SOCIAL RELATION RECOGNITION IN EGOCENTRIC PHOTOSTREAMS

Emanuel Sánchez Aimar(1), Petia Radeva(1), Mariella Dimiccoli(2)

(1) University of Barcelona, Computer Vision Center, Barcelona, Spain.
(2) Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain.
mdimiccoli@iri.upc.edu

ABSTRACT
This paper proposes an approach to automatically categorize the social interactions of a user wearing a photo-camera (2pm), by relying solely on what the camera is seeing. The problem is challenging due to the overwhelming complexity of social life and the extreme intra-class variability of social interactions captured under unconstrained conditions. We adopt the formalization proposed in Bugental’s social theory, that groups human relations into five social domains with related categories. Our method is a new deep learning architecture that exploits the hierarchical structure of the label space and relies on a set of social attributes estimated at frame level to provide a semantic representation of social interactions. Experimental results on the new EgoSocialRelation dataset demonstrate the effectiveness of our proposal.

Index Terms— social relation recognition, egocentric vision, multi-task learning, LSTM

1. INTRODUCTION
As our social life keeps moving towards the digital world and its social networks, new collective moments are continuously being captured in the form pictures, audio, videos, and text. Meanwhile, several studies have shown that human relationships have an important effect in human health, involving physical and mental health, behaviour, and mortality risk [1]. The need of a broader understanding of our social relations and their influence on human health have motivated an increasing interest in the computer vision community for automatic discovery, quantification and categorization of social interactions from the vast amount of public images and videos [2, 3, 4, 5, 6, 7]. Recently, Aghaei et al. [7] have shown the usefulness of egocentric photostreams, captured by a wearable photo-camera [8] to automatically analyze the daily social interactions of a person, in a natural setting where people appear in an intimate perspective. Despite the challenging characteristics of the egocentric domain, such as the fact that the user is not visible in the field of view, background clutter, and abrupt appearance changes [7], the authors showed that it is possible not only to understand when the camera wearer is interacting with somebody, but also to determine with how many people the user has interacted with during a given period of time, the duration and frequency of the interactions. However, in [7] the classification of interactions was limited to formal and informal meetings. Recent work [6] has proposed the Bugental’s domain-based social theory [9] as a conceptualization of human social life to categorize social interactions in images. The theory includes five domains with examples of common relations, characterized by specifics attributes and behaviours. Nevertheless, in [6], this approach has been applied on a dataset of third-person images collected from photo albums.

To evaluate the formalization proposed in [6] in a naturalistic setting and at the same time going deeper into the understanding of social interactions from egocentric photostreams, in this work we propose a new egocentric dataset, hereafter referred to as EgoSocialRelation dataset1, where social interactions, formed of short image sequences, are annotated in a hierarchy of domain and relation labels, derived from Bugental’s theory. Furthermore, we propose and validate, for the first time on egocentric data, several models for social relation categorization, hence providing a solid benchmark for further studies. The proposed models rely on the composition of visual semantic attributes, and exploit the sequential nature of photostreams. Code for experiments is publicly released2.

The rest of the paper is as follows: section 2 reviews related work; section 3 details our approach; section 4 introduces a new dataset and discusses experimental results. Section 5 concludes this work summarizing its contributions.

2. RELATED WORK

Third-view domain A large body of work has focused on family member recognition [3], role recognition in so-

1https://chest.iri.upc.edu/files/users/mdimiccoli/public_html/DATASETS/EgoSocialRelation.zip
2https://github.com/emasa/social-relations-recognition-egocentric-photostreams
Fig. 2: Illustration of face, body and contextual regions.

Categorization of social groups based on appearance [2], categorization of social groups based on contextual information [5]. Inspired on Bugental’s social domain-based theory [9], the authors of [6] proposed an holistic approach to social relations categorization from image data. The published dataset contains still images with labels in a hierarchical structure of 5 social domains and 16 social relations, derived from Bugental’s theory. Furthermore, they derived a family of models, combining human attributes and behaviours, extracted with pretrained Convolutional Neural Networks (CNN), to ultimately classify the CNN feature representation with a Support Vector Machine (SVM).

Egocentric domain The seminal work of Fathi et al. [10] proposed to detect social interactions from egocentric videos, by inferring the 3D location to which a person is looking at, through a Markov Random Field model. They further categorized these interactions into three classes, namely discussion, dialogue and monologue, depending on the role of the participants in the interaction. Later on, [11] proposed a procedure to analyze social interaction sequences from egocentric videos and detect them applying a model based on Hidden Markov Model and SVM, focusing on head and body poses. With a different approach, Aghaei et al. [12, 13] proposed to detect social interactions in egocentric photostreams, while exploiting distance and orientation of observable people w.r.t. the camera-user. Extending the previous work, [7] categorized interactions into two broad categories, namely formal and informal meetings, based on the classification of sequences with a Long Short Term Memory (LSTM) model [14]. The authors extended the original attributes with facial expressions and global CNN features extracted at frame level, the former related to affective internal states and the latter to account for contextual information. They argue that for effective detection and categorization of social interactions from an egocentric perspective, a combination of social signals and environmental features is needed, as well as their evolution over time.

