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Abstract We propose an e�cient and robust method
for the recognition of objects exhibiting multiple intra-
class modes, where each one is associated to a partic-
ular object appearance. The proposed method, called
Random Clustering Ferns (RCFs), combines synergi-
cally a single and real-time classi�er, based on the boos-
ted assembling of extremely-randomized trees (ferns),
with an unsupervised and probabilistic approach in or-
der to recognize e�ciently object instances in images
and discover simultaneously the most prominent ap-
pearance modes of the object through tree-structured
visual words. In particular, we use Boosted Random
Ferns (BRFs) and probabilistic Latent Semantic Anal-
ysis (pLSA) to obtain a discriminative and multimodal
classi�er that automatically clusters the response of its
randomized trees in function of the visual object ap-
pearance.

The proposed method is validated extensively in
synthetic and real experiments, showing that the method
is capable of detecting objects with diverse and complex
appearance distributions in real-time performance.

Keywords recognition � random trees� plsa � boosting

1 Introduction

Computer vision is becoming a very active research
�eld, especially for the tasks of image understanding
and object recognition in images and videos. There ex-
ist a vast amount of methods that are able to detect and
identify objects in images with striking results, in spite
of diverse factors that make di�cult this problem such
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as lighting changes, scaling, cluttered backgrounds, ob-
ject deformations, general 3D rotations, and intra-class
variations [10,11,15,26,38].

Machine learning techniques such as support vec-
tor machines [8,11,26,47], boosting [1,16,38,39], and
more recently convolutional neural networks [10,15,23]
are widely used to compute robust and discriminative
classi�ers for object detection. However, most of these
works are computationally expensive and unfeasible for
real-time applications. The reasons lie in using complex
algorithms, costly features, and large amounts of train-
ing data to compute the object classi�ers. Additionally,
the time taken to compute these classi�ers is usually
quite long, in the range of hours or even weeks.

Some methods that are able to compute and test
object classi�ers in a relatively short time are those
based on binary decision trees, such as Random Forest
[5,4,6,13,36] and Random Ferns [19,22,31]. These tree-
structured classi�ers have shown outstanding results in
the past, especially in terms of e�ciency and reliabil-
ity. In particular, Random Ferns (RFs) have been used
for learning and detecting object instances in real time
since they are extremely-randomized trees containing
sets of binary features (Boolean comparisons between
two pixels values) computed at random [6,19,27,31].

Subsequently, Boosted Random Ferns (BRFs) were
introduced to e�ciently learn and detect object classes
under intra-class appearance changes [35,39,44]. The
BRFs improve the detection performance of RFs since
the most discriminative ferns are selected via boosting
to compute the object classi�er. This is done by an
iterative and adaptive process in which the ferns are
trained using a distribution of misclassi�cation weights
over the training samples [34].

Although the BRFs classi�er has shown remarkable
results to detect objects with various intra-class appear-
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Fig. 4 Computation of a random fern in an input image. (a) The classi�er is evaluated for every local window x inside the
image I using a sliding window approach. (b) The fern f (x ; u ; � ) is tested in the window x at position u and with features
parameters � . (c) Fern consisting of two binary features whose parameters � 1 and � 2 are chosen at random. (d) Response of
the fern f (x ; u ; � ) as a combination of its binary features.

prede�ned intra-class subcategorization based on do-
main knowledge but that it automatically clusters the
samples through a boosted tree. Although this method
uses a single tree and has shown very good results, CBT
is computationally more expensive since the construc-
tion of the tree involves applying boosting at each tree
node. Conversely, RCFs are computed in a few minutes
because the multiple trees are built at random and com-
bined afterwards using boosting. The clustering step is
conducted once the BRFs classi�er has been computed.

3 Random Clustering Ferns

In this section, we describe in detail the ingredients of
the Random Clustering Ferns (RCFs). Fig. 2 shows a
general scheme of RCFs and their main components.
Firstly, we brie�y introduce the computation of ran-
dom ferns in Sec.3.1 since they are at the core of the
proposed method. Sec.3.2 explains the tracking step
using an online classi�er to extract training samples.
Sec.3.3 comments the computation of the BRFs clas-
si�er with the training samples. Lastly, the clustering
step through pLSA and BRFs is described in Sec.3.4.

3.1 Random Ferns

Random Ferns (RFs) are a particular version of Ran-
dom Forests which have shown great success for object
detection in real-time applications, thanks to their sim-
plicity and fast computation [ 19,22,31,40,41].

