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Abstract

This paper introduces an approach to simultaneously
estimate 3D shape, camera pose, and object and type of
deformation clustering, from partial 2D annotations in a
multi-instance collection of images. Furthermore, we can
indistinctly process rigid and non-rigid categories. This ad-
vances existing work, which only addresses the problem for
one single object or, if multiple objects are considered, they
are assumed to be clustered a priori. To handle this broader
version of the problem, we model object deformation us-
ing a formulation based on multiple unions of subspaces,
able to span from small rigid motion to complex deforma-
tions. The parameters of this model are learned via Aug-
mented Lagrange Multipliers, in a completely unsupervised
manner that does not require any training data at all. Ex-
tensive validation is provided in a wide variety of synthetic
and real scenarios, including rigid and non-rigid categories
with small and large deformations. In all cases our ap-
proach outperforms state-of-the-art in terms of 3D recon-
struction accuracy, while also providing clustering results
that allow segmenting the images into object instances and
their associated type of deformation (or action the object is
performing).

1. Introduction

Simultaneously estimating 3D object shape and camera
pose from a collection of RGB images either acquired from
different viewpoints or by a single moving camera is one of
the most active research areas in computer vision. Early
works addressed this problem under the assumption of a
rigid structure [1, 29, 33]. More recently, many efforts
have focused on the non-rigid case, to retrieve deforming
3D shape and camera motion from only 2D measurements
in a monocular video [2, 23, 26, 37, 39]. This problem
is known to be inherently ambiguous and demands intro-
ducing sophisticated priors. Probably, the most standard
priors include the use of different modalities of low-rank
subspaces to constrain the solution space [3, 7, 9, 26, 35].
Moreover, these algorithms exploit the fact that input im-

ages smoothly change viewpoints. This allows introducing
temporal smoothness on the shape deformations and obtain
more accurate solutions [5, 28].

All these previous approaches, however, solve the prob-
lem for one single object instance. There exist works ad-
dressing scenarios with multiple objects within a category.
For instance, if the observed category is rigid (e.g., cars or
aeroplanes) and all objects in it have the same geometry, the
problem can be addressed as a rigid Structure from Motion
(SfM) one [31, 38]. When object instances within the cat-
egory have distinct geometry, even if they are rigid (e.g.,
different model cars), the global problem of retrieving their
shape can be formulated in a non-rigid manner [20]. This
can be extended to inherently non-rigid classes (e.g., faces,
animal poses), in which case, both inter- and intra-object
deformations shall be considered [4]. However, all these
works are only focused on the reconstruction problem, and
assume the object clustering to be known a priori.

In this paper we move a step forward and tackle the prob-
lem in which the object clusters are not known a priori. That
is, given an input collection of images of a speci�c category,
we aim at simultaneously clustering them into different ob-
ject instances and recovering their 3D shape regardless of
whether the objects arerigid or non-rigid. Camera pose
is also estimated. For instance, as shown in Fig. 1-Left,
given a number of images of bicycles (5 models seen from
different viewpoints) our approach clusters them into each
of the models and reconstructs their 3D shape. Note that
some observations of the bicycle instances are very similar
and dif�cult to distinguish from only 2D annotations. Si-
multaneously reasoning about the clustering and 3D recon-
struction helps improving both tasks. The proposed method
generalizes to non-rigid categories as well. As shown in
Fig. 1-Right, given a collection of face images of 5 humans
under different viewpoints and facial expressions, our algo-
rithm jointly splits the images into each of the individuals
and their actions, and retrieves their 3D deformable shape.

In order to simultaneously tackle clustering and recon-
struction from a collection of unordered images, we propose
a novel optimization framework that builds upon recent
Non-Rigid Structure from Motion approaches (NRSfM) [6,
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Figure 1.Simultaneous 3D reconstruction and object clustering from partial 2D annotations of rigid and non-rigid categories.In
both cases, input data consists of a collection of RGB images with –possibly incomplete– 2D semantic point detections. The number of
objects within the category is not known. Our goal is to jointly estimate the 3D object reconstruction in each image, the camera pose, and
the instance cluster (we use a different color per each object instance).Left: A rigid bicyclecategory, in which each instance has a single
3D con�guration.Right: A non-rigidfacecategory, where every instance may potentially have as many 3D con�gurations as its number of
images. This graph only shows instance clustering, but as we shall see in the results, our approach also permits segmenting every non-rigid
instance into several types of deformation (or expressions in the case of the faces).

