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Abstract

In large industrial greenhouses, plants are usually treated following well established
protocols for watering, nutrients, and shading/light. While this is practical for the au-
tomation of the process, it does not tap the full potential for optimal plant treatment. To
more efficiently grow plants, specific treatments according to the plant individual needs
should be applied. Experienced human gardeners are very good at treating plants indi-
vidually. Unfortunately, hiring a crew of gardeners to carry out this task in large green-
houses is not cost effective. In this work we present a cognitive system that integrates
artificial intelligence (AI) techniques for decision-making with robotics techniques for
sensing and acting to autonomously treat plants using a real-robot platform. Artificial
intelligence techniques are used to decide the amount of water and nutrients each plant
needs according to the history of the plant. Robotic techniques for sensing measure
plant attributes (e.g. leaves) from visual information using 3D model representations.
These attributes are used by the AI system to make decisions about the treatment to ap-
ply. Acting techniques execute robot movements to supply the plants with the specified
amount of water and nutrients.

1 Introduction
While agriculture tasks entailing repetitive action on the basis of immediate sensing
have been successfully automated [1], gardening considering longer time frames has
remained elusive. Taking individualized care of plants is difficult because although
plants react to changes of light, water and/or nutrients, these reactions come with long,
variable delays and are also quite variable in strength. Moreover, individual reactions
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are history dependent, because an initially healthy plant will react differently to a treat-
ment than a stressed or damaged one.

Human gardeners take actions relying on their expertise and their knowledge of the
history of events observed in a given plantation. However, to attend to the needs of a
plantation in large industrial greenhouses, having a team of gardeners might not be cost
effective. The alternative is to use a robotic system capable of taking actions accord-
ing to the specific needs of every plant. This is the main focus of this paper, where a
robotic cognitive architecture for automatic gardening is presented. The architecture in-
tegrates artificial intelligence techniques for decision-making with robotics techniques
for sensing and acting. Low-level robotic approaches comprises short-term interaction
of the robot with plants entailing 3D model acquisition of deformable objects (leaves)
[2] and robot-arm manipulation approaches for active vision and individual treatment
application [3].

For making decisions we implemented the decision-making framework presented
in [4], specifically designed to generate action plans in tasks involving long delays be-
tween actions and effects. This framework focuses on the cognitive abilities needed,
namely decision-making based on logic-based planning and learning weakly correlated
cause-effects along sequences of events. These mechanisms compile expertise so as
to deduce, from past sequences of events, the long-term treatments producing the best
desired results in each particular situation of a plant. Planning and learning are inter-
leaved in a way that permits uninterrupted operation by requesting a human gardener
to instruct the treatments when the knowledge acquired so far is insufficient to make a
decision. In this case, the gardener simply specifies the immediate treatment to apply to
the plant while the learning approach autonomously finds the relevant events that com-
pactly describe the plant evolution under that treatment. For instance, the gardener may
instruct the robot to provide small doses of nutrient in combination with doses of water
three times a day, if he detects a low growth rate of the plant due to lack of nutrients,
or simply small doses of water twice a day, if he knows that large doses of nutrients
and water has been administered right before. With these instructions, the system pro-
gressively improves the decision-making performance by coding plant evolutions into
planning operators until the human intervention is not longer required.

Many industrial and service tasks require these cognitive abilities, and we have
worked on the gardening setting because of our involvement in the European project
GARNICS [5]. The goal of GARNICS was to automatically monitor large botanic ex-
periments in a greenhouse to determine the best treatments (watering, nutrients, light)
to optimize predefined aspects (growth, plant status) and to eventually guide robots to
obtain the required measures from leaves and apply the treatments prescribed by the
system.

The cognitive architecture has been tested in an industrially-relevant plant pheno-
typing application [6, 7], with very encouraging results as presented in Section 3. In
the final experiment within the GARNICS project, images of Tobacco plants (Nicotiana
tobacum cv. Samsun) were acquired every hour for up to 30 days, from which the re-
quired appearance features were extracted. Moreover, for each individual plant, light
intensity was measured, and water and nutrients were dispensed using an automated
flexible-tube pump. The image dataset has been made publicly available [8, 9] and fur-
ther details on how these experimental data were collected can be found therein (cmp.
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also Section 3, esp. Figure 6).