More formally, each fern f consists of a set ofM
local binary features f where each feature captures the
di�erence between the values of two image pixels chosen
at random. That is,

f (x ; u; � ) = [ f (x ; u; � 1); : : : ; f (x ; u; � M )] ; (1)

where x is an image window in the input imageI (see
Fig. 4 (a)), and u and � are the fern parameters. The

former de�nes the center of the subwindow su , with
sizeS � S, where the fern is computed within the win-
dow x (observe Fig.4 (b)). The second parameter� =
f � 1; : : : ; � M g corresponds, in turn, to the set of param-
eters of the binary features.

Each binary feature f is computed as

f (x ; u; � ) = I (I (p) > I (p0)) ; (2)

where � = f p; p0g are the random pixel positions insu ,
I (p) is the pixel value at position p, and I(e) refers
to the indicator function 2. Fig. 4 (c) shows a demo ex-
ample where a fern consisting of two binary features is
computed in the subswindowsu . Note that each feature
compares the image intensity values between two pixels
selected randomly.

The response of the fern is a M-dimensional binary
vector that is commonly represented by an integer value
z 2 [0; : : : ; 2M � 1]. This response is calculated using the
co-occurrence of the individual features outputs. This is
illustrated in Fig. 4 (d) where the response of a fern with
features outputs [0; 1] is calculated by z = (01) 2 = 1 .

3.2 Object Tracking

The goal of this stage is to extract automatically a set
of training samples which are used later to compute the
BRFs classi�er (see Fig.2 (c)). These training samples
forms the training data D which in turn consists of pos-
itive and negative images containing object instances
and background patches, respectively.

To e�ciently track the object in every frame, we
compute an online classi�er based on extremely ran-
domized trees. Speci�cally, and in order to maintain
consistency with other components of the presented
method, we use Online Random Ferns (ORFs) which
have shown very good in terms of e�ciency and detec-
tion rates in the past [31,40,41].

2 The indicator function I (e) = 1 if e is true, and 0 other-
wise.
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Fig. 5 Online random ferns for object tracking. (a) Tree-structured representation of two ferns having two binary features.
(b) Ferns responses on an input sample x . (c) Updating ferns probabilities with the sample x (assuming this sample is positive).

The procedure to compute this online classi�er is
as follows: �rstly, the human user provides one object
annotation in the �rst frame of the image sequence (see
magenta box in Fig.2 (a)) to initialize the classi�er with
a set of image patches extracted around the annotated
object using small deformations like image shifts and
scale changes. Additionally, random image patches from
the background are also collected to feed the classi�er
with negative samples.

Subsequently, the classi�er is incrementally com-
puted through the image sequence using a self-learning
approach, in which detection and updating steps are
carried out jointly, both to extract training samples
and update the object classi�er. Further in detail, for
a given input image I , the classi�er is tested at every
image window x � I using a sliding window strategy
(see Fig.4 (a)). This procedure is also applied for mul-
tiple image resolutions so as to deal with scale changes.
The result of this detection step is a set of potential
object hypotheses (image windows) that corresponds
to the training images. Then, these images are labeled
automatically as positive or negative samples in accor-
dance to the classi�er con�dence, and used to update
the online classi�er. In this way, the classi�er is con-
tinuously improved with new input images while it de-
tects object instances under varying environmental and
imaging conditions.

More precisely, the online classi�erT(x) for object
tracking is de�ned by

T(x) =
�

+1 if confT (x) > � T

� 1 otherwise;
(3)

where x 2 IR2 refers to the image window, � T is the
classi�er threshold (set at 0:5 by default), and confT (x)
is the con�dence of the online classi�er for the samplex.
Therefore, if the output of the classi�er is T(x) = +1 ,
the samplex is assigned to the positive or object classC.

Otherwise, this sample is considered as negative and
assigned to the background classB.

The con�dence of the online classi�er comprises the
probabilities of a series ofR random ferns,

confT (x) =
1
R

RX

r =1

p(f jC)
p(f jC) + p(f jB)

; (4)

where p(f jfC ; Bg) = p(f (x ; u r ; � r ) = zjfC ; Bg) are the
class-conditional probabilities of the fern f (x ; u r ; � r )
with responsez, and 1

R is a normalization factor to es-
tablish the classi�er con�dence in the range [0; 1]. The
fern parametersu r 2 f u1; : : : ; uL g and � r 2 f � 1; : : : ; � P g
are selected at random, beingf u1; : : : ; uL g the set of all
possible locations in the windowx, and f � 1; : : : ; � P g a
small pool of features parameters that is used to reduce
the computational cost [40,41]

In Fig. 5 (a,b), we show an example of the struc-
ture and responses of two ferns on an input samplex.
Contrary to Fig. 4, here, the structure of ferns are rep-
resented as binary decision trees. Observe that the fern
responsez depends of the binary features outputs. The
co-occurrence of these features determines the fern re-
sponsez, that is associated to the tree leaf where the
sample falls.

