
Preprint accepted for publication in Neural Computation, 2016
1

Online Reinforcement Learning using a Probability Density Estima-
tion

Alejandro Agostini
aagosti@gwdg.de
Bernstein Center for Computational Neuroscience, 37077 Göttingen, Germany.

Enric Celaya
celaya@iri.upc.edu
Institut de Robòtica i Informàtica Industrial (CSIC-UPC), 08028 Barcelona, Spain.

Keywords: online reinforcement learning, biased sampling problem, non-stationarity
problem, Gaussian mixture model, online expectation-maximization

Abstract

Function approximation in online, incremental, reinforcement learning needs to deal
with two fundamental problems: biased sampling and non-stationarity. In this kind of
tasks, biased sampling occurs because samples are obtained from specific trajectories
dictated by the dynamics of the environment and are usually concentrated in particular
convergence regions, which in the long term tend to dominate the approximation in
the less sampled regions. The non-stationarity comes from the recursive nature of the
estimations typical of temporal difference methods. This non-stationarity has a local
profile, not only varying along the learning process but also along different regions
of the state space. We propose to deal with these problems using an estimation of the
probability density of samples represented with a Gaussian mixture model. To deal with
the non-stationarity problem we use the common approach of introducing a forgetting
factor in the updating formula. However, instead of using the same forgetting factor
for the whole domain, we make it to depend on the local density of samples, which
we use to estimate the non-stationarity of the function at any given input point. On
the other hand, to address the biased sampling problem, the forgetting factor applied
to each mixture component is modulated according to the new information provided in
the updating, rather than forgetting only depending on time, thus avoiding undesired
distortions of the approximation in less sampled regions.

1 Introduction

In this work we approach the problem of function approximation (FA) when applied
to real situations of online, incremental reinforcement learning (RL). Addressing this
problem is important because it avoids the introduction of assumptions seldom jus-
tifiable, like, just to name a few, the availability of a model of the environment, the
determinism of the environment, the continuity of the transition and reward functions,
or the availability “a priori” of a set of relevant transitions which is sufficient to learn a
good controller (the usual assumption in the fitted value iteration approaches (Gordon,
1995)). Even though such assumptions are often used to make algorithms more efficient
or to allow proofs of convergence, algorithms which do not make such assumptions are
necessary since only these address the full reinforcement learning problem in general.

FA methods applied to incremental RL needs to deal with two fundamental prob-
lems: biased sampling and non-stationarity. During the interaction with the environ-
ment, the action policy and the dynamics of the environment guide the agent through
specific trajectories of the state space, usually concentrated in particular convergence
regions, making the sampling highly biased. Biased sampling induces regions that are
more frequently sampled to have better estimations than regions sparsely explored. This
is an inconvenience since, for a good control strategy, the reward function should be well
represented even in those regions sparsely visited, or visited long time ago, in which a
wrong decision may imply a failure in the control task. The non-stationarity problem,
on the other hand, is caused by the recursive nature of the estimation of the expected re-
turn and the evolution of the action policy during learning. These two factors make the
values associated to particular states and actions to be highly variable, not only along
the learning process but also along the different regions of the state space (Gordon,
1995).

One of the most relevant approaches able to cope with the incremental RL problems
is the work by Sato and Ishii (1999, 2000). They propose an incremental non-parametric
FA approach for approximating the value and policy functions of an actor-critic archi-
tecture in a continuous state-action space. For the approximation, they use a normal-
ized Gaussian network (NGnet), a network of local lineal regression units that softly
partitions the input space by normalized Gaussian functions. Each unit linearly ap-
proximates the target function within its partition, hence mitigating the distortion in the
approximation in regions far away from the sample. The updating of the parameters is
carried out by an incremental, low complexity version of the Expectation-Maximization
(EM) algorithm that trains an NGnet for regression. The updating approach permits
adaptations to non-stationary changes by incorporating a forgetting factor to progres-
sively replace old outdated estimations with every new experience. We identified two
aspects of the approach to be improved. One of them is the time-dependent approach
used for the updating of the parameters. In their approach, the estimations of unvisited
regions are forgotten even though no new information is provided there. This provokes
that regions far away from the visited one to get their approximation distorted as a con-
sequence of biased sampling. The second aspect is the forgetting factor used for the
updating. As in most of the FA approaches that incorporate a forgetting in the updating,
they apply the same forgetting to all the regions of the domain. This prevents regulat-
ing the forgetting according to the different local changes due to non-stationarity, as

2

required in RL.
Inspired by the NGnet approach, we propose a new incremental non-parametric

method for FA in continuous state-action space RL. Instead of using a NGnet, we use
for the approximation a Gaussian mixture model (GMM), a model closely related to the
NGnet from which we can easily obtain not only the value of the approximated function
at any given input using simple conditional probabilities but also the density of samples
in the input-output space. Based on this information, we propose a formula that up-
dates past estimations in a region only when new information is provided there, rather
than updating depending on time. In this manner, sparsely visited regions keep their
approximations unaltered, no matter how long ago the last updating occurred, avoiding
the distortions produced by biased sampling. We also use the density information to
regulate the forgetting according to the local non-stationary changes. This is done by
estimating the number of samples with similar output values in the vicinity of the new
experience as an indicator of the non-stationarity of the function at that point. The FA
approach is made non-parametric by generating new Gaussians to improve the approx-
imation to any given precision. This is done by using the density information to let
the new Gaussian quickly improve the approximation at a given input, with a reduced
distortion in the rest of the regions.

The next sections are organized as follows. Section 2 introduces the elements for
function approximation using a GMM. Section 2.1 specifies how the parameters of the
GMM are updated using the EM algorithm and presents our online EM approach. Later,
in Section 2.2, we present the approach to deal with the local non-stationary variations
of the target function using the density of samples to regulate the forgetting. Section
2.3 describes the Gaussian generation process and Section 2.4 presents the algorithmic
description the function approximation method. In Section 3, our reinforcement learn-
ing approach using a GMM for function approximation is described. The experimental
evaluation is presented in Section 4. Finally, Section 5 concludes the paper. Part of this
work is an extension of our previous contribution Agostini and Celaya (2010).