1.1 Related Works
Robotics applications for the execution of human-like tasks have been tackled using
techniques of human-robot interaction, task planning, and symbol grounding [10]. Ar-
tificial intelligence planning techniques play a fundamental role in such applications
since they use a symbolic, logic-based notation compatible with human language. This
allows for a natural human-robot interaction, letting a lay person easily provide instruc-
tions to the robot [11]. For a successful integration of these techniques in a robotic plat-
form, it is mandatory to ground the symbolic descriptions of the AI planning methods to
let the robot interact with the real world in order to execute a task [12]. This is normally
done by integrating methods of different levels of abstractions [10, 13, 14, 15, 16], rang-
ing from purely symbolic methods [17], to sensor information processing [18] and act-
ing methods [19]. Several approaches integrate planning and acting for the robotic ex-
ecution of human like tasks. In [15], a new architecture that integrates task and motion
planning (TMP) is proposed. This architecture uses an incremental constraint-based
task planning to dynamically incorporate motion feasibility at the task level during task
execution, facilitating the symbol grounding problem. The architecture presented in
[20], on the other hand, incorporates human assistance to demonstrate relevant actions
for the task. The main novelty of their approach is a method for learning from demon-
stration that permits reusing knowledge of previously learned tasks to accelerate the
learning of new ones. This is done by exploiting semantic similarities between tasks
parameters. Learning from demonstration has also been used in the architecture pre-
sented in [16]. In this case, a human provides example executions of symbolic actions
that are used to update low-level probabilistic models parametrized for each specific
robotic platform, which permits evaluating the feasibility of grounding symbolic ac-
tions.

Robotics applications has also been implemented for the task of automatic garden-
ing [21, 1, 22]. In [21] a set of mobile robots are equipped with eye-in-hand cameras
and mobile arms to water and harvest tomato plants according to their individual needs.
To recognize position and maturity level of tomatoes (green or red), the system selects
a robot that moves to the plant to take images from six (fixed) different perspectives.
Tomatoes are recognized using a feature-based method that detects circles and smooth
areas using a convolution approach [23]. A humidity sensor is placed in the soil to eval-
uate watering requirements. Task planning is carried out to allocate plants to robots.
However, they do not apply task planning or any other AI approach to decide the treat-
ment for each plant according to its needs. Water is supplied to the plant in a fixed
amount and in a reactive manner when the value of the humidity sensor drops below a
predefined threshold. Another example of a robotic system applied to automatic garden-
ing is presented in [22]. In this case, the system is split in two parts: one part attached
to the greenhouse for the control of the environmental light, temperature, and humid-
ity, and the other one fixed on a robot to control plant watering and seeding. Watering
and seeding take place at predefined positions in the soil and are triggered by manu-
ally activated buttons. As in [21], humidity sensors are placed in the soil to reactively
water plants using a thresholded approach. In their architecture, none of the automatic
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processes uses artificial intelligence techniques for planning or learning.
In the following sections we present our cognitive architecture for automatic gar-

dening. Section 2 introduces the general architecture of the system. In this section the
robotic mechanisms for sensing and acting as well as the artificial intelligence tech-
niques for planning and learning are described. The performance of the cognitive ar-
chitecture in a real scenario is assessed in Section 3 and deeply discussed in Section 4.
The paper ends with some conclusions (Section 5).

2 General Architecture of the System
Fig. 1 presents a general scheme of the cognitive architecture. The architecture is
composed of a decision-making framework (DMF), in charge of deciding the action
(treatment) to be applied to the plant, the modules for perception and action, which
ground the symbolic states and actions, respectively, and a KUKA arm robotic platform
equipped with a set of cameras and a probe to supply water and nutrients.

Figure 1: General scheme of the system.

The DMF receives a description of the plant from the perception module, which
transforms the images captured by the cameras into a symbolic description of the plant
state (e.g. number of leaves, size of the plant, etc.). The state description is stored in the
history database that is used by the decision maker to define which treatment to apply
depending on the previous history of the plant and the goal specification. The treatment
is then sent to the action module for its actual execution. The history database is also
used to learn which of the past experienced events are actually relevant to predict the
evolution of the plant under a treatment. This is the task of the learner, which generates
and refines planning operators (POs) containing these relevant events. The system is
supported by a human gardener that specifies the treatment to apply when the POs
learned so far are not enough to make a decision in the current situation. After the
treatment execution, the process starts over again by generating a new plan from the
reached plant state. This is a strategy known as replanning, which enables the robot to
immediately make use of the new knowledge acquired after the learning step. It also
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allows for task continuation from an unexpected effect, that would spoil the previous
plan, requiring a new plan to be found. The following sections provide more details
about the mechanisms described above.

2.1 Basic Notation
In this section we introduce the domain definition for task planning in automatic gar-
dening. As in most planning approaches the domain definition is handcrafted using the
knowledge of a human expert [24, 17]. In our case, we used the expertise of a gardener
to define the relevant state and action variables for the task of controlling the growth of
plants.