The online learning of the classi�er T(x) is carried
out by updating the ferns probabilities with new in-
put samples (potential object hypotheses). For each in-
put sample x, the classi�er �rst determines its class
label according to its con�dence on this sample (re-
fer to Eq. 3). Subsequently, the class-conditional prob-
abilities, p(f (x ; u r ; � r )jC) and p(f (x ; u r ; � r )jB), are up-
dated according to whether the sample belongs to either
the positive or negative class. To this end, we make use
of 2M -dimensional histograms to represent these fern
probabilities (empirical distributions). For example, if
the sample is considered positive, thez-th bin of the his-
togram p(f (x ; u r ; � r )jC) is increased in one unit. This
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is illustrated in Fig. 5 (c), where the input sample is
used to update the fern distributions.

3.3 The Object Classi�er

Once the training data, consisting of positive and neg-
ative image samples, has been obtained from the se-
quence of images (see Fig.2 (c)), the next stage of the
proposed method is the computation of an e�cient and
discriminative classi�er which recognizes objects with
multiple intra-class modes (Fig. 2 (d)). For this pur-
pose, we resort to Boosted Random Ferns (BRFs) since
they have demonstrated to be able to detect objects
robustly and with low computational cost [ 44,39].

The reason that motivates the use of the BRFs clas-
si�er instead of the ORFs classi�er, presented in the
previous section for object tracking, lies in BRFs are
more discriminative than ORFs whilst maintain the fast
computation of ferns [39]. Particularly, BRFs uses a
boosting algorithm in order to �nd automatically the
fern parametersu r 2 f u1; : : : ; uL g and � r 2 f � 1; : : : ; � pg
that best discriminate the object class (positive) from
the background one (negative) in an iterative learning
scheme using the training data. This di�ers largely of
ORFs that selects all ferns parameters at random with-
out considering the set of training samples.

More formally, and similar to ORFs, the BRFs clas-
si�er H (x) for object detection is computed by

H (x) =
�

+1 if confH (x) > � H

� 1 otherwise;
(5)

where x is the input sample, � H is a threshold that
determines the classi�er tolerance, and confH (x) is the
con�dence of the classi�er on the samplex. Once again,
if the output of the classi�er is H (x) = 1 , the samplex
is considered as a positive (object) sample. Otherwise,
this sample belongs to the negative or background class.

As it is standard in boosting, we de�ne the con�-
dence of the BRFs classi�er using a combination ofR
weak learnershr ,

confH (x) =
RX

r =1

hr (x); (6)

where each weak learner is computed as:

hr (x) =
1
2

log
p(f (x ; u r ; � r )jC) + �
p(f (x ; u r ; � r )jB) + �

; (7)

being p(f (x ; u r ; � r )jfC ; Bg) the class-conditional prob-
abilities of fern f (x ; u r ; � r ), and � a small constant.

In order to obtain the values of u r and � r for each
weak learnerhr that most discriminate the object class

from the background, BRFs use Real AdaBoost [34] to
iterate over all image locationsu l = f u1; : : : ; uL g and
the small set of features parameters� p = f � 1; : : : ; � P g
to �nd those values where the score ofhr gets larger. To
this end, BRFs use a distribution wr of misclassi�cation
weights over the training samples that is updated at
each boosting iteration r according to the performance
of the weak learners on the training data [34,39].

More speci�cally, boosting evaluates each fern with
parameters u l and � p over the whole training set to
compute the class-conditional probabilities with

p(f (x ; u l ; � p) = zjC) =
X

i :f (x i ;u l ;� p )= z ^ y i =+1

wr (x i ) (8)

p(f (x ; u l ; � p) = zjB) =
X

i :f (x i ;u l ;� p )= z ^ y i = � 1

wr (x i ) (9)

where i = 1 ; 2; : : : ; N , being N the number of training
samples,yi = f +1 ; � 1g denotes the object and back-
ground class labels for the window samplex i 2 D , and
wr (x i ) is the sample weight at roundr .

Next, the Bhattacharyya coe�cient Q is used to se-
lect the fern parameters u r and � r as those valuesu l

and � p that minimize the training error. This can be
formulated as:

Q(u l ; � p) = 2
2M � 1X

z=0

p
p(zjC) p(zjB) ; (10)

(u r ; � r ) = arg min
u l ;� p

Q(u l ; � p): (11)

where p(zjfC ; Bg) stands for p(f (x ; u l ; � p) = zjfC ; Bg).
Finally, at the end of the iteration, this weak learner

is used to update the weights associated to the image
window samples

wr +1 (x i ) =
wr (x i ) exp(� yi hr (x i ))

P N
j =1 wr (x j ) exp(� yj hr (x j ))

(12)

This updating rule increases the weight for the in-
correctly classi�ed samples and decreases the weight for
the correctly classi�ed samples, with the purpose of fo-
cusing the next weak learnerr + 1 on the misclassi�ed
samples.