2 Function Approximation using a GMM (GMMFA)

A Gaussian mixture model (Bishop, 2006) is a weighted sum of multivariate Gaussian
probability density functions, and is used to represent general probability density func-
tions in multidimensional spaces. It is assumed that the samples of the distribution to
be represented have been generated through the following process: first, one Gaussian
is randomly selected with a priori given probabilities, and then, a sample is randomly
generated with the probability distribution of the selected Gaussian. According to this,
the probability density function of generating sample z is:

p(z; Θ) =
K∑
i=1

αiN (z;µi,Σi), (1)

where K is the number of Gaussians of the mixture; αi, usually denoted as the mixing
parameter, is the prior probability, P (i), of Gaussian i to generate a sample;N (z;µi,Σi)
is the multidimensional Gaussian function with mean vector µi and covariance matrix
Σi; and Θ = {{α1, µ1,Σ1}, ..., {αK , µK ,ΣK}} is the whole set of parameters of the

3

mixture. By allowing the adaptation of the number K of Gaussians in the mixture, any
smooth density distribution can be approximated arbitrarily close (Figueiredo, 2000).

Using the density model (1), it is possible to approximate any arbitrary stochastic
function g(x) defined in a D-dimensional continuous domain X ⊂ <D, from which we
can only observe input-output pairs obtained at particular points, zt = (xt, yt), where
the output yt = g(xt) is supposed to be uni-dimensional 1 , and t accounts for the t-th
time step. By using samples zt = (xt, yt) we can estimate the parameters of the joint
probability distribution (1) from which we can easily obtain the full probability of the
output variable y for any given input x,

p(y|x) =
K∑
i=1

βi(x)N (y;µi(y|x), σi(y)) , (2)

where
µi(y|x) = µyi + Σyx

i (Σxx
i)−1 (x− µxi) , (3)

σ2
i (y) = Σyy

i − Σyx
i (Σxx

i)−1 Σxy
i , (4)

and

βi(x) =
αiN (x;µxi ,Σ

xx
i)

K∑
j=1

αjN (x;µxj ,Σ
xx
j)

, (5)

which are calculated from values obtained from decomposing the covariances Σi and
means µi in the following way:

µi =

(
µxi
µyi

)
, (6)

Σi =

(
Σxx
i Σxy

i

Σyx
i Σyy

i

)
. (7)

The probability (2) provides very useful information for the function approximation of
a stochastic function g(x), as illustrated in Fig. 1. On the one hand, we can obtain an
estimation of the expected value of g(x) as the conditional mean, µ(y|x), of the mixture
at a point x,

g(x) ≈ µ(y|x) =
K∑
i=1

βi(x)µi(y|x). (8)

Probability (2) also permits obtaining a point-wise variance of the outputs,

σ2(y|x) =
K∑
i=1

βi(x)(σ2
i (y) + (µi(y|x)− µ(y|x))2). (9)

1We suppose a uni-dimensional output since it suffices for the type of functions
we will use. However, all the formulations that follow can be easily extended to the
multidimensional case.

4

Figure 1: Example of a stochastic function approximation using a GMM. Each ellipse
represents a multi-dimensional Gaussian that approximates the probability density of
samples in its domain. At a query point xt, a unidimensional Gaussian (blue line)
represents the probability distribution of y at this point, p(y|xt), with expected value
µ(y|xt) and variance σ2(y|xt).

2.1 Online Expectation-Maximization

The parameters of the model (1) can be estimated using a maximum-likelihood estima-
tor (MLE). Given a set of samples Z = {zt; t = 1, . . . , N}, the likelihood function is
given by

L[Z; Θ] =
N∏
t=1

p(zt; Θ). (10)

The maximum-likelihood estimation of the model parameters is the Θ that max-
imizes the likelihood (10) for the data set Z. Direct computation of the MLE re-
quires complete information about which mixture component generated which instance.
Since this information is missing, the EM algorithm is often used. The Expectation-
Maximization (EM) algorithm (Dempster et al., 1977) is a general tool that permits
estimating the parameters that maximize the likelihood function (10) for a broad class
of problems when there are some missing data. The EM method first produces an esti-
mation of the expected values of the missing data using initial values of the parameters
to be estimated (E step), and then computes the MLE of the parameters given the ex-
pected values of the missing data (M step). This process is repeated iteratively until a
convergence criterion is fulfilled.

For the estimation of the parameters Θ, the process starts with an initialization of
the mean vectors and covariance matrices of the Gaussians. The E step consists in
obtaining the probability P (i|zt) for each component i of generating instance zt, that
we denote by wt,i,

wt,i = P (i|zt) =
P (i)p(zt|i)

K∑
j=1

P (j)p(zt|j)
=

αiN (zt;µi,Σi)
K∑
j=1

αjN (zt;µj,Σj)

, (11)

where t = 1, .., N and i = 1, .., K. The value of wt,i can be seen as the proportion
of the sample corresponding to Gaussian i that will be used to update the Gaussian

5

parameters in the maximization step. This step consists in computing the MLE using
the estimated wt,i. It can be shown (Duda et al., 2001) that, for the case of a GMM, the
mixing parameters, means, and covariances are given by

αi =
1

N

N∑
t=1

wt,i, (12)

µi =

N∑
t=1

wt,izt

N∑
t=1

wt,i

, (13)

and

Σi =

N∑
t=1

wt,i(zt − µi)(zt − µi)T

N∑
t=1

wt,i

, (14)

respectively.
Estimating a probability density function by means of the EM algorithm involves

the iteration of E and M steps on the complete set of available data, that is, the mode
of operation of EM is in batch. However, in incremental FA, sample data are not all
available at once: they arrive sequentially and must be used online to improve the ap-
proximation. This prevents the use of the offline EM algorithm, and requires an online,
incremental version of it. We present an online, low complexity version of the EM al-
gorithm, which is a modified version of that proposed in Sato and Ishii (2000). In the
online EM approach, an E step and an M step are performed after the observation of
each individual sample. The E step does not differ from the batch version (11), except
that it is only computed for the new sample z. For the M step, the parameters of all
mixture components are updated as

αi(t) =
� 1�[t]

i

K∑
j=1

� 1�[t]
j

, (15)

µi(t) =
� z�[t]

i

� 1�[t]
i

, (16)

and

Σi(t) =
� zzT �[t]

i

� 1�[t]
i

− µi(t)µi(t)T, (17)

where� f(x)�[t]
i are time-discounted weighted sums calculated as 2

2In Sato and Ishii (2000) time-discounted weighted means, instead of sums, are de-

fined by normalizing the sums (18) with a factor ηT =

(
T∑
t=1

T∏
s=t+1

λ(s)

)−1
. However, in

the expressions of the estimators, all these ηT cancel out, and we can skip its calculation.

6

� f(x)�[t]
i =

t∑
τ=1

(
t∏

s=τ+1

λ(s)

)
f(xτ)wτ,i, (18)

where λ(t) ∈ [0, 1] is a forgetting factor introduced to progressively decrease the influ-
ence of old, possibly outdated values. The value of λ(t) is made to approach 1 as the
number of experiences increases, as will be discussed later.

