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Abstract. The main non-singular alternative to 3×3 proper orthogo-
nal matrices, for representing rotations in R

3, is quaternions. Thus, it is
important to have reliable methods to pass from one representation to
the other. While passing from a quaternion to the corresponding rota-
tion matrix is given by Euler-Rodrigues formula, the other way round
can be performed in many different ways. Although all of them are alge-
braically equivalent, their numerical behavior can be quite different. In
1978, Shepperd proposed a method for computing the quaternion cor-
responding to a rotation matrix which is considered the most reliable
method to date. Shepperd’s method, thanks to a voting scheme between
four possible solutions, always works far from formulation singularities.
In this paper, we propose a new method which outperforms Shepperd’s
method without increasing the computational cost.
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1 Introduction

Arbitrary rotations in R
3 can be represented using proper orthogonal 3×3 ma-

trices (rotation matrices for short) of the form:

R =

⎛
⎝r11 r12 r13
r21 r22 r23
r31 r32 r33

⎞
⎠ . (1)

Nevertheless, according to Euler rotation theorem, every rotation in three
dimensions is defined by its axis, given by a unit vector n = (nx, ny, nz), and
its angle, the amount of rotation about that axis, given by θ. Clearly, n and
θ provide a much more compact and meaningful information about a rotation
than the 9 entries of a rotation matrix.

The information about the axis and angle of rotation is usually organized as
a quaternion so that the product of two quaternions gives us the quaternion cor-
responding to the composition of the rotations that the two matrices represent,
in the same way as the product of two rotation matrices gives us the matrix
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representing the rotation corresponding to the composition of the two rotations
the matrices represent. The four elements of the quaternion are given by

q1 = cos
θ

2
, q2 = nx sin

θ

2
, q3 = ny sin

θ

2
, q4 = nz sin

θ

2
, (2)

which are commonly known as Euler parameters. These quantities are not inde-
pendent, they are related through the following equation:

q21 + q22 + q23 + q24 = 1. (3)

As a consequence, when operating with quaternions, we need to be sure that (3)
is always satisfied.

Because both, quaternions and rotation matrices, are useful for certain kine-
matics calculations, the need arises to convert between these representations. It
is well known [1] that a 3×3 proper orthogonal rotation matrix can be expressed
in terms of the quaternion components as:

R =

⎛
⎝q21 + q22 − q23 − q24 2(q2q3 − q1q4) 2(q2q4 + q1q3)

2(q2q3 + q1q4) q21 − q22 + q23 − q24 2(q2q4 − q1q2)
2(q2q4 − q1q3) 2(q3q4 + q1q2) q21 − q22 − q23 + q24

⎞
⎠ . (4)

In contrast, there are many methods to obtain the quaternion corresponding
to a given rotation matrix. They include algebraic, trigonometric, and numer-
ical methods (see [2] for a recent survey). If we limit our analysis to algebraic
methods, that is, to those methods consisting in solving the system of nonlin-
ear equations resulting from equating the matrices in (1) and (4), Shepperd’s
algorithm is considered as the best one from the numerical point of view. This
paper is devoted to the derivation of an alternative method which is shown to
be numerically better conditioned than Shepperd’s method.

By observing (4), it is easy to conclude that (q1, q2, q3, q4) and (−q1,−q2,
−q3,−q4) lead to the same rotation matrix. In mathematical terms, it is said
that quaternions provide a double covering of the space of rotations. Since this is
a 2-to-1 map, it cannot be smoothly inverted. This has important consequences
in all methods that compute the quaternion corresponding to a rotation matrix:
they all have to deal with singularities, and they all give the same solution within
an undetermined but physically unimportant overall sign.

This paper is organized as follows. In the next section, we briefly summarize
Shepperd’s method. In Section 3 we present an alternative method which, in
Section 4, is shown to be numerically more accurate than Shepperd’s method.
Finally, Section 5 summarizes the main points.