The set of attributes used to describe a plant state at a specific time t, st, are pre-
sented in Table 1. Those attributes referencing size, e.g. mean size of leaves, are de-
scribed using the standard notation: XS (extra small), S (small), M (medium), L (large),
and XL (extra large). All the other attributes are specified using integer values.

Number of leaves (n leaves)
Number of green leaves (n green leaves)
Number of yellow leaves (n yellow leaves)
Ratio green/total leaves (green/total leaves)
Mean size of leaves (mean sz)
Size of smallest leaf (small sz)
Size of largest leaf (large sz)
Plant height (height)
Percentage of mean growth rate of leaves (mean gr)
Percentage of largest leaf growth rate (large gr)

Table 1: Plant attributes used in the state description.

In a similar way, we define an action (or treatment), at, applied to the plant at a
specific time t, as a sequence of doses of water and nutrient supplied to the plant in
intervals of 1 hour during 24 hours. A treatment may also involve variations in the light
intensity along this period. Tables 2 and 3 present two examples of treatments of strong
nutrient and mild watering, respectively.

Using the specified notation, it is straightforward to represent the control behaviours
as cause-effect couples (CECs) in a way easily interpretable by humans. This simpli-
fies the task of the gardener in supervising the plant evolution and specifying which
treatment to be applied when needed. Table 4 shows an example of the changes in the
number of leaves under the application of two treatment doses of ’Strong Nutrient’,

Atomic action t+ 0 t+ 4 t+ 8 t+ 12 t+ 16 t+ 20 t+ 23
Water (ml) 1 0 1 0 1 0 1
Nutrient (ml) 2 1 2 1 2 1 2
Light variation (%) 0 0 0 0 0 0 0

Table 2: Treatment of strong nutrient.
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where relatively large doses of nutrient are supplied to the plant. Each column corre-
sponds to the attributes observed and the treatment applied at each time interval of 24
hours.

A complete description of the cause-effects taking place in the plant should not
only consider the changes taking place with an action (Table 4) but also the past events
that allow these changes to occur. As pointed out in the Introduction (Section 1), the
currently observed evolution of a plant depends not only on its current state and the
recently applied treatments, but also on the past history of the plant. An example of
this can be observed in Table 5, where a complete description of the causes that would
allow the changes coded in Table 4 to actually occur is presented.

The CEC represented in Table 5 indicates that, in order to obtain the coded changes
with the execution of two treatments of ’Strong Nutrients’, the value ’small sz=XS’
should have been observed 24 hours in advance, ’n green leaves=0’ and ’height=XS’
48 hours before the treatments execution, and all the variables at time 0 hours should be
observed just before the treatments are applied. In addition, the CEC also indicates that
two treatments of ’Mild Watering’ (Table 3) should have been applied 24 and 48 hours
in the past, respectively.

Note that the cause-effect couple in Table 5 provides a compact representation of
the evolution of the plant, in the same way a planning operator provides a compact
representation of state transitions. In other words, a CEC does not show the complete
sequence of state transitions that would be observed under the executed treatments,
which would involve all the variables of the state space, but a compact representation
of them, only considering the attributes that change with the treatments and those that
are relevant to accurately predict these changes.

2.2 Perception Module
The symbolic state representation is generated by the perception module from the im-
ages captured by the cameras. Both color and near-infrared (NIR) images are used to
measure plant structure. NIR images provide better gray level contrast and the proce-
dure to locate leaf boundaries becomes easier (Fig. 2).

Segmentation and counting of leaves in images is a hard problem and still an ongo-
ing research topic [25]. Tobacco images acquired in our scenario as well as Arabidopsis
images, both of them accompanied by ground truth segmentations and annotations, are
available to the public as a benchmark dataset [9]. While for Arabidopsis results steadily
improve [26, 27, 28], tobacco leaf segmentation and counting remains challenging [29].
Here, we use a previously developed multi-level procedure. First, a background removal
process is applied to remove the pot, the soil, and the rest of the background. Second,

Atomic action t+ 0 t+ 5 t+ 10 t+ 15 t+ 20
Water (ml) 1 1 1 1 1
Nutrient (ml) 0 0 0 0 0
Light (%) 0 0 0 0 0

Table 3: Treatment of mild watering.
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Time 0 h 24 h 48 h
n leaves 2 2 4
n green leaves 2 2 4
mean sz S M M
small sz S M XS
large sz S M L
height XS S S
mean gr 10% 10% 20%
Treatment Strong Nutrient Strong Nutrient

Table 4: Example of Plant Changes.