The sum � 1 �[t]
i in (15)-(17) represents the accumulated proportion of samples

wt,i, with forgetting determined by λ(t), attributed to unit i along time. Similarly, �
z �[t]

i corresponds to the weighted sum with forgetting of sample vectors zτ , and �
zzT �[t]

i is the weighted sum with forgetting of the matrices obtained as the products
zτz

T
τ .
From (18), we obtain the recursive time-dependent updating formula for the incre-

mental updating of the parameters,

� f(x)�[t]
i = λ(t)� f(x)�[t−1]

i +f(xt)wt,i. (19)

But this approach has a drawback. The forgetting effect of λ(t) is clearly seen in the
incremental formula (19), which shows how, at each time step, all past data are multi-
plied by λ(t), and this is done for all units, no matter how much weight wt,i is attributed
to each of them. We observe that, the real effect of applying (19) to units with low acti-
vation wt,i is not to replace their past values by the new one but, essentially, to decrease
their values by a factor λ(t). It can be seen that this is exactly the case when setting
wt,i = 0 in Eq. (19), what yields:

� f(x)�[t]
i = λ(t)� f(x)�[t−1]

i , (20)

showing that the accumulators of units that are seldom activated will progressively de-
cay to 0. This situation is particularly annoying in the case of biased sampling, specially
when some regions of the domain are sampled much more frequently than others (as
in RL), so that in the long term, units covering sparsely sampled regions will get their
statistics lost.

To avoid the undesired forgetting effect we need a formula that updates the param-
eters according to the new information provided, i.e., in the same proportion as the
Gaussian activation wt,i, rather than on time. For instance, when no new information
is provided to a Gaussian, i.e., when wt,i = 0, the cumulative sums should remain
unmodified,

� f(x)�[t]
i =� f(x)�[t−1]

i . (21)

On the other hand, if the full proportion of sample is provided to the Gaussian (wt,i = 1),
the updating of the cumulative sum should be the same as in Eq. (19),

� f(x)�[t]
i = λ(t)� f(x)�[t−1]

i +f(xt). (22)

It can be demonstrated (Celaya and Agostini, 2015) that the updating formula that reg-
ulates the updating according to the proportion of sample wt,i is

7

� f(x)�[t]
i = λ(t)wt,i � f(x)�[t−1]

i +
1− λ(t)wt,i

1− λ(t)
f(xt). (23)

With the weight-dependent updating formula (23), the amount by which old data are
forgotten is regulated by the amount wt,i in which a new value is added to the sum, so
that data are always replaced, instead of simply forgotten. Effectively, if now we make
wt,i = 0 in Eq. (23), what we get is Eq. (21) so that the values of the statistics of the
inactive units remain unchanged. On the other hand, in the case of a full activation of
unit i, i.e., if wt,i = 1, the effect of the new updating formula is exactly the same as that
of Eq. (19).

2.2 Local Adjustment of the Forgetting Factor λ(z)

In Sato and Ishii (1999), the evolution of the forgetting factor is modelled as

λ(t) = 1− 1− a
a t + b

, (24)

where a and b are parameters regulating the forgetting rate and t is the total number
of experienced samples. Eq. (24) allows forgetting old possibly outdated estimations
and better adapting the parameters to non-stationary changes as learning proceeds. In
this case, the forgetting factor takes the same value for all the regions of the domain,
preventing the regulation of the forgetting to the different local variations due to non-
stationarity, typical of RL.

In our approach we use the same formula (24) for λ(t) but, instead of using the total
number of experienced samples, we use an estimation of the local number of samples
n(z), calculated from the density of samples in the vicinity of z = (x, y). If the sample
density near z is high, this indicates that the approximation is locally converging and
the forgetting factor should approach 1. On the contrary, if the density near z is low,
this may be because the input region has been still little sampled, or because the output
of the points in this input region has changed, in which cases the region is far from
convergence and the forgetting factor must be kept low.

The number of samples in the vicinity of the experienced point can be estimated
from the density model as

n(z) = nT

∫
Ẑ

p(z; Θ)dz, (25)

where nT is the total number of samples represented in the model,

nT =
K∑
j=1

� 1�j, (26)

Ẑ is a region surrounding z, and p(z) is the probability density function at z estimated
with the GMM (Eq. (1)). In order to simplify the calculation of the integral in (25) we
can assume that Ẑ is small enough for the probability density function p(z) to be nearly
constant in this region, which permits estimating the number of points as

8

n(z) ≈ Vz nT p(z), (27)

where Vz is the volume of Ẑ, defined empirically.
By replacing (27) in (24) we get the point-dependent forgetting factor

λ(z) = 1− 1− a
a nT Vz p(z) + b

. (28)

2.3 Gaussian Generation

To approximate the target function to any desired precision we make the function ap-
proximation non-parametric by permitting Gaussian generation on demand for a better
approximation. A new Gaussian is generated each time the prediction error is too large
and there is a lack of nearby Gaussians to locally improve the approximation. A large
prediction error is determined by

(g(x)− µ(y|x))2 ≥ threrror, (29)

where threrror is the threshold for the error. The lack of nearby Gaussians is reflected
by a low density, which means that the influence of the existing Gaussians at the ex-
perienced point is weak. We say that there is a low density at the experienced point
whenever it goes below a threshold,

p(x, y) ≤ thrdensity, (30)

where thrdensity is the threshold for the density.

Initialization of New Gaussians

Once the criteria (29) and (30) are fulfilled, a new Gaussian is generated centred in the
experienced point,

µK+1(x, y) = (xt, yt), (31)

with initial number of accumulated samples equal to 1,

� 1�K+1= 1. (32)

To allow for a rapid improvement of the approximation with the addition of the new
Gaussian, the initial weight of the added Gaussian wt,K+1 (see Eq. (11)) at the experi-
enced point zt = (xt, yt) should be large enough to produce a significant change in the
cumulative values (see Eq. (23)). This is implemented by regulating the initialization
of the covariance of the new Gaussian, ΣK+1, so that the weight of the new Gaussian
at zt is equal to a predefined value wt,K+1 = wnew.