Finally, once the BRFs classi�er has been computed
during the training phase, this classi�er can be evalu-
ated in run time to detect object instances in images.
Similar to tracking stage, the classi�er is tested densely
over each input image using a sliding window strategy,
and tested for multiple image scales to cope with scale
changes.

To illustrate the performance of the classi�er in a
clear and simple manner, we show in Fig.6 (a,b) the
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(a) Training Samples (b) Classi�cation Results (c) Clustering Results
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Fig. 6 RCFs for a 2D classi�cation problem. (a) Positive (crosses) and negative (circles) samples used to compute the BRFs
classi�er ( 1000 positive and negative samples). (b) Classi�cation results provided by BRFs. Yellow samples refer to the positive
class, whereas blue ones are negative samples. Misclassi�ed samples are shown in black. (c) Output of the proposed RCFs.
Each color indicates a di�erent cluster of the positive class distribution.

classi�cation results of BRFs for a 2D classi�cation prob-
lem consisting of 1000 positive and negative samples.
Positive samples are indicated by crosses, whereas the
negative samples are represented by circles. Fig.6 (a)
shows the complex class distributions. Note that while
the positive samples are distributed in �ve intra-class
clusters, the negative samples are spread at random
over the entire 2D feature space.

For this particular problem, instead of the compar-
isons between two pixels values (see Eq.2), we use 2D
decision stumps (axis-aligned split functions) as binary
features, where each decision stumpf maps a given
sample x 2 [0; 1] � [0; 1] to a Boolean label, f (x) =
I (x j > � ), where j corresponds to a speci�c (horizontal
or vertical) coordinate of x, and � is a random threshold
in the interval [0; 1].

Fig. 6 (b) shows the output of BRFs for discern-
ing the positive class from the negative one. Samples
in yellow color make reference to samples correctly la-
beled as positive samples. Similarly, blue samples de-
note negative samples. Black samples correspond to
samples wrongly classi�ed by BRFs. Observe that these
misclassi�ed samples are a small portion of the whole
set of samples. Contrary, BRFs are able to classify cor-
rectly most samples with high accuracy and precision
rates (rates of 98%) in spite of the complexity present
in this problem like having multiple positive clusters
and a narrow separation between classes.

3.4 Clustering

In the past section, we have seen that BRFs are able
to compute a robust classi�er that can cope with vari-
ous distribution clusters and with non-linearly separa-
ble class distributions. However, this classi�er can not
distinguish among these clusters in order to detect the

object and recognize a particular object appearance.
For the example shown in Fig. 1, BRFs focus only on
detecting faces under multiple views, but not on dis-
cerning among them.

With the aim of �nding important internal struc-
tures of the object class without human supervision or
computing multiple classi�ers, we propose to use prob-
abilistic Latent Semantic Analysis (pLSA) to discretize
the overall appearance of the object into multiple clus-
ters of samples with a strong feature similarity. Actu-
ally, this corresponds to the third stage of the proposed
method, see Fig.2 (e), where the output of the BRFs
classi�er is clustered in function of the object appear-
ance. This is exempli�ed in Fig. 3.

Speci�cally, pLSA is a generative model from the
statistical text literature that allows discovering latent
or hidden topics from a corpus containing co-occurrences
between documents and words [3,17,37].

In this work, we follow the same idea, but instead of
documents and words we use images and tree-structured
visual words, respectively, to �nd automatically the most
relevant clusters of the object appearance (topics). The
pLSA algorithm is suitable for this problem because
it provides a statistical model that allows represent an
object samplex i as a mixture of K topics,

p(wj jx i ) =
KX

k=1

p(Tk jx i )p(wj jTk ); (13)

where the number of topicsK is de�ned a priori, p(Tk jx i )
is the probability of topic Tk occurring in the samplex i ,
and p(wj jTk ) is the probability of the visual word wj

occurring in the topic Tk [17,37].
For our case, we use the object samples extracted by

the online classi�er, and de�ne that each fern leaf j cor-
responds to a particular visual wordwj since it encodes
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Fig. 7 Binary corpus including the co-occurrence between
training samples and visual words. White values represent
that a visual word occurs in a given training sample.

a speci�c visual appearance determined by the con�g-
uration of binary features. This is shown in Fig. 3.

The parameters of the model,p(Tk jx i ) and p(wj jTk ),
are estimated via likelihood estimation. This is a non-
convex optimization that is commonly solved using the
Expectation-Maximization (EM) algorithm over the log-
likelihood of the objective function L ,

logL =
NX

i =1

WX

j =1

n(x i ; wj ) log
KX

k=1

p(wj jTk )p(Tk jx i ); (14)

where N is the number of training samples,W is the
amount of visual words (compute byW = R� 2M ), and
n(x i ; wj ) is the number of times that the visual word
wj appears in the documentx i .