Time -48 h -24 h 0 h 24 h 48 h
n leaves 2 2 4
n green leaves 0 2 2 4
mean sz S M M
small sz XS S M XS
large sz S M L
height XS XS S S
mean gr 10% 10% 20%
Treatment Mild Watering Mild Watering Strong Nutrient Strong Nutrient

Table 5: Example of Complete Cause-Effect Description.

the leaves are segmented using a superparamagnetic clustering method [30, 31]. Unfor-
tunately, this method produces oversegmentation and leaves can be represented by more
than one segment. Third, a correction is performed to merge segments corresponding
to the same leaf. This correction is based on the convex hull approximation using depth
information, which is derived from the disparity map obtained by stereo matching [2].
The accuracy of the perception system depends on the inclination of the leaf and is
measured as the validity (correlation between the measured contour and a leaf model)
of the extracted segments. In the fronto-parallel position, the measured validity is about
0.9 and decreases linearly up to 0.5 when the leaf is rotated to 40 ◦.

Figure 2: NIR image of a single plant.
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Figure 3: Hardware setup of the robot gardener as used in the experiment: A: the robot
arm, in the lab environment. B: Camera head with illumination for imaging and water-
ing system. C: High power LED illumination. D: Workspace with light-, temperature-,
and humidity-sensors.

2.3 Action Module
The treatments are applied to individual plants through the action module. The system
is designed to treat multiple plants. In current phenotyping facilities [32, 33, 34] plants
are transported with conveyor belts or robotic systems to the measurement cabin. Plants
may be in individual pots or, as in our case, in a tray with other plants. In our setup, the
measurement cabin is substituted by a robot that can actively change the position of the
sensors, and also can apply individual treatments [3]. The robot is equipped with two
tanks, one with plain water and the other with nutrients dissolved in water. A probe is
mounted on the robot hand (Fig, 3B) to administer the treatments by moving the probe
to each one of the plants. The treatment includes also the amount of light, that is jointly
controlled for the whole set of plants, but individually measured in a calibration step
considering illumination inhomogeneities.

2.4 Selecting the Treatment to Apply
For the selection of the treatments to be executed we integrated in the robotic platform
the AI decision-making framework (DMF) for executing tasks involving weakly cor-
related cause-effects presented in [4]. In this section we present a summary of such a
framework. For a more thorough description please refer to [4].

The DMF comprises a logic-based planning method, which generates a plan (se-
quence of treatments) that would bring a plant from the current state to the desired goal
state, and a learning approach, interleaved with planning, that automatically generates
planning operators coding weakly correlated cause-effects.

Planning

To generate plans, the planning approach uses a set of planning operators that com-
pactly code the changes obtained with the execution of actions. A planning operator is
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composed by the precondition, action, and effect parts. The precondition part enumer-
ates the conditions that should be observed to produce the coded changes. The effect
part, in turn, describes these changes, observed after the execution of the actions coded
in the action part.

In our approach, the compact representation of changes is provided by the cause-
effect rules, which are directly transformed into POs using a precondition-action-effect
notation compatible with a logic-based planner. To provide an example of how a CEC
is coded as a PO, Table 6 shows the PO representation of the CEC described in Table
5, where two treatment doses of ’Strong Nutrient’ are released in sequence. All the
preconditions that should be observed in the history of the plant to obtain the coded
changes, are all the events coded in the CEC taking place in the past up to t = 0. 1

To find a plan from every possible situation, the planner should be provided with a
complete set of planning operators that would permit obtaining any desired goal from
those situations. Since planning operators are learned from observed executions, the
planner may face a situation in which no plan can be generated. In this case, exploratory
actions (treatments) should be executed to generate new planning operators to fill that
gap of knowledge. To speed up learning, we let a human gardener guide this exploration
by instructing the immediate treatments to be applied. This permits quickly generating
operators coding relevant cause-effects for the task at hand. Note that the exploration of
actions could also be performed automatically (e.g. by executing actions randomly) but
this would require a much larger amount of time to generate task-relevant cause-effect
rules. Figure 4 presents a snapshot of the graphical user interface (GUI) used by the
gardener to instruct treatments.

Learning Weakly Correlated Cause-effects

The evolution of the plant observed after every treatment execution is used by the learn-
ing method to find relations between past events and observed changes. If the treatment
was instructed by the gardener, the system generates a new CEC from the observed
changes that would fill the gap of knowledge that originated the request. If the treatment
was provided by the planner but its execution does not produce the expected effects, the
system refines the executed CEC with those past events that also need to be considered
to accurately predict the expected changes.