The covariance of the new Gaussian is defined as

ΣK+1 = diag{(C d1)
2, ..., (C dD)2}, (33)

9

where di is the total range size of the variable i; D is the dimension of the joint space;
and C is a factor calculated so that the weight at the experienced point is equal to wnew.
To determine the value of C we use the D-dimensional multivariate Gaussian formula

N (z;µ,Σ) =
1√

(2π)D |Σ|
e−

1
2
(z−µ)′Σ−1(z−µ), (34)

which, for the case of the new added unit evaluated at zt, results in

N (zt;µK+1,ΣK+1) =
1√

(2π)D |ΣK+1|
. (35)

By replacing (33) in (35) and computing the determinant we get

N (zt;µK+1,ΣK+1) =
1√

(2π)D C2D
∏D

j=1 d
2
j

, (36)

from which we can clear C,

C =
1√
(2π)

(
N 2(zt;µK+1,ΣK+1)

D∏
j=1

d2j

)− 1
2D

. (37)

To complete the calculation of C we need to define the value of N (zt;µK+1,ΣK+1).
This is done by including N (zt;µK+1,ΣK+1) in Eq. (11) and making it equal to wnew
3,

wnew = wt,K+1 =
� 1�K+1 N (zt;µK+1,ΣK+1)

K+1∑
j=1

� 1�j N (zt;µj,Σj)

. (38)

Then, resolving for N (zt;µK+1,ΣK+1), we get

N (zt;µK+1,ΣK+1) =
wnew

1− wnew

K∑
i=1

� 1�i N (zt;µi,Σi)

� 1�K+1

. (39)

By replacing (39) in (37) we obtain the final formula for C,

C(z) =
1√
2π

 wnew

1− wnew

K∑
i=1

� 1�i N (z;µi,Σi)

� 1�K+1

2

D∏
j=1

d2j

− 1

2D

. (40)

3In Eq. (38), we have replaced the mixing parameters αi by their estimations using
the accumulated samples αi = �1�i

K+1∑
j=1
�1�j

(see Eq. (15)), which permits cancelling out

the term
K+1∑
j=1

� 1�j from the equation.

10

Algorithm 1 The GMMFA Algorithm
Initialize the GMM with 1 Gaussian.
loop

Get observation (xt, yt)
Calculate the activation wt,i of each Gaussian in (xt, yt) (11) (E step)
Update the parameters of the GMM, Θ = {αi, µi,Σi}, i = 1, ..., K (23) (M step)
Calculate µ(y|xt) (8)
Calculate the approximation error e = (yt − µ(y|xt))2
if e ≥ threrror then

Get density of samples p(x, y)
if p(x, y) ≤ thrdensity then

Generate new Gaussian (31-33)
end if

end if
end loop

To complete the initialization process we use the initial number of accumulated
samples � 1 �K+1 to derive the cumulative sums � z �K+1 in Eq. (16) and �
zzT �K+1 in Eq. (17), from the initial mean µK+1 (31) and covariance ΣK+1 (33),
respectively.

2.4 Algorithm for the GMMFA

The complete algorithm for the incremental function approximation using a GMM is
presented in Alg. 1.

3 Reinforcement Learning using a GMM (GMMRL)

Reinforcement Learning is a paradigm in which an agent has to learn an optimal ac-
tion policy by interacting with its environment (Sutton and Barto, 1998). The task is
formally modelled as the solution of a Markov decision process in which, at each time
step, the agent observes the current state of the environment st and chooses an allowed
action at using some action policy at = π(st). In response to this action, the environ-
ment changes to state st+1 and produces an instantaneous reward rt = r(st, at). Using
the information collected in this way, the agent must find the policy that maximizes the
expected sum of discounted rewards, also called return, defined as

Rπ(st) =
∞∑
t=0

γtrt, (41)

where γ ∈ [0, 1] is the discount rate that regulates the importance of future rewards with
respect to immediate ones. In stochastic environments the actual return (41) may vary
at different runs depending on the probability of transitions and the reward obtained
after each execution. Under these circumstances, a good prediction of the cumulative
sum of rewards starting at state s and then following policy π is the expected value of
the return,

11

V π(s) = E[Rπ(s)], (42)

known as the value function for policy π. In a similar way, the expected return can also
be associated to an action a in state s,

Qπ(s, a) = E[Rπ(s, a)], (43)

where a is any of the possible actions in s. The function Qπ(s, a) is known as the
action-value function, or simply the Q-function, and is the expected return that would
be obtained after executing action a in state s and then following policy π. An optimal
policy is one that maximizes the expected return.

The optimal value function or the optimal action-value function is that correspond-
ing to an optimal policy, and can be estimated using different RL approaches (Sutton
and Barto, 1998). One of the most popular is the actor/critic approach, where a policy
function (called the actor) is learned and explicitly stored, so that actions are directly
decided by the actor. The critic, on the other hand, learns the value (or action-value)
function associated to the policy coded in the actor. Its main role is to evaluate which
other actions would have resulted in a higher cumulative reward than the one selected
by the actor. This information is used by the actor to improve the action policy. In this
work we use the actor/critic architecture as in Sato and Ishii (1999). This architecture
consists of a critic, which approximates the Q-function for a particular policy, Qπ(s, a),
and an actor that codes this policy, a = π(s). In our approach, both, the action-value
function Qπ(s, a) and the policy a = π(s), are approximated incrementally using the
GMMFA algorithm described in Alg. 1.

3.1 Action Selection

The action policy is approximated using a density model defined in the joint space of
states and actions,

p(s, a) =
Kπ∑
i=1

απ,iN (s, a;µπ,i,Σπ,i), (44)

where {απ,i, µπ,i,Σπ,i}, i = 1, ..., Kπ, are the parameters for the density model of the
action policy π. The value of the action policy π(st) is taken as the expected value
of a in state st, and is obtained from the density model of the actor as the conditional
probability (8),

π(s) = µ(a|s) =
Kπ∑
i=1

βπ,i(s)µπ,i(a|s), (45)

where βπ,i(s) and µπ,i(a|s) are calculated as in Eqs. (5) and (3), respectively. How-
ever, action selection in RL must address the exploration/exploitation trade-off to ex-
plore alternative, possibly better policies. This trade-off is approached by generating a
stochastic action for a visited state using the probability density function

12

p(a|s) =
Kπ∑
i=1

βπ,i(s)N (a;µπ,i(a|s), σπ,i(a)), (46)

where σπ,i(a) is calculated as in Eq. (4). A stochastic action is obtained using the
generative approach consisting of, first, selecting a Gaussian randomly according to the
probability βπ,i, and, then, drawing an action randomly from the corresponding Gaus-
sian distributionN (s, a;µπ,i(a|s), σπ,i(a)). Optionally, exploration can be increased by
adding some extra random noise to the action.