2 Shepperds’s method

Since it was first proposed in [3], Shepperd’s method remains as one of the
most popular methods for computing the quaternion corresponding to a rotation
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matrix. It improves on Hughes’ method [5] via a voting scheme in which the
quaternion is computed without numerical instabilities.

It is worth to mention that, although the method is associated with Shepperd,
its origins can be traced back at least to a book by E. Study published in 1910
(see [4] for details).

The equations resulting from equating the matrices in (1) and (4) can be
expressed as:

4q21 = 1 + r11 + r22 + r33 (5)

4q22 = 1 + r11 − r22 − r33 (6)

4q23 = 1− r11 + r22 − r33 (7)

4q23 = 1− r11 − r22 + r33 (8)

4q3q4 = r23 + r32 (9)

4q2q4 = r31 + r13 (10)

4q2q3 = r12 + r21 (11)

4q1q2 = r32 − r23 (12)

4q1q3 = r13 − r31 (13)

4q1q4 = r21 − r12 (14)

In Hughes’ method, q1 is calculated first and then it is treated very differently
from the remaining three parameters. Since we can solve the system of equations
(5)-(14) for any of the four Euler parameters first, there are four different for-
mulas for computing the quaternion as a function of the entries of the rotation
matrix, all of them formally equivalent. Numerically, however, these four for-
mulas are not identical and, depending on the rotation matrix, one of them is
numerically better conditioned than the others. From the system of equations
(5)-(14), we arrive at these four different solutions:

u1 =
1

2

⎛
⎜⎜⎝

(1+r11+r22+r33)
1
2

(r32−r23)/(1+r11+r22+r33)
1
2

(r13−r31)/(1+r11+r22+r33)
1
2

(r21−r12)/(1+r11+r22+r33)
1
2

⎞
⎟⎟⎠ , (15)

u2 =
1

2

⎛
⎜⎜⎝
(r32−r23)/(1+r11−r22−r33)

1
2

(1+r11−r22−r33)
1
2

(r12+r21)/(1+r11−r22−r33)
1
2

(r31+r13)/(1+r11−r22−r33)
1
2

⎞
⎟⎟⎠ , (16)

u3 =
1

2

⎛
⎜⎜⎝
(r13−r31)/(1−r11+r22−r33)

1
2

(r12+r21)/(1−r11+r22−r33)
1
2

(1−r11+r22−r33)
1
2

(r23+r32)/(1−r11+r22−r33)
1
2

⎞
⎟⎟⎠ , (17)
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u4 =
1

2

⎛
⎜⎜⎝
(r21−r12)/(1−r11−r22+r33)

1
2

(r31+r13)/(1−r11−r22+r33)
1
2

(r32+r23)/(1−r11−r22+r33)
1
2

(1−r11−r22+r33)
1
2

⎞
⎟⎟⎠ . (18)

When computing any of the above solutions, numerical issues arise when
square rooting, or when dividing by, very small numbers [6]. To obtain the better
conditioned solution for each case, the ordinal number i of the largest element
in the following vector is determined:⎛

⎜⎜⎝
r11+r22+r33

r11
r22
r33

⎞
⎟⎟⎠ . (19)

Then, the best solution, from the numerical point of view, is considered to be
ui.

This four-fold multiplicity of the solution arises in other methods. For exam-
ple, the one presented in [8], based on geometric arguments, was shown to be
equivalent to this method.