The learning approach focuses on two aspects. In the first place, the accuracy of a
CEC is evaluated using a probabilistic estimate, called the density-estimate [35], that
takes into account the lack of experience in the estimation to avoid large biases when
the estimation is based on few examples. The formula of the density-estimate is

P =
n+ + n̂∅ c

n+ + n− + n̂∅
, (1)

1Note that logic-based planning approaches assume a Markovian decision process model of the envi-
ronment [24], i.e., that the effects depend only on the state observed when the action is executed. This
is not the case for the task of controlling plant growth, where the effect of applying a treatment depends
on the history of the plant. Therefore, to make our representation compatible with logic-based planning,
we used the well-known fact that a non-Markovian decision process can be transformed into a Marko-
vian one by redefining the state representation so as to include history. For more information about this
transformation please refer to [4].
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Precondition Action Effect
n leaves = 2 at 0 h Strong nutrient at 0 h n leaves = 2 at 24 h
n green leaves= 2 at 0 h n green leaves = 2 at 24 h
Mean Sz = S at 0 h Mean Sz = M at 24 h
Small Sz = S at 0 h Small Sz = M at 24 h
Large Sz = S at 0 h Large Sz = M at 24 h
Plant height = XS at 0 h Plant height = S at 24 h
Mean Gr = 10% at 0 h Mean Gr = 10% at 24 h
Small Sz = XS at -24 h
n green leaves = 0 at -48 h
Plant height = XS at -48 h
Action mild watering at -24 h
Action mild watering at -48 h

Strong nutrient at 24 h n leaves = 4 at 48 h
n green leaves = 4 at 48 h
Mean Sz = M at 48 h
Small Sz = XS at 48 h
Large Sz = L at 48 h
Plant height = S at 48 h
Mean Gr = 20% at 48 h

Table 6: Example of the precondition, action, and effect parts of a planning operator
(PO) coding the cause-effect rule shown in Table 5. All the events coded in the PO
(either attributes or treatments) have associated their time of occurrence. The action
part consists of two treatments of ’Strong Nutrient’. The precondition part contains the
relevant events that need to be observed in order to accurately predict the evolution of
the plant with the execution of the two treatments. The effect part codes the expected
evolution of the plant after each treatment execution.

where P is the CEC probability of obtaining the coded changes with the applied treat-
ments. The variable n+ is the number of positive experienced sequences. These se-
quences are those that match the past events and treatments considered in the CEC, as
well as the coded changes. In turn, n− is the number of negative experienced sequences,
which also match the past events and coded treatments but, in this case, do not match
the changes coded in the CEC. The variable n̂∅ is the estimated number of sequences
that are still pending to be experienced so as to consider the estimation as confident.
n̂∅ balances the influence of the experienced instances, mainly when few experiences
are gathered, and should progressively decrease to 0 as more experiences are collected.
Finally, the parameter c is the a-priori probability that the not experienced sequences
n̂∅ will be positive once experienced.

The second aspect is how to efficiently find relevant past events, i.e. those events
that would increase the probability (1) to obtain the coded changes. While learning
proceeds, potentially relevant combinations of events are kept in memory and progres-
sively refined with those past events that produce an increment in the probability. The
refinement process of a CEC, say CECi, starts by retrieving from the database those
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Figure 4: Snapshot of the GUI to instruct treatments. The gardener is able to select,
edit, or generate the treatments to apply using the panel at the left of the GUI. The
actions involved in the treatments, e.g. doses of water and nutrients, together with the
corresponding time-steps are deployed in the editable table Actions at the top-right.
The GUI also permits specifying the attributes that would be involved in the cause-
effect rule associated to the instructed treatments (Attributes table) but this option was
not used during instruction since the system is able to automatically find them.

CECs coding the same changes as CECi, and gathering them in the set Rchange. Then,
new combinations of past events are generated in two different ways. On the one hand,
for each CEC ∈ Rchange, many alternative refinements in one past event, of the ones
already considered in the CEC, are performed using events extracted from positive se-
quences corresponding to the CEC. On the other hand, new combinations are generated
from all the possible combinations of the past events of any two CECs ∈ Rchange. All
the generated CECs, as well as the previously existing ones (i.e. those in Rchange), are
merged together in the set of candidate CECs, Rcand. Finally, the candidate CEC with
highest probability (1) is used to refine CECi.

To shed some light on the performance of the mechanisms for learning weakly cor-
related cause-effects, we show in Fig. 5 the results obtained in several experiments
carried out in a simulated plant scenario [4]. The simulated scenario permits obtain-
ing enough data to exhaustively assess the performance of the system in a reasonable
amount of time, which otherwise would have taken several months to collect if real
plants were used.