3.2 Critic Update

The Q-function in the critic is approximated using a density model defined in the space
of states, actions, and q-values,

p(s, a, q) =

KQ∑
i=1

αQ,iN (s, a, q;µQ,i,ΣQ,i), (47)

where {αQ,i, µQ,i,ΣQ,i}, i = 1, ..., KQ, are the parameters for the density model of the
Q-function. The samples used for the updating of the density model are of the form
(s, a, q) = (st, at, q(st, at)), corresponding to the visited state st, the executed action
at, and the estimated value of q(st, at) given by

q(st, at) = r(st, at) + γQπ(st+1, at+1). (48)

To obtain this estimation we need to evaluate Qπ(st+1, at+1) using Eq. (8),

Qπ(st+1, at+1) = µ(q|st+1, at+1), (49)

where at+1 = π(st+1) is obtained from Eq. (45).

3.3 Actor Update (Policy Improvement)

The samples used for the updating of the density model of the actor are of the form
(s, a) = (st, atarget), corresponding to the visited state st and the target action atarget,
determined so as to converge to the maximum of the function Qπ(st, a). The traditional
approach to determine the target action is to use the gradient of the Q-function (Sato
and Ishii, 1999),

atarget = a0 + ε∇Qπ(st, a0), (50)

where a0 = π(st) is the value of the action policy at st, ε is a small constant, and
∇Qπ(st, a0) is the gradient of Qπ(st, a) with respect to the action variable a at a0.
The gradient locally adjusts the policy in the direction of the maximum growth of the
functionQπ(st, a). However, if the function is nonlinear, this local adjustment may lead
to a local maximum preventing the optimal policy to be found. On the other hand, since
the ε should be kept small to favour convergence, the gradient method may require
several iterations to reach the global maximum if it lies far away from a0. Another
drawback of using the gradient approach to determine the target action is that the just

13

Algorithm 2 The GMMRL algorithm
Initialize the GMM of the action policy with 1 Gaussian.
Initialize the GMM of the Q-function with 1 Gaussian.
Observe current state st
loop

Select an action at randomly for state st (Eq. (46))
Execute at, get r(st, at), and observe new state st+1

Generate q(st, at) = r(st, at) + γQπ(st+1, at+1) (Eq. (48))
Update the GMM of the Q-function using sample (st, at, q(st, at)) (Alg. 1)
Generate atarget (Sec. 3.3)
Update the GMM of the policy π using sample (st, atarget) (Alg. 1)
st ← st+1

end loop

acquired experience of executing the exploration action at, consisting of the resulting
reward and next state, is not immediately used to improve the policy. The actor will
be able to use this information only through the critic, after it has incorporated such
information following a number of similar observations.

Thus, we improve the selection of the target action by first evaluating the executed
action using the observed q-value (48). Similarly, we use the critic to evaluate the
deterministic action a0 provided by the actor in state st to obtain Qπ(st, a0). Then, we
compare both results, and if the executed action at yields a better value than a0, we
take at as the target action. In the case that the action provided by the actor a0 appears
to be better than the executed action at, we rely on the gradient approach to gradually
improve the policy. In this case, we also allow for a local search by evaluating a number
of actions at fixed small intervals around a0, to facilitate a faster progress towards the
maximum, or use the gradient (50) if a0 is better than the evaluated actions. Note that
this strategy for policy improvement not only increases the chances of finding the global
maximum but also performs a fine adjustment of the action policy when the maximum
lies close to a0.

3.4 Algorithm for the GMMRL

The compilation of all the processes taking place in the method of GMMRL in an
actor/critic architecture is shown in Alg. 2.

4 Experiments

We evaluated the performance of the GMMRL on two scenarios with different com-
plexities: the standard benchmark of an inverted pendulum with limited torque (Doya,
2000; Sato and Ishii, 1999) and the cart-pole benchmark (Deisenroth, 2010). In the first
benchmark we compare the results obtained by using the traditional time-dependent up-
dating (19), proposed in Sato and Ishii (1999), with the results obtained with our weight-
dependent updating (23) for the updating of the parameters of the GMMs. In the latter
case, we ran experiments using the global forgetting factor λ(t) (24) and the point-wise

14

forgetting factor λ(z) (28). We compare the results obtained with those of the state-of-
the-art approach PILCO (Deisenroth and Rasmussen, 2011). In the inverted pendulum
benchmark we also evaluate the improvements obtained by the point-dependent initial-
ization of the covariance of a new Gaussian using the density information (Sec. 2.3)
and we carried out a specific experiment for function approximation where the non-
stationarity problem of the RL was avoided to clearly visualize the effects of biased
sampling in function approximation with the two types of updating: time- and weight-
dependent (see Sec.4.4).

The scalability of the approach is assessed using the more complex benchmark of
the cart-pole. We tested the performance of the GMMRL method in the cart-pole sce-
nario as presented in Deisenroth (2010), which represents a higher dimensional, more
complex control problem than the inverted pendulum. As done in the inverted pendu-
lum scenario, we also compare the performance of the GMMRL with that of the PILCO
approach.

4.1 The Inverted Pendulum

The inverted pendulum with limited torque task consists of swinging a pendulum until
reaching the upright position and then stay there indefinitely. The optimal policy for this
problem is not trivial to find since, due to the limited torques available, the controller
has to swing the pendulum several times back and forth until its kinetic energy is large
enough to overcome the load torque and reach the upright position, and then stabilize the
pendulum there. The state space of the inverted pendulum problem is two-dimensional
and comprises the angular position θ and angular velocity θ̇: s = (θ, θ̇), where θ takes
values in the interval [−π, π]. As the reward signal we simply use the absolute value of
the distance to the goal position at θ = 0, r(s, a) = −|θ|. The discount coefficient γ
used to update the Q-values of the critic (Eq. (48)) is set to 0.85.

The Gaussians of the mixture model for the actor are three-dimensional, providing
an estimation of the probability densities in the joint space (θ, θ̇, a). On the other hand,
the Gaussians of the mixture model for the critic is four-dimensional, defined in the
joint space (θ, θ̇, a, q) 4.

The threshold for the approximation error to evaluate the necessity of a Gaussian
generation (Sec. 2.3) was set to threrror = (0.0667 ranga)

2 for the actor and threrror =
(0.1 rangc)

2 for the critic, where ranga and rangc are the ranges of the output variables
of the actor and the critic, respectively. The initial influence of the new Gaussians at
the mean vector was set to wnew = 0.95 (see Eq.(40)). Finally, the volume Vz for
calculating n(z) in Eq. (27), was set to an arbitrary small proportion of the total volume
of the domain VT , Vz = 0.0001 VT .

In all the experiments the evaluation is implemented by averaging the results of 20
independent runs of 300 episodes each. Each episode consists of 5 seconds of simu-
lated time with an actuation interval of 0.1 seconds. At the beginning of each episode
the pendulum is placed in the downward position. After each training episode, a test

4In the function approximation we use the spatial symmetry of the inverted pendu-
lum problem with respect to θ = 0 to have a more compact representation of the state
space.