3 Our method

Let us suppose we only want to compute q1. Then, from (5), we have that

q1 =
1

2

√
1 + r11 + r22 + r33. (20)

The term inside the above square root lies in the interval [0, 4]. Indeed, observe
that Trace(R) = r11 + r22 + r33 = 2 cos θ + 1 [9, Section 2.3]. Unfortunately,
numerical problems arise when this term gets close to zero. In practice, it can
even become negative due to rounding errors [2]. Since this term coincides with
2+ 2 cos θ, it becomes ill-conditioned when θ → π. Observe that (20) only takes
into account the diagonal entries ofR. To obtain an alternative formula involving
all the elements of the rotation matrix, let us substitute in (3) the values of q21 ,
q22 , q

2
3 , and q24 obtained from (5), (12), (13), and (14), respectively. The result is:

1+r11+r22+r33
4

+

(
r32−r23
4q1

)2

+

(
r13−r31
4q1

)2

+

(
r21−r12
4q1

)2

= 1. (21)

Solving the above equation for q1, we obtain

q1 =
1

2

√
(r32−r23)2+(r13−r31)2+(r21−r12)2

3−r11−r22−r33
. (22)

Now, the term in the denominator of (22) also lies in the interval [0, 4]. Since
this denominator coincides with 2 − 2 cos θ, (22) is ill-conditioned for θ → 0.
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When this happens, the diagonal of R is dominant and, as a consequence, the
numerator in (22) tends also to be small. Thus, (20) and (22) can be seen as
complementary. Therefore, it is reasonable to establish a threshold for the trace
of R —to be determined for optimal results— above which it is preferable to
use (22) instead of (20). In other words, we have that

q1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

√
1+r11+r22+r33, if r11+r22+r33 > η

1
2

√
(r32−r23)

2+(r13−r31)
2+(r21−r12)

2

3−r11−r22−r33
, otherwise

(23)

where η has to be determined. Extending this reasoning to the computation of
the other elements of the quaternion, the result is:

q2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

√
1+r11−r22−r33, if r11−r22−r33 > η

1
2

√
(r32−r23)

2+(r12+r21)
2+(r31+r13)

2

3−r11+r22+r33
, otherwise

(24)

q3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

√
1−r11+r22−r33, if −r11+r22−r33 > η

1
2

√
(r13−r31)

2+(r12+r21)
2+(r23+r32)

2

3+r11−r22+r33
, otherwise

(25)

q4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

√
1−r11−r22+r33, if −r11−r22+r33 > η

1
2

√
(r21−r12)

2+(r31+r13)
2+(r32+r23)

2

3+r11+r22−r33
, otherwise

(26)

Due to the presence of square roots, the signs of qi, i = 1, . . . , 4 are undefined.
As in other methods where these signs are undefined [2], if we assume that q1 is
positive, then, according to (12), (13), and (14), we have to assign the signs of
r32−r23, r13−r31, and r21−r12, to q2, q3, and q4, respectively.

4 Computation of the optimal threshold and comparison
with Shepperd’s method

To find the optimal threshold in our formulation, we here perform a statistical
analysis of the proposed method using single-precision floating-point arithmetics
in MATLAB�. To this end, we generate 106 random unit quaternions using the
algorithm described in [10] (it actually generates uniformly distributed points in
S
4). For each generated quaternion, we obtain the corresponding rotation matrix

using (4), and then recover the original quaternion using the proposed method
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with different thresholds. The error committed is evaluated as the norm of the
vector difference between the original and recovered quaternions. In general, this
is not a good way to compute the distance between two quaternions. Neverthe-
less, since in our case the error is assumed to be very small, the length of the
vector connecting both orientations in S

4 is going to coincide with the value of
the angle formed by them if seen from the center of S4 (and this angle can be
taken as a distance between any two elements of the 3D rotation group SO(3)
[11]).

The results of this statistical analysis, for different values of the threshold,
are compiled in Table 1. In this table, the first four columns refer to the error
performance. The first one shows the percentage of cases in which the original
quaternion is recovered without error. The other three correspond to the error
committed in the worst-case, the average error, and the standard deviation of
the error, respectively. Finally, we have two columns with the time performance.
The first column gives the average time required to compute a quaternion from
a rotation matrix; and the second column, the time required in the best of
the cases. These results have been obtained for a MATLAB� implementation
running on an Intel� CoreTMi7 with 32 GB of RAM.