The experiments were carried out presenting simulated plants to the system in a
sequential way, each of them having a different initial situation, which was generated
randomly. The goal for all the plants was to bring them to a large size and with a mini-
mum number of 10 leaves, where at least 80% of them should be green. In the experi-
ments, the logic-based planner PKS was used [36]. The reference for the performance
is provided by the OBSERVER method [37], a well-known learning strategy that inter-
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leaves the learning of planning operators with logic-based planning. The OBSERVER
approach learns planning operators using an adaptation of the Version Space method
[38] by keeping and refining the most general and the most specific representation of
the precondition part of each operator.

Fig. 5A shows the accumulated number of gardener instructions during learning.
At the beginning, when no CECs were generated, the gardener needs to intensively
instruct the actions (treatments) to apply. Due to the learning process, the gardener’s
intervention decreases progressively until the gardener’s help is no longer required. The
accumulated number of unexpected effects also converges (Fig. 5B), showing how the
initially incomplete CECs are successfully refined to include the required past events.
Note that the accumulated number of unexpected effects for the OBSERVER does not
converge due to its inability to find all the past relevant events that should be considered
to successfully obtain the changes obtained from the instructed treatments.

Figures 5C and 5D also demonstrate how the learning progressively finds all the
relevant past events for each of the CECs generated. Figure 5D shows the ratio of plans
completed without any gardener intervention or unexpected effect. Note that, in the
long run, all the plans were completed successfully using our approach. Finally, Figure
5C presents the accumulated number of cause-effect rules generated during learning,
showing that the rule generation also ceases in the long run.
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Figure 5: Results obtained from the simulated plant scenario. The continuous blue
lines correspond to our cognitive architecture while the dashed red lines correspond to
the reference method OBSERVER (source [4]).

Next section presents the performance evaluation of the robotic cognitive architec-
ture for the task of controlling the growth of real plants.
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Figure 6: Training experiments. Different treatments are applied to generate new CECs,
and consequently some plants are big and some small. Light intensities applied were
(A) 100% (i.e. too much light), (B) 50%, and (C) 25% (relatively low light). Treatment
plan (D) describes low (0.6ml), medium (1.8ml), or high (3.0ml) amounts of water
applied every 2 hours, respectively, and no or 12ml Hakaphos green 0.3% two times per
week [8]. The experiments ended after 30 days or when it is not possible to segment
contiguous plants anymore.

3 Performance Evaluation
To demonstrate the validity of the cognitive architecture in real scenarios, we present
experiments carried out with real plants using the robotic platform of the GARNICS
project (see Figure 3). A real experiment consists in treating some plants, possibly in
different initial conditions, and grow them up to a desired state. In the real scenario,
cause-effect couples (CECs) are learned either offline from training data acquired in
previous runs or online in the current experiment. Offline learning is carried out to
speed up the initial learning process by generating CECs from sequences collected in
advance.

Offline CEC acquisition

The system was trained through 3 experiments of 18, 20, and 30 days of duration (de-
pending on the growth rate due to the treatment) including 20 plants each. Figure 6
shows the 3 plant trays after the experiments, together with the watering and nutrition
layout. The treatments for each plant were generated with as much diversity of cause-
effects as possible. Observe that some plants grew while others remained very small.
Treatments were manually defined by the gardener.
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Figure 7: Training experiments: Number of training instances and learned CECs.

Figure 7 shows the evolution of the number of CECs generated during the learning
process. A training instance consists of a sequence of states and treatments until a
change in the state is observed, which may happen after a single day or after several days
of applying treatments. Each new experiment produces several training instances, and
consequently their number grows linearly. However, some of these training instances
may have produced changes already experienced before, and do not produce a new CEC
but are used to refine existing ones. After this process, 248 new CECs were created out
of 448 training instances.

Plant caring experiment

The goal of this experiment is to use the real robot to take care of a set of 20 plants,
starting from different initial conditions, and to grow them automatically using the pre-
viously acquired CEC while requesting teacher assistance when required. The experi-
ment was 12 days long. Fig. 8 shows the input data used to make decisions each day
for 4 representative plants, where only the number of leaves and the growth rate were
considered for the state description. The state of the plant was updated every hour,
and decisions about the treatment once per day. Decision points are marked with a
circle. Observe the high variability of the data along the same day due to noise in the
perception process.