15

episode exploiting the policy learned so far is done and the total accumulated reward is
computed. We plot the average values and the confidence interval for these averages for
a confidence level of 95 %.

4.2 Time-dependent vs. Weight-dependent Updating

Fig. 2(a) presents the results of the comparison between using the time-dependent up-
dating and the weight-dependent updating for the best combination of parameters a and
b found for each case. It can be observed that the time-dependent updating presents the
poorest performance (black line), presumably due to the undesired forgetting of past es-
timations when no new samples are provided. The weight-dependent updating, which
prevents this undesired forgetting, significantly improves the performance with respect
to the time-dependent updating (blue and red lines). The best result was obtained by
using the point-dependent forgetting factor λ(z), which permits a better adaptation to
the local non-stationary changes of the target function (red line). In this case, the av-
erage simulated time required to swing up and stabilize the pendulum in the upright
position (corresponding to a cumulative reward of around -55) is of 1100 seconds with
an average number of Gaussians of 56 for the actor and 75 for the critic. We would like
to remark that our best experiment reached convergence in 510 seconds of simulated
time. An example of the control achieved after convergence can be seen in the video
available at https://dl.dropboxusercontent.com/u/19473422/NECOinvpend.wmv.

The results presented in Fig. 2(a) were obtained from an exhaustive evaluation
of the sensitivity to the parameters a and b of the forgetting factor. To better see the
effects of changing a and b in the forgetting factor, Figures 2(b), 2(c), and 2(d) present a
comparison of the results between the time- and weight-dependent forgetting using the
best set of parameters found for each case. To ease the interpretation of the results, we
rewrite the formula used for the forgetting factor (24):

λ(t) = 1− 1− a
a t + b

.

We can observe that, for the case of the time-dependent updating, the best results were
obtained for higher values of b (Fig. 2(b)). This can be explained by the fact that
higher values of b establish a higher lower bound of the forgetting factor, reducing the
forgetting rate at all stages of the learning, which mitigates the undesired forgetting
effect when a time-dependent updating is used. The best results were obtained for
a = 0.01 and b = 300 (see Fig. 2(b)).

For the case of the weight-dependent updating, the best results were obtained for
lower values of b, rather than higher values as in the time-dependent updating case.
This can be caused by the regulation of the forgetting with the new information pro-
vided rather than with time, allowing for a smaller lower bound of the forgetting factor
(smaller b) that permits replacing outdated estimations faster but consistently with the
new information provided, avoiding forgetting values in regions far away from the sam-
ple.

The improvements in the performance with the values of b is similar for both cases
of the weight-dependent updating. However, the behaviour of these cases under the
variation of a presents some remarkable differences. For instance, for the case of using

16

0 500 1000 1500
−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

Simulated time (sec.)

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

λ(t)

λ(t)w

λ(z)w

(a) Best result of each method.

0 500 1000 1500
−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

Simulated time (sec.)

C
u

m
u

la
ti
v
e

 R
e

w
a

rd

λ(t)

λ(t)w

λ(z)w

(b) a=0.001, b=300.

0 500 1000 1500
−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

Simulated time (sec.)

C
u

m
u

la
ti
v
e

 R
e

w
a

rd

λ(t)

λ(t)w

λ(z)w

(c) a=0.001, b=5.

0 500 1000 1500
−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

Simulated time (sec.)

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

λ(t)

λ(t)w

λ(z)w

(d) a=0.01, b=5.

Figure 2: Comparison of the 3 updating methods for different combinations of a and b.
Method 1: time-dependent updating (λ(t)). Method 2: weight-dependent updating with
global forgetting factor (λ(t)w). Method 3: weight-dependent updating with point-wise
forgetting factor (λ(z)w).

the global forgetting factor (λ(t)w), the higher value of a = 0.01 (Fig. 2(d)) presents a
poorer performance than the lower one, a = 0.001 (Fig. 2(c)). The reason behind this
might be that the total number of experiences t quickly increases as learning proceeds,
which, in turn, quickly increases the forgetting factor if the value of a is relatively large.
This may prevent the system to properly adapt to the non-stationary changes taking
place during the learning process. Interestingly, this is not the case when using λ(z)w,
which depends on the local number of samples n(z), which is in general much smaller
than the total number of experiences. In this case, a higher value of a would permit
better considering the influence of n(z) in the forgetting, which improves the capability
of the system to regulate the forgetting according to the non-stationary changes (Fig.
2(d)). The best results were obtained with a = 0.001 and b = 5, for the case of λ(t)w,
and with a = 0.01 and b = 5, for the case of λ(z)w.

17

4.3 Gaussian Generation with Point-dependent Initialization of the Covariance

In this section we evaluate the improvements obtained by initializing the covariance of
the new Gaussian (33) with a point-dependent dispersion C(z) (see Sec. 2.3). Recall
that a new Gaussian is generated with mean value given by the experienced point to
use the fresh information provided by this point to improve the approximation. To
make a more efficient use of this information we increase the influence of this point
in the approximation (wnew) to any desired value by regulating the dispersion of the
covariance as in Eq. (40). To show the improvement in the performance obtained
by allowing this regulation, we compare the results obtained by considering a fixed
dispersion C = 0.2 to initialize the covariance (without regulation) with those obtained
by considering a point-dependent dispersion C(z) (with regulation).

The results are visualized in Fig. 3. We can observe an improvement in the perfor-
mance when using a point-dependent dispersion C(z), which demonstrates the advan-
tage of using the density information to regulate the influence of the new Gaussians in
the approximation.

0 500 1000 1500
−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

Simulated time (sec.)

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

C (z)

C = 0.2

Figure 3: Comparison of the performance of the Gaussian generation using a fixed
initial dispersion, C = 0.2, and a variable initial dispersion, C(z).

4.4 Effects of Biased Sampling

The reason why we introduced the weight-dependent updating was to attenuate the
wrong effects that biased sampling produces in the online function approximation. To
show how effective is our approach in this aspect, we compared the performance of the
time- and the weight-dependent updating in the task of approximating a given function
when the samples present a biased distribution. To test this on a setting related with
our learning problem, we take as the function to be approximated the Q(s, a) function
learned by the critic in one of the experiments, and we apply Alg. 1 to approximate it
by providing as training samples the whole set of samples recorded from one execution

18

of the learning process, presented in the same order they were collected. Fig. 4 shows
the distribution of these samples, which, as can be appreciated, is strongly biased. For
better accuracy in the comparison, we initialized each GMM with 64 Gaussians equally
distributed in the state-action space and no further Gaussians were generated along the
process. The evaluation was carried out for different fixed values of the forgetting factor
λ(t).