41]. More speci�cally, we model the 3D shape by multi-
ple unions of unknown subspaces, accounting for rigid plus
small and large non-rigid deformations. These subspaces,
in conjunction with additional matrices encoding the simi-
larities among the samples and among their deformations,
are retrieved from partial 2D annotations using an ef�cient
Augmented Lagrange Multiplier (ALM) scheme. A subse-
quent spectral clustering on the similarity matrices yields
the results of the segmentation. The whole algorithm works
in a fully unsupervised manner, without requiring to know a
priori the number of object clusters nor any other informa-
tion about the type of deformation (if any) undergone by the
objects. We thoroughly evaluate this algorithm on synthetic
and real images for rigid and non-rigid categories, and pro-
vide improved 3D reconstructions compared to state-of-the-
art approaches for which ground truth clustering is given.

2. Related Work

Inferring the 3D shape while retrieving camera pose
from only 2D point measurements in a collection of RGB
images, is a mature problem when the observed object is
rigid. In this case, the rigidity constraint is suf�cient to
make the problem well-posed, yielding impressively accu-
rate solutions [1, 29, 38]. In contrast, handling non-rigid
scenarios becomes an ill-posed problem that requires to ex-
ploit the denominatedart of priors to constrain the solution
space. The most standard prior used in NRSfM consists in
constraining the deforming shape to lie in a low-rank sub-
space. To learn such a low-rank model, early approaches
rely on factorization [10, 34, 40], or optimization-based
strategies [9, 26, 39]. More recently, the low-rank constraint

has been imposed by means of PCA-like formulations in
which the rank of the shape matrix is optimized. These type
of methods either assume the data lies in a single low di-
mensional shape space [16, 19, 21], or in a union of tempo-
ral [41] or spatio-temporal subspaces [6]. Low-rank mod-
els were also extended to the temporal domain, by exploit-
ing pre-de�ned trajectory basis [7, 35], the combination of
shape-trajectory domains [22, 23], and the force space that
induces the deformations [3]. As most of the methods pro-
cess video sequences, additional temporal smoothness pri-
ors have allowed to obtain more consistent solutions for
rigid [33] and non-rigid domains [9, 21, 22, 27].

In any event, while achieving remarkable results, all pre-
vious approaches aim at modeling one single object in a
category, typically observed from smoothly changing view-
points. This means they are not directly applicable to the
multi-object scenario we contemplate in this paper. How-
ever, there have been some attempts along this line. Re-
cent solutions to reconstruct rigid categories from single
images [24], resort to large amounts of training data to con-
strain the solution space. Our approach, instead, aims at
learning the solution space on the �y from a collection of
images, without requiring any training data at all. There ex-
ist very recent works implementing this idea on rigid object
categories, either exploiting the concept of symmetry [20],
or imposing a sparse shape-space model [25]. In [4], this
was extended to non-rigid categories through a dual low-
rank shape model which allowed handling small deforma-
tions. Nevertheless, these works are still limited by the fact
that they assume the clustering of the image collection into
objects needs to be known a priori.

Our Contributions. We overcome most of the limitations
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Table 1. Comparison of our approach with state-of-the-art
NRSfM methods. Our approach is the only one that simultane-
ously provides 3D reconstruction of both rigid and non-rigid cat-
egories, and estimates clustering per object instance and type of
deformation. Additionally, it can also handle incomplete 2D an-
notations, and does not need to adjust the rank of the basis.

of previous methods with an approach that jointly retrieves
3D shape, camera pose, object and deformation clustering,
and the incomplete 2D annotations, for both rigid and non-
rigid categories of objects. To this end, we encode ob-
ject deformation by means of multiple unions of subspaces,
without requiring any prior knowledge about the dimen-
sionality of the subspaces nor which data points belong to
which subspace. As a result, we obtain a uni�ed and unsu-
pervised framework which does not need training data. We
are not aware of any other work jointly offering all these
characteristics. Table 1 provides a qualitative comparison
of the main features offered by our solution and the most
relevant state of the art.