An identification number was assigned to each plant. Observe in Fig. 8 that all
plants, except plant A880643, start the experiment with 0 observable leaves. Table 7
shows the CECs selected for the 4 plants along 5 days. Observe that CEC 1 is selected
for all the plants except for plant A880643. CEC 1 involves three treatments executed
along 3 days: {Day 1: treatment 1, Day 2: treatment 1, Day 3: treatment 2}. Treatment
1 consisted in pouring 2ml nutrients twice a day, and treatment 2 consisted in no action.
The expected change at the end of these treatments is the emergence of one leaf, which
should happen on the third day.

During the 3 days, plants A880593 and A880603 behaved as expected, and no
change in their state was observed, hence no replanning was needed. Regarding plant
A880573, observe in Fig. 8a that the state change predicted by the CEC occurred on
the second day, not the third one as expected. An unexpected effect signal was again
triggered. These unexpected effects were used to learn and refine the CEC as explained
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day PlantID CEC Treatment
1 880573 1 1

880593 1 1
880603 1 1
880643 11 10

2 880573 1 1
880593 1 1
880603 1 1
880643 11 13

3 880573 27 39
880593 1 2
880603 1 2
880643 20 30

4 880573 13 10
880593 82 97
880603 82 97
880643 20 26

5 880573 60 77
880593 56 44
880603 82 97
880643 56 44

Table 7: CECs and corresponding treatments selected for 4 plants in the experiment
during 5 days (cmp. also Figure 8). Observe that at day 3 plant 880573 has an unex-
pected behaviour which triggers replanning, while plants 880593 and 880603 finalize
the 3-day treatments. For the same plants, the same CEC is selected for day 4, but
plant 880593 changes its state unexpectedly, and thus a new CEC is selected. For plant
880643, as its initial state is different (see Fig 8d), the first selected CEC is different.
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(a) (b)

(c) (d)

Figure 8: States for 4 different plants: number of leaves in blue, growth rate in green,
planning points indicated with marks. Even if treated with the same treatments (first 72
hours), observe the different behavior of the plants.

in Sec. 2.4.
Additionally, observe that on the 4th day the state of plants A880593 and A880603

was the same, and consequently the same CEC was selected (Figs. 8b and 8c). How-
ever, on day 5 the CEC execution for plant A880593 produced an unexpected effect,
and the planner selected a different CEC for it. Regarding plant A880643, it behaved
as expected and 2 different 2-day treatments were applied with no unexpected effect,
that is, at the end of each day the state of the plant corresponded to the predicted one
(Fig. 8d).

The overall performance in terms of growth rates is shown in Figure 9. We observe,
that the optimized treatments applied by our system lead to a significant increase of
the mean growth rate in the test experiment, compared to the best-performing training
plants, i.e. the top performing plants in training experiment 3. The average growth rate
of the 17 healthy test plants is 0.18 (i.e. 51% area increase per day), whereas the best-
performing training plants show a growth rate of 0.16 to 0.17 (i.e. 45% to 48% area
increase per day).
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Figure 9: Logarithmic sizes wrt. inital sizes for the training experiments and the test
experiment. In this representation growth rates are the inclinations (derivatives) of the
graphs. In each plot each color stands for a different individual plant.

4 Discussion
The integration of AI method with robotic mechanisms into a real robot cognitive archi-
tecture entails several challenges. One of the biggest challenges is the symbol ground-
ing problem, i.e. filling the gap between artificial intelligence techniques and robotic
approaches for sensing and acting. To address the symbol grounding problem we de-
fined a symbolic notation easily transformable into the representation used by the sens-
ing and acting mechanisms. The symbolic variables are obtained from the discretization
of the continuous variables associated to each detected leaf (growth rate, mean size of
leaves, etc) (Sec. 2.2). The same is applicable to the grounding of the symbolic actions,
which consist of discrete values of amount of water and nutrient, which can be easily
transformed into low-level signals to control the probe mounted on the robot hand to
administer the required doses (Sec. 2.3).

Another important problem we faced during the implementation of the cognitive
architecture was the noise generated by the sensing mechanisms. In our architecture,
the symbolic state description is defined from continuous properties measured by a real
camera system with several causes for noisy or erroneous measurements. Consequently,
state transitions from one quantized state to the other (e.g. medium leaf to large leaf)
are sometimes noisy and unreliable. We deal with this problem using two strategies.
The first one consists in selecting an appropriately coarse time interval for sampling
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and planning (every 24 hours). In this case, filtering, like a voting mechanism, helps
to get more reliable values. The second one is the probabilistic approach to generate
cause-effects rules. Note that a noisy observation would explain only one experience
from the dataset. Thus, its impact on the calculated probabilities would be very lim-
ited. An unreliable perception can also be produced when leaves from different plants
occluded each other. To tackle this problem, experiments were stopped before leaves
from different plants overlapped. The good results obtained in the experiment in the
real scenario (Sec. 3) show that our system is able to handle noisy measurements.