To discover the latent topics, pLSA requires an in-
put table (corpus in the text analysis literature) of size
N � W containing the co-occurrence of training sam-
ples and the bag of visual words. Fig.7 shows this table
for a 2D problem example in which the positive sam-
ples have been ordered by cluster in order to distinguish
visually strong patterns in the corpus. We can di�eren-
tiate �ve di�erent patterns corresponding to the clus-
ters. Notice also that the table has binary values since
n(x i ; wj ) 2 f 1; 0g and that indicates the presence or
not of a particular visual word wj in the sample x i .
This is similar to the example exposed in Fig.3.

Once the parametersp(Tk jx i ) and p(wj jTk ) have
been estimated during the training step, we usep(Tk jx i )
to discover the intra-class mode (object appearance) of
a test samplex in run time. This can be written as:

t = arg max
Tk

p(Tk jx ); k = 1 ; 2; :::; K (15)

where t 2 f 1; : : : ; K g is the index indicating the intra-
class mode associated to a topicTt . For this paper, the

test samples are the image windowsx provided by the
BRFs classi�er for object detection. For example, Fig.1
depicts these image windows through bounding boxes,
whereas the output of pLSA clustering is represented
by a color code (each color represent an object appear-
ance). Here, we can see how these two methods (BRFs
and pLSA) are appropriately combined to compute the
proposed RCFs for multimodal object recognition.

With respect to the 2D classi�cation problem pre-
sented before, Fig.6 (c) shows the output of the cluster-
ing stage over the 2D training samples. Observe that the
positive samples are clustered inK =5 di�erent clusters,
indicated again through di�erent colors, and that each
one keeps strong feature correlation in the 2D space.

4 Experiments

In this paper, we evaluate qualitatively and quantita-
tively the proposed RCFs in various synthetic and real
experiments in which their main contributions are high-
lighted.

4.1 Synthetic Experiments - 2D Classi�cation Problem

The proposed method has been evaluated in synthetic
experiments in order to observe more clearly the perfor-
mance of the RCFs and their main constituents (BRFs
and pLSA). Fig. 8 shows, for instance, the output of the
proposed approach on a scenario generated at random
in which two class distributions (positive and negative)
with high complexity are considered. For this experi-
ment, the RCFs are computed usingK = 5 intra-class
clusters (topics).

We observe in Fig.8 (a) that the proposed method
achieves correctly classify most samples while discovers
multiple intra-class modes (indicated by means of clus-
ters with di�erent colors). The method only produces a
small number of misclassi�ed samples (black samples).
This result is also shown in the precision-recall curve,
see Fig.8 (b), where RCFs obtain a high Equal Error
Rate (EER)3. This proves that the proposed method,
and especially the BRFs classi�er, is able to robustly
classify positive samples, under a complex and multi-
modal distribution, from a negative class which con-
tains a large number of negative samples spread over the
whole 2D feature space. Furthermore, the method also
increases the separability between classes while reduces
the risk of misclassi�cation. This is seen in Fig. 8 (c)

3 The Equal Error Rate (EER) is the point in the precision-
recall curve where precision=recall.
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(a) Classi�cation Results (b) Precision-Recall Plot (c) Score Distributions
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Fig. 8 2D classi�cation performance of RCFs. (a) Output of the proposed method to classify sets of positive and negative
samples. In this 2D problem, we indicate positive samples through crosses, whereas negative samples are represented by circles.
Samples in black color represent to misclassi�ed samples. (b) Classi�cation plot using recall-precision curve and Equal Error
Rate (EER). (c) Class score distributions for the positive and negative classes.

2D Classi�cation Performance
RFs RCFs

# Clusters ( K ) # Clusters ( K ) # Ferns ( R) # Features ( M )
3 5 10 3 5 10 5 10 20 50 1 3 5 7

EER (%) 90.6 92.4 84.4 96.9 97.4 96.0 95.4 96.6 96.9 97.2 83.1 96.1 96.9 97.2
Distance (%) 59.0 68.8 46.5 83.1 90.6 73.2 77.2 80.4 83.1 88.8 41.2 73.0 83.1 88.4

Table 1 2D classi�cation results for the RCFs and RFs classi�ers in function of the numbers of clusters ( K ), ferns ( R) and
binary features ( M ). The RCFs outperform to the RFs classi�er, especially as the amount of clusters gets larger.

(a) Training Samples (b) RCFs (c) K-means (Euclidean)
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Fig. 9 Synthetic clustering results. (a) Positive training class consisting of 10 intra-class modes. (b) Clustering results provided
by RCFs, where each color is associated to a particular cluster. (c) Output of the K-means algorithm using Euclidean distance.

where we plot the score distributions4 for the positive
and negative classes. Notice that RCFs largely separates
these two classes.