3. Revisiting Structure from Motion

We next review the SfM formulation that will be later
used to describe our approach on rigid and non-rigid cat-
egory reconstruction and clustering. Let us consider a set
of P points detected onI images. Letx i

p = [ x i
p; yi

p; zi
p]>

be the 3D coordinates of thep-th point in imagei , and
w i

p = [ ui
p; vi

p]> its 2D position according to an ortho-
graphic projection. We can jointly write the 3D-to-2D map-
ping of all points as the following linear system:
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whereW is a 2I � P matrix with the 2D measurements
arranged in columns,G is a 2I � 3I block diagonal ma-
trix made ofI truncated2 � 3 camera rotationsR i , X̂ is
a 3I � P matrix with the 3D locations of the points for all
the collection, also arranged in columns, andT is a2I � P
matrix that stacksP copies of theI bi-dimensional transla-
tion vectorst i . The SfM problem consists in recovering the
3D shapeX̂ , along with the camera motionf R i ; t i g with
i = f 1; : : : ; I g, from 2D point detectionsW .

When a rigid object is observed, i.e.,x1
p = x2

p =

: : : = x I
p, the shape matrix can be simpli�ed. In this case,

the shape can be estimated by applying SVD-based fac-
torization strategies, and enforcing a3-rank constraint on
W [31, 38] together with orthonormality constraints onG.
If, by contrast, the observed object were non-rigid, theI
locations of every point can be potentially different. Then,
shape and motion can be retrieved by enforcing a3K -rank
decomposition over the measurement matrixW [10, 40],
whereK represents the rank of the linear subspace.

For later computations, we will also re-arrange the el-
ements ofX̂ into a new3P � I matrix X encoding the
x, y and z coordinates in different rows. Both matri-
ces can be related through a functionq(�) such thatX̂ =
q(X ) [6, 16, 19, 21]. This new interpretation has the advan-
tage of allowing for aK -rank decomposition, rather than
3K , avoiding the use of unnecessary degrees of freedom.

4. Shape as Multiple Unions of Subspaces

This section describes the deformation model we pro-
pose to represent the 3D shape of an unknown number of
objects belonging to a speci�c family and their relation with
the 2D measurements in a collection of images. In the
following we shall consider three scenarios depending on
the nature of the deformation: rigid objects, and non-rigid
shapes with small and large deformations.

4.1. Case 1: Rigid Objects

Let us consider a collection ofI images of a number of
rigid objects that belong to the same category (e.g.,busin
Fig. 2-Left). Each object is characterized byP semantic
3D points, which, for the moment, we will assume to be all
visible in all images. The number of objects and images per
object is not known a priori. Our goal is, given the 2D anno-
tations, to reconstruct the 3D position of theP points in all
images, and identify and group the images belonging to the
same object. When only considering one single object in-
stance, the problem becomes a standard rigid SfM [31, 38],
which we will not tackle in this paper. When more than one
type of object is considered, we can consider theirP seman-
tic points to be related by a geometric transformation that
includes both a rigid and a non-rigid deformation. Recon-
structing theP points can then be addressed in a NRSfM
context, although without enforcing temporal consistency
between consecutive images.

Assuming a single low-rank constraint could be suf�-
cient to span the solution space of the 3D shape in this
case, as was shown in [20]. However, this formulation is
very sensitive to the chosen rank of the subspace, and its
optimal value may be very dif�cult to discover when the
number of object instances is unknown. Additionally, the
maximum rank, and hence the expressiveness of the sub-
space, is limited by construction by the number of semantic
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Figure 2.Uni�ed formulation to recover the 3D shape of rigid and non-rigid categories from a collection of RGB images.Our
deformation model considers several types of transformations. In all cases, between every pair of images, we de�ne a rigid motion
consisting of a rotation matrixR i and a translation vectort i . Left: The geometric relation between pairs of objects in a rigid category
(e.g.,bus) can be de�ned in the context of a NRSfM problem using a global deformationX i . Middle: In some categories (e.g.,face)
each of the objects deform by themselves. In this case, besides the global deformation between objects, we de�ne a linear deformation
Y i to encode the non-rigid motion that each object may undergo.Right: Other categories (e.g.,dog), following more complex patterns.
In this case we consider a non-linear deformationZ i . Our deformation model, simultaneously considers all types of deformations and
automatically learns the contribution of each term to describe the geometry of the objects in a speci�c category. Images in this �gure are
taken from the PASCAL VOC [18], MUCT [32], and TigDog [17] datasets, respectively.