−3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

θ

θ̇

Figure 4: Example of sample distribution from the trajectories followed by the inverted
pendulum.

Fig. 5 presents the average MSE of the last 10000 iterations of 10 runs. We can ob-
serve a significant difference between the performances of the time-dependent updating
with respect to the weight-dependent updating. The forgetting caused by lower values
of λ(t) increases the undesired forgetting effect when the time-dependent updating is
used. On the contrary, the weight-dependent updating presents a better performance for
all the values of λ(t), with the best results around λ(t) = 0.995. As expected, both
updating formulas performed identically for λ(t) = 1, in which case Eq. (19) is equal
to Eq. (23).

4.5 Comparison with PILCO

To provide a reference for the performance, we compare our results with those reported
for the state-of-the-art approach PILCO (Deisenroth and Rasmussen, 2011; Deisenroth,
2010). PILCO is a model-based policy search method that copes with the model bias
problem, typical of model-based approaches when learning from scratch, by using a
probabilistic dynamics model to consider model uncertainty.

PILCO is a batch approach, i.e. it can collect data and make use of it as desired,
so that the total time of experience with the plant (or obtained by simulation) can be
reduced to a very minimum. Batch algorithms like PILCO are appealing for problems
where the cost of getting new samples is high, like, for instance, real-robot applica-
tions with intensive wear out. On the contrary, our GMMRL approach is model-free
and works online without storing any sample. Online model-free approaches like ours
avoid the computational burden of storing and processing samples offline and are more
suitable for problems in which the data are continuously produced by the plant at no

19

0.975 0.98 0.985 0.99 0.995 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

λ(t)

A
v
e

ra
g

e
 M

S
E

time−dependent

weight−dependent

Figure 5: Average of the MSE of the approximation for different values of λ(t).

extra cost such as flight stabilization, online price control, control of robotic prostheses,
control of wind-power generators, gait generation in legged robots, etc.

Because of these important differences, comparing the simulation time needed by
both systems would not be fair. Therefore, to provide an idea of the performance of
the GMMRL approach with respect to PILCO we compare the computation time con-
sumed by both methods to converge in the inverted pendulum problem (and later in the
cart-pole problem as explained in Sec. 4.6). To do this, we downloaded the PILCO im-
plementation available at http://mlg.eng.cam.ac.uk/pilco/ and used an implementation
of the GMMRL in the same language as PILCO (Matlab).

The comparison is made considering, on the one hand, the CPU time, i.e. the sums
across all threads of the processing time, calculated using the cputime function of
Matlab (Mathworks, 2016). This measure provides an idea of the actual processing
resources used by each method. On the other hand, we compare the wall-clock time,
computed using the tic and toc functions of Matlab, which indicates the time elapsed
while the experiments are run.

The CPU time consumed by the GMMRL approach was 562 seconds which con-
trasts with the 5184 seconds consumed by PILCO5. On the other hand, the time elapsed
until convergence was 581 seconds for the GMMRL approach and 1433 seconds for
PILCO. The results showed that the GMMRL needed less wall-clock time and much
less CPU time to converge than the PILCO approach. This indicates that the GMMRL
is able to achieve a comparable performance to PILCO using significantly less process-
ing effort.

5We ran the implementations in a MacBook Pro, 2.9 Ghz Intel Core i7 with 8 GB of
memory.

20

4.6 The Cart-pole Swing-up

In order to assess the scalability of the approach, we also tested the GMMRL method
in the cart-pole scenario. The scenario consists of a pole mounted on a cart that has to
be stabilized in the upright position by the motions of the cart. This control problem is
more demanding than the inverted pendulum since the state space has two more dimen-
sions and the external actions are now applied to a moving cart rather than directly to the
pendulum. For the evaluation, we used the same experimental set-up than in Deisenroth
(2010), where the complexity of the task is increased by additionally requiring that the
cart is at a specific target position when the pendulum is stabilized.

The state space of the cart-pole problem is four-dimensional and comprises the po-
sition x and velocity ẋ of the cart as well as the angular position θ and angular velocity
θ̇ of the pole: s = (x, ẋ, θ, θ̇), where x takes values in the interval [−6, 6] and θ in the
interval [−π, π]. As the reward signal we use the negative of the cost function used in
Deisenroth (2010) for the cart-pole scenario:

r(s, a) = −(1− exp(−0.5 (j − jtarget) T−1 (j − jtarget)′)); (51)

where j = (x, cos(θ), sin(θ)) is the current position of the cart and the pole, jtarget =
(0, 0, 1) is the target position, and

T−1 := A2

1 l 0
l l2 0
0 0 l2

 (52)

is the precision matrix, where A2 is a scalar parameter controlling the width of the cost
parabola and l is the length the pole. In our experiments we set A2 to 1. The discount
coefficient γ to update the Q-values of the critic is set to 0.85.

The Gaussians of the mixture model for the actor have five dimensions, the same as
state representation plus the action: (x, ẋ, θ, θ̇, a). On the other hand, the Gaussians for
the critic are six-dimensional: (x, ẋ, θ, θ̇, a, q).

The learning parameters used for the experiments were defined empirically: threrror =
(0.05 ranga)

2 for the actor and threrror = (0.1 rangc)
2 for the critic; a = 0.01, b = 10;

and Vz = 0.0001 VT for λ(z) (Eq. 28), where VT is the total volume of the domain.
Finally, the initial weight of the new Gaussians to initialize the covariances (Eq.(40)) is
set to wnew = 0.25.

The experiments are carried out using episodes of 4 seconds of simulated time with
an action interval of 0.1 seconds. After some training episodes a test episode of 4
seconds is performed and the total accumulated reward is computed. At the beginning
of each episode the cart is placed at the center of the track and the pendulum is placed
in the downward position.

Fig. 6 presents the average of 20 experiments. The average number of Gaussians
generated after learning was 92 for the actor and 172 for the critic. The average simu-
lated time for convergence, i.e. the time required to swing-up and stabilize the pole in
the upright position with the cart at the center (achieved with around -4.5 of accumu-
lated reward) is 7100 seconds. It is important to point out that the estimated simulated
time for convergence is extracted from the average of 20 experiments and that many ex-
periments reached the convergence value much earlier than 7100 seconds of simulated

21

time. For instance, in our best experiment, the simulated time for convergence was 4200
seconds. An example of the control achieved after convergence can be seen in the video
available at https://dl.dropboxusercontent.com/u/19473422/NECOcartpole.wmv.