Quantitatively speaking, Table 1 provides the clas-
si�cation results of RCFs in terms of the numbers of
ferns, binary features, and intra-class clusters. We re-
port the average classi�cation rates of RCFs over10
runs in order to consider the randomness of the BRFs
classi�er and the 2D scenario. Each scenario is gener-
ated at random with multiple sample clusters (K ). We
see that RCFs obtain high classi�cation scores (EER)
and large distances between classes when the amounts
of features (M ) and ferns (R) get larger. Here, we use

4 The score distribution (Gaussian function) is calculated
using the con�dences of the BRFs for all class samples.

the Hellinger distance5 to measure the separability be-
tween Gaussian distributions. The default parameters
for this experiment are K = 5 , R = 20 and M = 5 .

Table 1 also shows a comparison, in function of
the number of clusters, of RCFs against the RFs clas-
si�er [ 31,40]. We see that RCFs attain the best per-
formance rates since the classi�er uses boosting to se-
lect the most discriminative ferns. This improvement is
more noticeable as the number of clusters increases.

With regards to the clustering performance, Fig. 9
shows the results of the RCFs in comparison with the
K-means algorithm [29]. Positive samples are shown

5 The squared Hellinger distance for two distribu-
tions P and Q is de�ned as: H 2 (P; Q) = 1 �p

k1 =k2 exp(� 0:25k3 =k2 ), with k1 = 2 � P � Q , k2 = � 2
P + � 2

Q ,
and k3 = ( � P � � Q )2 .
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Clustering Results
BRFs+pLSA K-means (Euclidean) BRFs+K-means

D 2 5 10 20 2 5 10 20 2 5 10 20
K =3 0.097 0.001 0.033 0.000 0.147 0.100 0.133 0.067 0.177 0.036 0.086 0.113
K =5 0.240 0.022 0.019 0.020 0.180 0.139 0.163 0.201 0.304 0.127 0.114 0.173
K =10 0.514 0.144 0.092 0.096 0.367 0.143 0.159 0.116 0.548 0.251 0.207 0.102

Table 2 Average clustering values for RCFs, K-means, and BRFs+K-means.

Fig. 10 Example images showing the output of the ORFs classi�er for object tracking (Sec. 3.2). Green boxes indicate the
output of the online classi�er. Small numbers beside boxes correspond to the con�dence of the classi�er (Eq. 4).

only for the purpose of clarity. The left �gure corre-
sponds to the positive training samples belonging to
a 20-dimensional feature space. In this �gure, we only
plot the �rst two feature dimensions ( x1,x2). Fig. 9 (b)
plots the clustering output of the proposed method
(BRFs+pLSA), whereas the right �gure shows the re-
sults of K-means using Euclidean distance in the feature
space. We see that our method yields good clustering
results (each cluster has a singular color), in contrast
to the K-means algorithm which produces some incor-
rect clustering labels (observed through the confusion
of colors). This is particularly visible for clusters 3 and
10, where K-means assigns multiple labels to each clus-
ter. By contrast, our method produces one-color dis-
tribution clusters, which results in a better clustering
performance, observe Fig.9 (b).

Finally, Table 2 shows quantitative results of the
clustering performance of the proposed method. More
speci�cally, this table reports the average confusion val-
ues among clustering labels (using ground truth labels)
for di�erent numbers of clusters (K ) and feature space
dimensions (D). Here, we use as general measure of
clustering error, the entropy function over the confu-
sion matrix using the ground-truth labels vs. the es-
timated labels. For example, if the method performs
clustering correctly, the confusion matrix becomes into
the identity matrix and the entropy score is zero. Con-
trary, if the quality of the clustering is poor, the en-
tropy function yields much larger values. From the ta-
ble, it is seen that our method (BRFs+pLSA) obtain
lower scores than the K-means algorithm, especially
whether we consider large feature spaces (D > 5). This

is due mainly to the curse of dimensionality that a�ects
largely to clustering algorithms like K-means [29].

Table 2 also includes an approach combining BRFs
and K-means using the Hamming distance. Similar to
pLSA, the K-means algorithm is applied here to the re-
sponse of the BRFs classi�er (ferns leaves) to perform
clustering. This contrasts with previous experiments
where K-means is applied to the feature space. The goal
of this particular experiment is to show that pLSA is
convenient for the proposed method and that provides
better clustering results. Again, observe that RCFs pro-
duce lower confusion values than the BRFs+K-means
approach.