pointsP, which in most of our scenarios is rather small1. To
overcome these dif�culties, we introduce a formulation that
models deformation using a union of subspaces, allowing to
automatically represent a wide range of deformations, from
simple low-rank solution spaces to highly expressive ones.
We mathematically write this model as:

X = XQ + E1 ; (2)

whereE1 is a3P � I residual noise matrix, andQ is aI � I
similarity matrix which should have higher entries for pairs
of images of the same object. In essence, by doing this, we
bring the standard scenario of the rigid SfM problem to the
non-rigid domain, with the additional outcome of cluster-
ing the input images into different objects, with no a priori
knowledge about the dimensionality of the subspaces nor
which data points belong to which subspace. As we shall
see later, once the similarity matrixQ is estimated, spectral
clustering algorithms [13] can be applied on it to discover
and match the different objects within the collection.

4.2. Case 2: NonRigid Objects with Small Defor
mations

We next consider the case in which the objects, besides
a rigid motion, also undergo small deformations or a partial
deformation of some of their points. Figure 2-Middle shows
an example of such situation for faces, where most of the de-
formation is concentrated around the mouth and eyes areas.
Existing solutions address this case by enforcing a single
low-rank subspace [9, 16, 34], when only considering one
object, or through a dual low-rank shape representation [4]
when multiple objects appear in the set of images. Most
these approaches, however, still require accurately adjust-
ing a priori the dimensionality of the subspace.

In order to account for such small and sparse deforma-
tions we will introduce a matrixY 2 R3P � I in our model.

1Note that de�ning the same semantic points in all objects of a category
is a dif�cult task. In this paper they were manually annotated for some
collections, and the exact position can be very subjective in certain cases.

In contrast to the aforementioned approaches, no low-rank
constraint will be enforced, but only a sparsity constraint
that allows the deformation of just a few points.

4.3. Case 3: NonRigid Objects with Large Defor
mations

We �nally consider the case in which the images corre-
spond to a number of non-rigid objects of a given category,
that can potentially undergo large deformations. The artic-
ulated motion of humans or animals (see Fig. 2-Right) are
examples of this scenario. Again, we consider the number
of objects in the category is not known.

In order to model this situation, we require a model with
large expressibility. This is achieved by introducing into the
model a matrixZ 2 R3P � I which is enforced to be formed
by another union of subspaces:

Z = ZQH + E2 ; (3)

whereH is again aI � I similarity matrix, andE2 is a
residual noise one. Note that in this case we are considering
the total similarity to be de�ned by the productQH , that
is, we jointly consider similarity between objects and types
of deformation. Like mentioned before for the matrixQ,
applying spectral clustering on the similarityQH will yield
clusters of objects with similar deformation (e.g., person `A'
or `B' smiling, person `A' or `B' with closed mouth).

5. 3D Shape and Clustering per Object and De-
formation Type

Our goal is to jointly recover 3D shape, camera motion,
and object and deformation type from partial 2D observa-
tions. In this section we formulate this problem by inte-
grating the three deformation cases discussed above into the
3D-to-2D projection model de�ned in Eq. (1). We then de-
scribe the optimization scheme we propose to solve it.



5.1. Problem Formulation

Let �W be a possibly incomplete matrix of 2D detec-
tions (recall thatI is the number of images of an object
class andP the number of points de�ning the class), and
O the correspondingI � P observation matrix withf 1; 0g
entries indicating whether a speci�c point in an image is
observed or not. Given�W andO, we aim at recovering:
1) the 3D locations of all points in all images, encoded by
the shape matricesX , Y and Z de�ned in Section 4; 2)
the object speci�cQ and deformation speci�cQH similar-
ity matrices which we shall use later for clustering; 3) the
camera pose parameters(G; T ) in all images; and 4) the
complete 2D detections matrixW . We denote all these un-
known parameters, plus the corresponding noise matrices
by 	 � f W ; G; T ; Q; H ; X ; Y ; Z; E1; E2g.