As carried out in the inverted pendulum case, to provide a reference of the perfor-
mance we compare the CPU time as well as the wall-clock time required to converge of
our approach with that of the PILCO method (see Sec. 4.5 for more information about
the set-up for this comparison). In this scenario, the time elapsed until convergence
for the GMMRL was 6892 seconds and 7041 seconds for PILCO. As for the inverted
pendulum case, the CPU time difference is significantly higher. The CPU time con-
sumed by GMMRL was 6740 seconds, while the one for PILCO was 28173 seconds,
showing that the GMMRL uses much less processing effort to achieve a comparable
performance.

0 2000 4000 6000 8000

−30

−25

−20

−15

−10

−5

Simulated time (sec.)

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

Figure 6: Performance of the GMMRL in the cart-pole scenario.

5 Conclusions

In this work we approached the problem of function approximation in incremental rein-
forcement learning. This problem entails two main challenges for the FA method: avoid
large distortions in the approximation at regions far away from the current sample and
properly adapt the approximation to local non-stationary changes.

Our approach was based on the previous contributions by Sato and Ishii (1999,
2000). They proposed an incremental FA method using a normalized Gaussian Net-
work (NGnet) to deal with the incremental RL problems. We extended the capabilities
of the NGnet approach by using a Gaussian mixture model (GMM) for function rep-
resentation. The GMM provides a straightforward representation of the probability
density function in the joint input-output space. We have shown that this additional
density information provides useful tools for dealing with the challenges of incremental
RL. In particular, the probability density function captures all the information available
to the RL agent: In the first place, it provides a function approximation as the mean of

22

the sample values; in the second place, it provides a full probability distribution of the
possible values of the output variable.

By using the weight-dependent updating formula (23) we updated the parameters
of the Gaussians only when new information is provided and in an exact proportion
of this information. This prevented the undesired distortions in the approximation at
regions far away of the sample that takes place when the traditional time-dependent
updating is used. The improvements achieved can be observed from the comparisons
between the time-dependent updating proposed by Sato and Ishii (1999, 2000) and our
weight-dependent updating (Fig. 2(a)).

The density information also permitted a local regulation of the forgetting of past
estimations when new information was provided. This local forgetting permits specif-
ically tracking the local non-stationary changes and rapidly adapting the parameters
according to the local approximation demands. The local forgetting was implemented
by using the number of samples in the vicinity of the experienced point, n(z), to regu-
late the forgetting factor (28). This contrasts with the traditional approach of using the
total number of samples in the forgetting factor, which does not permit a local regula-
tion of the forgetting. The improvement achieved by using the local number of samples
n(z) can be seen in Fig. 2(a).

Our approach is non-parametric as it generates new Gaussians on demand for a
better approximation. We propose a Gaussian generation approach that uses the density
information to regulate the influence of a new Gaussian in the approximation (see Sec.
2.3). This increases the speed at which the new Gaussian improves the approximation
in its main region of influence. The improvements achieved by using this generation
strategy are observed in Fig. 3.

There are additional advantages of using a GMM for function approximation in
incremental RL. Although our GMM provides more information than the NGnet used
in Sato and Ishii (2000), it requires less parameters for storing this information, hence
providing a more compact representation. In addition, from the probability distribution
of output values, it is possible to estimate a point-wise variance of the samples (9),
which has been argued to be an important feature of Gaussian process methods (GPs)
(Engel et al., 2005; Deisenroth et al., 2009). The point-wise variance estimation can
be used, for example, to enrich the repertory of exploration-exploitation strategies, a
possibility suggested in Engel et al. (2003, 2005). This variance estimation was also
used to evaluate the quality in the approximation in a competitive strategy (Agostini and
Celaya, 2011), where several parallel function approximators, each of them consisting
of a GMM, compete to provide the inference of the output value at a specific input.
Finally, by using an online version of the EM algorithm, the training of the GMM can
be done incrementally and, thanks to the simplicity of the GMM, the updating process
is computationally efficient.

We believe that the simplicity and expressiveness of our approach makes it a promis-
ing alternative for incremental RL in continuous domains.

23

References

Agostini, A. and Celaya, E. (2010). Reinforcement Learning with a Gaussian Mixture
Model. In Proceedings of the International Joint Conference on Neural Networks
(IJCNN’10), pages 3485–3492.

Agostini, A. and Celaya, E. (2011). A Competitive Strategy for Function Approxima-
tion in Q-learning. In Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI’11), pages 1146–1151. AAAI Press.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Celaya, E. and Agostini, A. (2015). Online EM with Weight-Based Forgetting. Neural
Computation, 27(5):1142–1157.

Deisenroth, M., Rasmussen, C., and Peters, J. (2009). Gaussian process dynamic pro-
gramming. Neurocomputing, 72(7-9):1508–1524.

Deisenroth, M. P. (2010). Efficient reinforcement learning using Gaussian processes.
KIT Scientific Publishing.

Deisenroth, M. P. and Rasmussen, C. E. (2011). Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the International Conference on Ma-
chine Learning (ICML), pages 465–472.

Dempster, A., Laird, N., Rubin, D., et al. (1977). Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38.

Doya, K. (2000). Reinforcement learning in continuous time and space. Neural Com-
putation, 12(1):219–245.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern classification. John Wiley
and Sons, Inc, New-York, USA.

Engel, Y., Mannor, S., and Meir, R. (2003). Bayes meets Bellman: The Gaussian
process approach to temporal difference learning. In Proceedings of the 20th Inter-
national Conference on Machine Learning, pages 154–161.

Engel, Y., Mannor, S., and Meir, R. (2005). Reinforcement learning with Gaussian
processes. In Proceedings of the 22nd international conference on machine learning
(ICML’05), pages 201–208. ACM.

Figueiredo, M. (2000). On Gaussian radial basis function approximations: Interpreta-
tion, extensions, and learning strategies. Proceedings of the International Conference
on Pattern Recognition, 2:618–621.

Gordon, G. J. (1995). Stable function approximation in dynamic programming. In Pro-
ceedings of the international conference on machine learning (ICML), pages 261–
268.

24

Mathworks (2016). http://www.mathworks.com.

Sato, M.-A. and Ishii, S. (1999). Reinforcement learning based on on-line em algorithm.
In Proceedings of the conference on Advances in neural information processing sys-
tems (NIPS’99), pages 1052–1058, Cambridge, MA, USA. MIT Press.

Sato, M.-A. and Ishii, S. (2000). On-line em algorithm for the normalized Gaussian
network. Neural Computation, 12(2):407–432.

Sutton, R. and Barto, A. (1998). Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA.

25