4.2 Real Experiments - Face and Object Detection

In this section, the proposed approach has been used to
perform multimodal object recognition in diverse real
experiments concerning to the detection of faces and
objects from multiple views. Particularly, this corre-
sponds to a classi�cation problem involving multiple
intra-classes where each one is associated to a speci�c
view of the object or face. Refer to Fig.1.
Multi-view Face Detection. For face detection, the
method uses two image sequences of human faces from
the dataset introduced in [40]. Both sequences have
more than 200images acquired by a mobile robot while
it interacted with humans in indoor scenarios. For train-
ing, we use the the �rst sequence, whereas the second
one is used for validation.

Fig. 10 shows example images of the output of the
tracking step on the training sequence. Observe how
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Fig. 11 Positive training samples acquired during the track-
ing step by the ORFs classi�er.

���
���

���
	
�

���
�
�

��	

Fig. 12 Spatial distribution of ferns selected by boosting to
assemble the BRFs classi�er.

the ORFs classi�er is capable of detecting most faces
despite the out-the-plane rotations. This tracking step
is automatic and it is only necessary to annotating the
�rst face in the image sequence using a bounding box6.
This is achieved thanks to ORFs that perform tracking
by detection. That is, the classi�er is tested at every
frame in order to discover human faces. Subsequently,
the detection predictions obtained in this frame are
used to update and re�ne the online classi�er. Note
also that the classi�er runs in real time (about 10 FPS)
using a C++ code7.

With respect to the parameters used to compute the
ORFs classi�er, we useR = 500 ferns, M = 10 binary
features per fern, and a squared subwindowsu of size
S = 10. For this experiment, all images are in RGB
color space and normalized to a size of30 � 30 pixels.
We set to P = 10 the size of the pool of fern parameters.

Once the tracking step has been conducted on the
training sequence, the result is a set of positive (faces)
and negative (background) image samples that are used
to compute the BRFs classi�er. Some positive samples
are shown in Fig. 11. Looking at these images we see
the large intra-class variability of faces. The visual ap-
pearance of faces changes depending on the viewpoint.

Using the training samples, the BRFs classi�er is
computed by selecting the most relevant ferns towards
classi�cation. Precisely, the boosting algorithm selects

6 Albeit it is possible to use human assistance during the
learning to improve the visual skills of the classi�er [ 40]

7 The code is available at http://www.iri.upc.edu/
people/mvillami/code.html

Fig. 13 Sample images showing three di�erent face appear-
ance clusters. Observe that samples belonging to the same
cluster share visual similarities.

the feature parameters� r and the fern location u r that
best discriminates the faces from background samples.
The spatial layout of the selected ferns is visualized in
Fig. 12, where reddish areas indicate high density of
ferns. Clearly the classi�er focuses on regions around
the eyes since they have shown to be discriminative
features for face detection [45].

With regard to the parameters of BRFs, we keep
the same values that ORFs, with the exception of using
M = 7 binary features and R = 300 ferns. To compute
the classi�er, we use about150 positive and negative
image samples. Fig.11 shows some positive samples.

The result of the clustering step via pLSA is pro-
vided in Fig. 13. This �gure shows some example images
corresponding to K = 3 di�erent intra-class appear-
ances modes (clusters) found by the proposed method
during the training phase. We see that these samples
share similar visual features and that RCFs are able
to cluster these samples using the output of a tree-
structured classi�er.

In Fig. 14 are shown some detection results of RCFs
on the test image sequence. Note that RCFs are ca-
pable of detecting most faces at the same time that
they can estimate the face pose. This is indicated in the
images through colored boxes. This experiment reveals
that the proposed method using a single classi�er can be
used for pose estimation using the co-occurrence of tree-
structured visual words. However, we observe in the �g-
ure a few mistakes (e.g, false positives) due mainly to
detecting other faces outside the training set. Note that
the goal here is to detect a particular face in which the
classi�er was trained (training image sequence) and not
in the general problem of face detection. RCFs run in
this experiment at 2 FPS using a Matlab code.
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Fig. 17 Clustering results of RCFs on the Caltech face dataset [ 12]. The proposed method discovers latent intra-class appear-
ance clusters which correspond to people identity.

Clustering Performance Comparison
K-means BRFs+K-means BRFs+pLSA

Entropy 0.79 0.35 0.29

Table 4 Entropy values for di�erent clustering strategies:
K-means, BRFs+K-means and RCFs (BRFs+pLSA).

values of binary featuresM , which results in di�erent
numbers of ferns leaves. The number of ferns is �xed
to R = 300. Similarly to the synthetic experiments, the
performance of RCFs is measured using the entropy-
based error on the confusion matrix since this matrix is
not frequently diagonal. Note that the clustering error
is decreased along to the fern depth (number of binary
features) and visual words. Using larger amounts of vi-
sual words, RCFs yield low clustering errors. Fig.16
shows, for instance, the clustering results forM = 7
features, where just three samples were wrongly classi-
�ed.