In order to tackle this problem we propose optimizing a
cost function that enforces the correct reprojection of the es-
timated 3D shape onto the image and incorporates the shape
constraints we mentioned when describing the model in
Section 4. In particular, the matricesX andZ are enforced
to lie in low-rank subspaces. Since rank minimization is a
non-convex NP-hard problem [36], the nuclear norm is used
as a convex relaxation [12, 14]. Sparsity on the component
Y is encouraged throughl1-norm minimization. Addition-
ally, we consider the mixedl2;1-norm over the matrices of
residual noiseE1 andE2, as this type of norm favors struc-
tured sparsity. Note that structured noise patterns may occur
on the shape matricesX andZ when speci�c data points are
missing or corrupted by noise. Taking all this into consid-
eration we formulate the optimization problem as follows:

arg min
	

k (O 
 12) �
�
W � �W

�
k2

F + � kW k� + � kQk�

+  (kX k� + kY k1 + kZk� ) + � kH k�

+ � (kE1k2;1 + kE2k2;1) (4)

subject to W = G q(X + Y + Z) + T
GG > = I 2I

X = XQ + E1

Z = ZQH + E2

where 
 and � represent the Kronecker and Hadamard
products, respectively.1 is a vector of ones, andI the iden-
tity matrix. k�kF indicates the Frobenius norm,k�k� denotes
the nuclear norm, andk � k1, andk � k2;1 are thel1-norm and
l2;1-norm, respectively. Finally,f �; �; ; � g represent the
set of penalty weights.

We approximately solve Eq. (4) in three stages: 1) com-
plete missing entries ; 2) estimate camera pose parameters,
and 3) recover the 3D shape reconstruction, and perform
clustering per object and type of deformation. We next de-
scribe each of these stages.

5.2. Complete Missing Entries

To complete the unobserved 2D detections of�W (zeros
in the observation matrixO), we independently optimize
W in the �rst two terms of Eq. (4) while enforcing this ma-
trix to be low rank. As shown in [6, 8, 11], this optimiza-
tion can be done by means of bilinear factorization, de�ning
W = UV > . We write the equivalent problem as:

arg min
W ;U ;V

k (O 
 12)�
�
W � �W

�
k2

F +
�
2

�
kU k2

F + kV k2
F

�

subject to W = UV >

This can be ef�ciently solved via ALM. To improve con-
vergence, the missing entries of�W are initialized in every
image as the mean value of the observed data points.

5.3. Camera Pose Recovery

Once the missing observations are estimated, the camera
translationt i and rotationR i in every image can be inferred
from the rest of model parameters. For this purpose, we
�rst estimate the translations inT as t i = 1

P

P P
p=1 w i

p.
The rotations matrices inG can then be jointly estimated
by solving the following non-convex problem:

arg min
G

1
2

kW � T � GX̂ k2
F (5)

subject to GG > = I 2I

where the constraint enforces the camera rotation matrices
to be orthonormal. This optimization is solved by factor-
ization, using different values of rank and stopping auto-
matically when there is no additional improvement in the
average camera orthonormality.

5.4. Joint 3D Reconstruction and Clustering

We �nally formulate the problem of simultaneously re-
covering 3D shape in all images as well as the type of object
and deformation clustering. Assuming the matricesW , G
andT to be known, the optimization problem that needs to
be solved becomes:

arg min
	 0

 (kX k� + kY k1 + kZk� ) + kQk� + kH k�

+ � (kE1k2;1 + kE2k2;1) (6)

subject to W = G (A + B + C) + T
X = XQ + E1

Z = ZF + E2

q(X ) = A
q(Y ) = B
q(Z) = C
F = QH

where	
0

� f Q; H ; F; X ; A ; Y ; B ; Z; C; E1; E2g. Note
that compared to the original Eq. (4) we have included three



additional constraints, namelyq(X ) = A , q(Y ) = B and
q(Z) = C, whereq(�) simply rearranges the elements of
a matrix as discussed in Section 3. Furthermore, to reduce
the computational burden, we have included the constraint
F = QH . Without loss of generality we have also reduced
the number of weight parameters originally appearing in
Eq. (4), by setting� = 1 and re-scaling the rest. In or-
der to solve this optimization problem, we again resort to
the ALM method.