Table 1: Performance of the proposed method, for different thresholds, and that of
Shepperd’s method

Quaternions Worst-case Average Standard Average Best-case
Threshold recovered error error deviation time time

(η) without error ×10−6 ×10−6 ×10−6 (μs) (μs)

−0.75 19.00% 16.066 0.0332 2.4190 6.93 5.85
−0.50 25.43% 0.136 0.0248 0.0346 7.27 5.36
−0.25 27.61% 0.119 0.0230 0.0329 6.56 5.36
0.00 28.00% 0.123 0.0227 0.0325 6.52 5.36
0.25 27.67% 0.146 0.0254 0.0370 6.36 5.36
0.50 26.63% 0.149 0.0243 0.0342 6.36 5.36
1.00 24.05% 0.189 0.0279 0.0384 6.33 5.36
1.50 21.72% 0.248 0.0323 0.0434 6.35 5.36
2.00 19.20% 0.304 0.0387 0.0510 6.41 5.36
3.00 15.56% 11.164 0.0715 0.6980 6.97 5.56

Shepperd’s
method 24.40% 0.170 0.0304 0.0410 7.27 6.10

The last row in Table 1 contains the performance figures for Shepperd’s
method. From this analysis, we conclude that, although the choice of the thresh-
old is not critical, the best results are obtained at about η = 0 for which the
proposed method clearly outperforms Shepperd’s method. Indeed, for η = 0, the
proposed method gives the lowest value for the worse-case error, average error,
and standard deviation. Moreover, its computational cost is not higher than the
celebrated Shepperd’s method.
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Fig. 1: A discretization of S3 permits to visualize which orientations can lead to the
highest errors. As the threshold in increased from η = −0.75 to η = 0, the spherical
triangle region centered at each octant is reduced till it vanishes.

To get a deeper insight into the behavior of the proposed method as the
threshold varies, let us now explore a visual analysis. To this end, let us discretize
the unit sphere S

3. Each sample gives us an orientation for the rotation axis
(nx, ny, nz). Then, we discretize the rotated angle in the interval [0, π]. For each
of these samples, we have a quaternion which is converted into a rotation matrix
and recovered back using the proposed method. For all the samples of the rotated
angle, we only keep the obtained maximum error. Thus, for each orientation in
R

3, we have an associated maximum error to which we can assign a color. The
result of this experiment is shown in Fig. 1 for the three different thresholds,
where brighter colors correspond to higher errors. For η = −0.75, 25 regions are
clearly visible. The lowest errors are obtained for rotation axes corresponding
to points contained in the spherical quadrangles centered around the coordinate
axes. The highest errors are obtained for rotation axes corresponding to points
contained in the spherical triangles centered in each octant. Now, if we increase
the threshold, these spherical triangles, where the highest errors are obtained,
are reduced. For η = 0, they have almost completely disappeared. This gives a
visual justification of why the optimal threshold is located at η = 0.

The origin of the pattern of circles centered around the z−axis, which do
not appear around the other two axes, despite all formulas are symmetric with
respect to the three coordinate axes, seem to be an artifact consequence of
discretizing the sphere following circles of constant longitude.

5 Conclusion

A new method for computing the quaternion corresponding to a given rotation
matrix has been presented. The key idea of this new method is that, instead
of generating four alternative solutions for the whole quaternion, as in Shep-
perd’s method, it works with two alternative solutions for each element of the
quaternion. This means that the method implicitly works with up to 16 alterna-
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tive solutions for the whole quaternion, which accounts for its improved global
numerical behavior.

If we take a quaternion at random and we compute the corresponding rotation
matrix, the probability of recovering exactly the original quaternion from this
matrix using Shepperd’s method is about 24%, while using our method this
probability is increased to 28%, without an increment in the computational cost.
It is certainly a modest improvement, but a large number of methods have been
proposed to solve the problem [2] and Shepherd’s method has remained the best
one till now.
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