Face detection rates are also reported in Table3.
RCFs attain perfect classi�cation in all cases (1:0 EER),
showing that the BRFs classi�er is able to learn and
detect multiple and di�erent faces. The table also indi-
cates the training times of RCFs. We see that the com-
putation of the BRFs classi�er is done relatively fast, in
decaseconds, whereas the clustering via pLSA is done
in the order of minutes. This is especially critical for
larger sizes of visual words, which are in turn need to
obtain good clustering results. However, once RFCs are
computed during the learning step, the proposed mul-
timodal detector runs in about two frames per second
using Matlab and MEX �les 10.

Similar to the synthetic experiments, we compare
the clustering performance of RCFs against K-means
and BRFs+K-means (see Table 4). The former per-
forms clustering using the pixels intensities in images

10 The code for RCFs is available at http://www.iri.upc.
edu/people/mvillami/code.html .

Cluster 5

Cluster 1

Cluster 4

Cluster 2

Cluster 3

Fig. 18 RCFs clustering results using tSNE [ 9] visualization.

while the latter is carried out using the visual words
provided by BRFs. Observe that RCFs (BRFs+pLSA)
achieve the lowest entropy value, showing that perform-
ing clustering on visual words yields better results than
on pixel data.

Fig. 18 shows the clustering results of RCFs using
the algorithm proposed in [9] for visualization (tSNE).
This algorithm performs dimensionality reduction via
PCA. Here, the visual words contained in the N � W
corpus are reduced to 2D points, each representing a
training image sample. The colors in the �gure indicate
the intra-class cluster labels provided by RCFs. Notice
that most of the estimations are correct and agree with
the dataset labels (people identity). Only two samples
are misclassi�ed, indicated in the �gure by black boxes.
Multi-view Object Detection. The proposed method
is also used for object recognition. In this case, for de-
tecting a mug and a Rubik cube seen from multiple
views. To this end, we use the BoBot dataset [21] that
contains various image sequences with di�erent objects.
Each sequence has more than600 images. For this ex-
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Fig. 19 Multimodal object recognition results provided by RCFs for two image sequences of the BoBot dataset [ 21]. First and
third rows depict the response of the tracking step for a Rubik cube and a mug, respectively. Second and fourth rows show
the output of RCFs using K = 3 latent appearance clusters.

periment, we useK = 3 appearance clusters and the
same parameters values than previous experiments.

Fig. 19shows the response of RCFs for the addressed
objects, represented by bounding boxes in images. The
�rst and third rows correspond to the output of the
tracking step on the Rubik cube and mug sequences,
respectively. Once again, the ORFs classi�er can detect
the objects pretty well using weakly human annotation.
However, this method is not able to distinguish di�erent
object appearance modes. By contrast, the second step
of the proposed method, the RCFs, allows to detect
the objects and discretize the overall object appearance
into di�erent subsets with high feature correlation. The
second and fourth rows, in the same �gure, show some
example images with the output of RCFs. Observe that
the method discoversK = 3 latent appearance modes.

5 Conclusions and Future Work

In this paper, we have introduced Random Clustering
Ferns (RCFs) for the learning and detection of objects
with multiple intra-class appearance modes. The pro-
posed method performs simultaneously object detection
and clustering using Boosted Random Ferns (BRFs)

and probabilistic Latent Semantic Analysis (pLSA). This
is particularly convenient for detecting objects seen from
di�erent viewpoints since RCFs allow to localize the ob-
ject in images and recognize a speci�c object appear-
ance. Unlike other works devoted to this task, using
various pose-speci�c detectors, RCFs use a single and
discriminative classi�er based on random ferns. This
proposed approach also contrasts with more complex
methods in the state of the art which require of thou-
sands of training samples and of hours, or even days,
for computing reliable classi�ers (e.g, deep neural net-
works). Conversely, our method can be computed in a
few minutes. The e�ciency of RCFs lies in using fast
features (random ferns) to compute an object classi-
�er via Boosting, and visual words to perform cluster-
ing using pLSA. The method has been validated in di-
verse synthetic and real experiments where remarkable
results have been obtained. In addition, the proposed
RCFs have been combined with a tracking step in order
to reduce the human supervision and extract automat-
ically training samples.

In spite of the good results achieved for multimodal
object recognition, we consider that the presented work
can be improved, especially in terms of e�ciency and
accuracy. For example, computing more semantic vi-
sual features in order to reduce the high dimensionality
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of the visual words. We have seen during the experi-
ments that using large visual words reduces the clus-
tering error, but this is at the expense of an increased
computational cost because the clustering via pLSA is
time-consuming. Other future line of research is to use
incremental pLSA algorithms to perform online learn-
ing and clustering. This would of great interest for in-
teractive and robotics applications.
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