6. Experimental Evaluation

We now present our experimental results for different
types of scenarios, including synthetic and real image col-
lections of rigid and non-rigid categories. We provide
quantitative and qualitative evaluation and compare our ap-
proach against state-of-the-art solutions on several synthetic
datasets with 3D ground truth. For quantitative evaluation,
we provide the reconstruction error in terms of the normal-
ized mean 3D erroreX used before in [7, 16, 22].

To evaluate the object clustering accuracy, we apply
spectral clustering [13] over the estimated matrixQ, and
retrieve theI � dimensional vectorC, where each entry is an
integer representing the cluster index. To this end, we de�ne
aC = 1 � 1

I

P I
i =1 I (Ci 6= CGT

i ), whereI (v) is the indicator
function, i.e.,I (v) = 1 if v is true, and 0 otherwise, and
CGT

i is the ground truth cluster index of thei -th image.

6.1. Synthetic Images

We �rst evaluate our approach on synthetic collections of
images of rigid object categories, where the 3D ground truth
is obtained from the CAD models of the PASCAL VOC
dataset [18]. We choose the categories which are de�ned
by at least eight points. Based on this, we evaluate our ap-
proach on eight categories which contain between seven and
ten objects each (see Table 2). The penalty terms were tuned
with theBicyclecollection, and then kept �xed for the rest
of experiments. Speci�cally, we use� = 0 :03and = 10.

We compare the 3D reconstruction accuracy of our ap-
proach, dubbed MUS (Multiple Union of Subspaces), with
two SfM baselines: TK [38] and MC [31]; as well as
with seven NRSfM solutions: the shape-trajectory meth-
ods CSF [22] and KSTA [23]; the block matrix approach
BMM [16], the probabilistic-normal-distribution method
EM-PND [26], the temporal union of subspaces TUS [41],
the grouping-based NRSfM of GBNR [19] and the consen-
sus NRSfM of CNR [27]. We also include the baseline
LRR [30] to obtain the object clustering from 2D annota-
tions. The parameters of these methods were set in accor-
dance to their original papers. We manually set the rank
of the subspace for the methods CSF [22] and KSTA [23],
using the value that gave the best results. As the source
code for TUS [41] is not publicly available, we used our
own implementation. In this particular case, we also used

our annotation completion and camera motion estimation,
as the method did not address any strategy to solve these
problems. We would like to recall that our approach does
not need manually tuning any subspace rank parameter, nei-
ther assigning which images belong to which object class.

Table 2 summarizes the reconstruction errors for all
methods and the object clustering accuracy of ours and
LRR [30], considering both noise-free and noisy annota-
tions. For the noisy case, we corrupt 2D detections with
a zero mean Gaussian perturbation with standard deviation
� noise = 0 :01 maxi;j;k fj dijk jg, wheredijk represents the
maximum distance of an image point to the centroid of all
the points. Note that MUS consistently outperforms the
rest of competing techniques in terms of 3D reconstruction
accuracy for both cases, reducing, for instance, the 3D er-
ror of other methods by large margins between the 5% and
380% for the noise-free case. Note also that GBNR [19] and
CNR [27] do not provide solutions for all collections, as the
number of points is not suf�cient for their formulation. In
addition, our approach also estimates the object clustering,
as seen in the right-most column, resulting in very accurate
segmentations compared to the LRR [30] solution. Figure 3
shows a few sample images for theBicycleandChair cate-
gories, and the 3D reconstructions we obtain.

6.2. Real Images

We next evaluate our approach on several real image
collections either deforming linearly (faces) or highly non-
linearly (animal motion). Since no ground truth is available
for these datasets we only provide qualitative evaluation.