From a software engineering viewpoint, integration into a heterogeneous software
system takes some extra effort compared to simulations being run within the same pro-
gramming environment. We encapsulated different functionalities in ICE modules (In-
ternet Communication Engine) [39] in order to run modules smoothly together on differ-
ent computers under different operation systems, implemented in different languages.

Another difficulty that we needed to address to make the cognitive architecture vi-
able was the time of response of the human gardener. In the simulated scenario, a new
cause-effect rule may be made available any time (time stops when no input comes),
whereas a real system waiting for response hangs while the real plants continue evolv-
ing. Since a human cannot be available for helping the system 24/7, the time interval
for planning was set to once a day, only. This requires the operator/gardener to look
after the system only once a day during a predefined short time frame.

Another aspect to stress is that the variables configuring the state space are pre-
defined in advance. Currently, the decision-making approach does not include any
mechanism for the automatic generation of these variables. This could affect the per-
formance of the system in situations in which the state space variables do not permit
distinguishing between, for instance, a plant having an excess of water or a plant having
a disease. In that case, it would be necessary to manually include new variables in the
state space definition to disambiguate between these situations. We would like to note
that, if a mechanism for generating new state variables during runtime were provided,
the system would be able to incorporate these variables without deteriorating much its
performance. This is so since the learning mechanisms would start considering the new
variables for the refinement of cause-effect rules, while keeping the already existing
ones.

Finally, we would like to remark that, even though we selected water and nutrients
to be administered by the effectors of the robot to treat plants, adding other effectors
for applying different chemical compounds would be a matter of design, enlarging the
treatment space, but not changing the complexity of the problem dramatically. Treating
plants with different chemical compounds, like fertilizers, pesticides, fungicides, and
also water, precisely where needed, is a central task in precision agriculture [40, 41].
Industrially available solutions include tractors, harvesting machines and field robots
as well as UAVs for measuring plant and field status and environmental parameters.
Rules for spraying chemicals accurately are mostly relying on experience of farmers
and plant experts. The system presented and successfully tested here, may help to
automate rule generation and optimize treatment planning and replanning also in this
societally relevant application field.
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5 Conclusions
In this work we presented a robotic cognitive architecture for the control of the growth
of plants. The developed system is capable of providing an individualized care of plants
by using artificial intelligence (AI) techniques for planning and learning integrated in
a robotic platform. To the best of our knowledge, this is the first robotic system using
artificial intelligence developed to this end.

For making decisions, we used the decision-making framework in [4]. This frame-
work interleaves a symbolic planner, capable of generating plans for tasks involving
weak and delayed correlations between actions and effects, such as controlling the
growth of plants, and a learner, which learns during task execution planning operators
coding these weakly correlated cause-effects. The AI decision-making mechanisms
were integrated with robotic techniques for sensing and acting for the grounding of the
symbolic descriptions of states and actions, respectively. Sensing mechanisms consists
of leaf segmentation from images obtained by an eye-in-hand camera using a superpara-
magnetic clustering approach [30, 31] from which the number, color, and size of leaves
were derived. This information was used to generate a symbolic state description for the
decision-making approach to decide about the treatment (doses of water and nutrients)
that should be applied to the plant. These doses were supplied to the corresponding
plant using a probe mounted on the hand of a robot arm [3].

The architecture allows a human gardener to speed up learning by providing the
treatment to execute when the planner cannot make a decision due to (still) missing
operators. The intervention of the gardener is kept to a minimum since plan generation
failure takes place mostly at the beginning of the learning and quickly decreases to zero
until the human intervention is no longer required, moment at which the system works
fully autonomously.

The cognitive architecture proved to work successfully in a real plant scenario. The
system was able to learn relevant cause-effect rules to perform an individualized care
of plants efficiently. Unexpected effects were correctly handled, e.g. for plant 880573
in day 3 (see Table 7), where interleaving planning and learning prevented the interrup-
tion of the task by generating a new plan from the unexpected situation that permitted
completing the task.

Acknowledgments
This research was supported by the commission of the European Communities Seventh
Framework Programme FP7/2007-2013 - Challenge 2 - Cognitive Systems, Interaction,
Robotics - under grant agreement No 247947 - GARNICS.

References
[1] B. Blackmore, “A systems view of agricultural robots,” Precision agriculture,

vol. 7, pp. 23–31, 2007.

19
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