the
optimization function (15) were set to ↵ = 10 and � = 1

with the constraints Bmin = 0.3 [m] and Bmax = 1.75 [m].
Additionally, the maximum variation of the decay ratio
between iterations in (17) was limited to �B = 0.1 [m].

Since each experiment contains several paths, the mean of
the learned parameters was used. In experiment E1 N since
there were six different paths, only three of them were used
in the learning of the parameters while the others were left
for validation. On the other hand, due to the small number
of paths in experiments E2 R and E3 R, all paths were used
for learning of the parameters and also for validation of the
results.

The mean of the parameters B
Ri and the maximum

difference �B
Ri to the individual values obtained from

each path is collected in Table I. We can observe how the
learning algorithm captures the risk in each experiment. In
E1 N the learned parameters have similar values and close
to the minimum Bmin, since they capture the HHK of paths
in which the obstacles are equally avoided. In E2 R and
E3 R the algorithm successfully captures the HHK regarding
the risk related respectively to the repulsors R2 and R4

(highlighted in Table I). Note that when the HHK is learned,
not only is the risk captured in the repulsors but also other
navigation features of the expert pilot are obtained as well.
These other features include, for instance, the decision of
early positioning before entering in the lower narrow passage
captured in the repulsor R3 of E3 R.

Experiment E1 N E2 R E3 R

Ri BRi �BRi BRi �BRi BRi �BRi

R1 0.30 0.00 0.30 0.00 0.55 0.06
R2 0.39 0.09 0.87 0.02 0.30 0.00
R3 0.35 0.08 0.41 0.01 0.59 0.01
R4 0.47 0.08 0.31 0.01 0.79 0.05
R5 0.54 0.16 0.36 0.01 0.36 0.00
R6 0.30 0.00 0.40 0.01 0.39 0.01
R7 0.43 0.17 0.37 0.03 0.39 0.05
R8 0.30 0.00 0.30 0.00 0.30 0.00
R9 0.32 0.05 0.37 0.02 0.31 0.00
R10 0.34 0.05 0.30 0.00 0.30 0.00
R11 0.30 0.01 0.30 0.00 0.31 0.01

TABLE I
LEARNED PARAMETERS.

C. Validation of the results

To validate the results, the repulsors with the learned
parameters were applied to the adapted RRT* (we adapted
the implementation of [12]). In this case, the weight used in
the cost function (18) was set to � = 0.85.

We evaluated the resulting path through the area error
computed as the mean of the area enclosed between the gen-
erated path and all the paths of the pilots in the experiment.
This area error is also subdivided into different subareas (1,
2 and 3), where subarea 1 includes the lower narrow passage;
2 includes the transition between the bottom and upper part;
and 3 includes the upper narrow passage. In Table II we
compare the area error of our modified RRT* considering the
learning HHK in the repulsors, with the RRT* considering
only the euclidean distance in the cost function.

Experiment E1 N E2 R E3 R

Area [m2] Ours Eucl. Ours Eucl. Ours Eucl.
Area 1 1.27 1.85 1.05 2.24 0.75 1.4
Area 2 2.43 5.56 3.64 9.42 1.64 5.08
Area 3 1.90 4.83 1.32 9.54 6.34 10.35

Area total 5.60 12.23 6.01 21.19 8.72 16.82

TABLE II
EVALUATION OF THE RESULTING TRAJECTORIES.

In Figure 3 we can visualize the resemblance of the
resulting path in our approach to the pilot paths. Note that

in all the experiments our approach outperforms the RRT*
which only considers the euclidean distance.

In E1 N and E2 R, the error is mainly located in Area 2.
In this area, the pilot has a vast space without obstacles and
therefore he can navigate freely. Since our approach relies on
capturing the HHK in the map, i.e. the repulsors, this part of
the navigation cannot be completely characterized. A similar
situation occurs in Area 3 in E3 R as the pilot chooses to
keep a large security distance from the risky obstacles. Our
approach performs better in cluttered scenarios where the
HHK is captured into several obstacles in the map.

VI. CONCLUSIONS
In this paper we have introduced a novel approach to

capture the HHK of human expert pilots using paths of UAVs
from real life experiments. This HHK has been successfully
captured in the map representation of the environment using
repulsors. In the experiments we have also shown how to
adapt an RRT* algorithm to include this new information
in the path planning and obtain human-like trajectories. The
new model has some constraints. It can only be applied to
geometric trajectories, not to dynamic ones where velocity
and acceleration are taken into account. Moreover the HHK
can only be transferred to physical repulsors, but not to
whirlwind or other repulsors that may exist. Future work
will include these issues and the possibility of discovering
non physical repulsors using this model.

REFERENCES

[1] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning
algorithms from the perspective of autonomous uav guidance,” Journal
of Intelligent Robotic Systems, vol. 57, no. 1-4, p. 65100, 2010.

[2] S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept., Iowa State University, technical
report TR 98-11, Tech. Rep., 1998.

[3] E. F. S. Karaman, “Sampling-based algorithms for optimal motion
planning,” The International Journal of Robotics Research, Vol.30, 7,
pp.846-894, 2011.

[4] A. Boeuf, J. Cortes, R. Alami, and T. Simeon, “Planning agile
motions for quadrotors in constrained environments,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2014.

[5] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning
on configuration-space costmaps,” Robotics, IEEE Transactions on,
vol. 26, no. 4, pp. 635–646, 2010.

[6] O. Khatib, “Real-time obstacle avoidance for manipulators and fast
mobile robots,” International Journal of Robotics Research, vol.5,
pp.90, 1986.

[7] H. A. M. Svenstrup, T. Bak, “Trajectory planning for robots in
dynamic human environments,” in Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS 2010),
pp.4293-4298, 2010.

[8] S. Schaal, “Learning from demonstration,” Advances in neural infor-
mation processing systems, pp. 1040–1046, 1997.

[9] ——, “Dynamic movement primitives-a framework for motor control
in humans and humanoid robotics,” in Adaptive Motion of Animals
and Machines. Springer, 2006, pp. 261–280.

[10] G. Ferrer and A. Sanfeliu, “Proactive kinodynamic planning using the
extended social force model and human motion prediction in urban
environments,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp.1730-1735, 2014.

[11] ARCAS, “Aerial robotics cooperative assembly system,” url
http://www.arcas-project.eu, 2013-2016.

[12] O. Adiyatov and H. Varol, “Rapidly-exploring random tree based
memory efficient motion planning,” in Mechatronics and Automation
(ICMA), 2013 IEEE International Conference on, 2013, pp. 354–359.

2 4 6 8 10 12
0

2

4

6

8

10

x [m]

y
[m

]

Area 2 Area 1

Area 3

1

2

3

4
5

6
7

8
9

10

11

(a) E1 N

2 4 6 8 10 12
0

2

4

6

8

10

x [m]

y
[m

]

Area 2 Area 1

Area 3

1

2

3

4
5

6
7

8
9

10

11

(b) E2 R

2 4 6 8 10 12
0

2

4

6

8

10

x [m]

y
[m

]

Area 2 Area 1

Area 3

1

2

3

4
5

6
7

8
9

10

11

(c) E3 R

Fig. 3. Navigating in an environment: without risk (top), with risk on
the top and bottom of the upper narrow passage (middle and bottom
respectively). Pilot paths used for learning of the parameters (cyan), paths
used for validation (blue), RRT* using learned parameters of the repulsors
(red), RRT* using euclidean distance (green). The initial and final position
are represented by boxes (yellow and magenta respectively).