The MUCT collection [32] is made of72images of faces
of seven people, both men and women, of different ages
and races, and under varying poses and expressions. The
2D annotations are obtained by using an off-the-shelf 2D
active appearance model [15]. This model consists of 68
2D points, which are all visible in all frames. The results
we provide in this dataset are shown in Fig. 4. Despite no
quantitative estimates are available, the 3D reconstruction
we obtain seems very realistic. We can, however, manu-
ally annotate the results of the object segmentation. Even
though the 2D shapes are very similar (recall that object
segmentation is computed based just on the 2D location of
points) we obtain a segmentation accuracyaC = 0 :68(7).

In order to validate our approach against missing anno-
tations, we process the ASL collection [23], consisting of
229images of a man and a woman. The number of 2D fea-
ture points is77, but some of them are not visible due to
structured occlusions (by the hands or face self-rotation).
In total, 14:43% of the points are missing. The 3D recon-
struction results are shown in Fig. 5. Note that the inferred
shapes seem to be very accurate, even when hallucinating
the occluded points. In this case, the object segmentation is
computed with no error, i.e.,aC = 1 :0(2). For this experi-



X X X X X X X X XXData
Algorithm

TK [38] MC [31] CSF [22] KSTA [23] BMM [16] EM-PND [26] TUS [41] GBNR [19] CNR [27] LRR [30] Ours (MUS)

Metric: eX eX eX eX eX eX eX eX eX aC eX aC

Aeroplane 0.679 0.584 0.363 0.145 0.843 0.578 0.294 – 0.263 0.39(7) 0.261 0.95(7)
Bicycle 0.309 0.440 0.424 0.442 0.308 0.763 0.182 0.221 – 0.39(10) 0.178 0.95(10)
Bus 0.202 0.238 0.217 0.214 0.300 1.048 0.129 0.214 – 0.44(10) 0.113 0.75(10)
Car 0.239 0.256 0.195 0.159 0.266 0.496 0.084 0.217 0.099 0.36(10) 0.078 0.87(10)
Chair 0.356 0.447 0.398 0.399 0.357 0.687 0.211 – – 0.39(10) 0.210 0.87(10)
Diningtable 0.386 0.512 0.406 0.372 0.422 0.670 0.265 0.351 – 0.41(10) 0.264 0.86(10)
Motorbike 0.339 0.346 0.278 0.270 0.336 0.740 0.228 0.268 – 0.41(10) 0.222 0.91(10)
Sofa 0.381 0.390 0.409 0.298 0.279 0.692 0.179 0.264 0.214 0.44(9) 0.167 0.85(9)
Average error: 0.361 0.402 0.336 0.287 0.388 0.709 0.196 0.256� 0.192� 0.40 0.186 0.88
Relative error: 1.93 2.15 1.80 1.54 2.08 3.80 1.05 1.37� 1.03� – 1.00 –

Aeroplane 0.677 0.583 0.233 0.183 0.566 0.760 0.297 – 0.294 0.41(7) 0.271 0.87(7)
Bicycle 0.308 0.442 0.455 0.457 0.307 0.808 0.195 0.231 – 0.38(10) 0.188 0.93(10)
Bus 0.204 0.241 0.227 0.218 0.255 1.197 0.139 0.223 – 0.44(10) 0.122 0.80(10)
Car 0.241 0.259 0.169 0.164 0.161 0.624 0.100 0.222 0.122 0.36(10) 0.093 0.92(10)
Chair 0.358 0.447 0.398 0.396 0.258 0.818 0.221 – – 0.41(10) 0.220 0.91(10)
Diningtable 0.392 0.522 0.414 0.383 0.358 0.807 0.268 0.370 – 0.38(10) 0.267 0.89(10)
Motorbike 0.342 0.348 0.295 0.290 0.299 0.748 0.237 0.277 – 0.41(10) 0.233 0.89(10)
Sofa 0.384 0.392 0.303 0.294 0.240 0.726 0.188 0.271 0.228 0.42(9) 0.174 0.91(9)
Average error: 0.363 0.404 0.312 0.298 0.305 0.811 0.206 0.266� 0.215� 0.40 0.196 0.89
Relative error: 1.95 2.17 1.67 1.60 1.64 4.35 1.10 1.42� 1.15� – 1.05 –

Table 2.Evaluation on synthetic collections for several object categories under noise-free and noisy annotations.The table reports
the 3D reconstruction erroreX for the following SfM baselines: TK [38] and MC [31]; and the NRSfM baselines: CSF [22], KSTA [23],
SPM [16], EM-PND [26], TUS [41], GBNR [19] and CNR [27]; and ours (MUS). In all cases, we consider full and clean 2D annotations.
The symbol “� ” indicates the algorithm did not manage to process the sequence, and� , that the summary is obtained considering only
the successful cases. Relative error is always computed with respect to MUS reconstruction, on average, the most accurate solution. In
addition, for LRR [30] and our approach we also show the clustering accuraciesaC , and the number of object clusters in parentheses.

Figure 3. Bicycle and Chair collections. The same information is shown for the two experiments.Top: Images
f #2 ; #31 ; #53 ; #70 ; #83 ; #148 g and f #21 ; #37 ; #49 ; #63 ; #93 ; #139 g for the bicycle and chair collections, respectively. The
semantic 2D point measurements fed to our model are represented by cyan circles.Bottom: Color-coded dots correspond to our 3D
estimation where every color represents a different object, and empty circles represent the 3D ground truth.

ment, we also display the clustering in terms of type of de-
formation (colored lines in the 3D reconstruction of Fig. 5).
These clusters seem to have a clear physical meaning indi-
cating face deformations with closed or open mouth.

We �nally evaluate our approach on a challenging col-
lection of dog images [17] with33 dog instances. This col-
lection is made of52 images, and we de�ne a model with
19points, which was manually annotated. Not all points are
visible in all images. Concretely,11:34% of the points are

missing. The 3D reconstruction and clustering results are
shown in Fig. 6. Again, the 3D shapes we obtain seem very
plausible, even for the points that are not observed.

7. Conclusion

In this paper we have extended NRSfM to a new scenario
in which we can retrieve 3D shape of either rigid or non-
rigid categories from collections of RGB images. Consider-



Figure 4.MUCT collection. Top: Images #3, #26, #32, #46, #65 and #70 of the dataset. Input 2D detections and reprojected 3D shape are
shown as cyan circles and red squares, respectively.Bottom: Camera viewpoint and side views of the estimated 3D shape. The colored
dots indicate the object cluster index estimated by our approach, i.e., a different person in the manifold of faces. Best viewed in color.

Figure 5.ASL collection. Top: Images #29, #47, #100, #142 and #228 of the dataset. Input 2D detections and reprojected 3D shape
are shown as cyan circles and red crosses, respectively. Blue crosses correspond to reconstructed (hallucinated) missing points.Bottom:
Camera viewpoint and side views of our 3D reconstruction, where colored dots (red and green) indicate every human in the collection. The
colored lines indicate a speci�c deformation cluster that was recovered by our approach. These estimated clusters have a clear physical
meaning and correspond to open/close mouth (shown in orange/magenta for the woman, and red/dark green for the man). In all cases, 3D
reconstructed missing points are represented by blue crosses. Best viewed in color.

Figure 6.Dog collection. Top: Images #4, #14, #15, #24, #25 and #51 of the dataset. Input 2D detections and reprojected 3D shape are
shown as cyan circles and red crosses, respectively.Bottom: 3D reconstruction from a novel point of view, where colored dots indicate
the object cluster index estimated by our approach. In both cases, missing points are shown as blue crosses. Best viewed in color.

ing only partial 2D point annotations per image, we propose
an approach that besides reconstructing 3D shape, it also
estimates camera pose per image, as well as segments the
collection of images into different objects and each object
geometry, into several deformation primitives. For this pur-
pose, we have introduced a uni�ed formulation that mod-
els object shape using multiple unions of subspaces, able to
render from rigid motion to highly non-rigid deformations.
The model parameters are learned via an ALM scheme in a
completely unsupervised manner. We have evaluated our
approach on synthetic and real collections of images, of

both rigid and non-rigid categories. 3D reconstruction re-
sults outperform existing state-of-the-art solutions by large
margins. An interesting avenue for future research is to ex-
tend our formulation to collections of images of multiples
categories, exploring the union of several solution spaces.
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