In this paper, we propose a new dataset and several benchmark methods to classify social interactions from egocentric photostreams into five domains and nine relations, following the conceptualization of Bugental’s theory. With this work we go beyond the state of the art on the classification of social interactions from egocentric photostreams, that is currently limited to formal/informal meeting classification.

3. METHODOLOGY

We propose several deep learning architecture that leverage multiple semantic attributes and their temporal evolution over time. In particular, we aim at investigating the importance of semantic attributes for the classification performance in egocentric photostreams as well as how to take advantage of the hierarchical label space.

3.1. Preprocessing

Each photostream is partitioned into semantically meaningful segments by applying SRclustering [15], where segments with a high ratio of visible people relative to the number of frames are considered as social segments. Given a frame in a social segment, we extract three different regions, illustrated in fig. 2. First, we apply a face detector [16] to extract visible faces, discarding candidates with confidence score (IoU) below 0.99. Then, we create an initial estimate of face clusters based on visual similarity, using Microsoft Cognitive Service API. It follows a manual procedure based on visual inspection, to improve the quality of the clustering (recategorizing misclassified samples, adding uncategorized ones, discarding spurious samples and creating new clusters if needed). For each observable person, we reorganize sub-segments with valid faces. Given a valid frame, we extract Face and Body regions, the latter delimited by 3 x face width and 6 x face height, inspired in [6, 17]. Finally, we denote the full (original) image as Contextual region. The procedure results in a new dataset of sequences with trackable people hereafter referred to as user-specific segments.

3.2. Feature extraction

We leverage CNN models pretrained on specialized datasets to predict human-related attributes. Given a user-specific segment, for each frame and social cue, we extract high-dimensional intermediate CNN features, aka visual embeddings. We remove the task-specific classification layer, ultimately using the penultimate fully connected (FC) layer.

Table 1 lists the semantic attributes used in this work. In addition, because it is not possible to observe the person holding the camera, we include the camera-wearer’s ground truth age and gender information, following the categorization in [6]. If we were to concatenate all extracted features, the global representation would add up 33801 variables. To mitigate the curse of dimensionality phenomenon, we apply dimensionality reduction to CNN features for each attribute independently, based on the approach proposed by [7]. In this work, we define the quantification factor $Q = 32$, while keeping the 50 most relevant principal components (ensuring enough level of detail, with explained variance around 90%). After merging all the semantic attributes, including compressed CNN features along with no-CNN features, we obtain a final representation with 459 variables.
3.3. Time-series classification

Given the compact representation computed for each frame in a user-specific segment, we pose the problem of social relation recognition as multi-class time-series classification, where each component along the time axis represents the time-evolution of an individual feature. We employ a LSTM [14], specially designed to learn long-term dependencies in the sequence. Our simplest model architecture is presented in fig. 3a (denoted as Single-task strategy (ST)). Two different models are trained using either relation or domain labels. To take advantage of the hierarchical label space, we propose the model in fig. 3b. The class output of the first level, i.e. domains, is provided as input for predicting the second level, i.e. relations (denoted as Multi-task Top-down strategy (MT-TD)), inspired on the hierarchical approach proposed by Cerri et al. [24]. We also evaluate the model in fig. 3c without the extra constrain (denoted as the Multi-task Independent strategy, (MT-IND)). As the model’s description suggests, multiple objectives are trained with multi-task learning [25], jointly optimizing the loss functions (with equal importance). In all cases, the first and last FC layers are followed by ReLU and Softmax activation functions respectively, while using Cross-Entropy as loss function.

4. EXPERIMENTAL RESULTS

4.1. Experimental setting

Dataset We started from the EgoSocialStyle dataset, collected by 9 users wearing a Narrative Clip camera, recording at two fpm in a daily life scenario. Following the protocol in [7], we extended it with 119 new sequences, collected by the same users. Later on, we extracted user-specific segments (section 3.1) and annotated them with social labels. Similar to [6], valid sequences must have one valid relation label. We discarded examples with zero or multiple labels, also with insufficient samples (less than 20). Our final EgoSocialRelation dataset includes 693 sequences, grouped in five domains and nine relations, namely Attachment (father-child, mother-child), Reciprocity (friends, classmates), Mating (lovers), Coalitional group (colleagues), and Hierarchical group (presenter-audience, leader-subordinate and customer-staff).

Validation methodology To validate our approach, we used a form of repeated random sub-sampling cross-validation [26]. First, we arrange our dataset in groups of whole days captured by a given user. Then, we sampled randomly \(N = 1000 \) examples, ensuring the day’s separation criteria and approximately 80%/20% size ratios for training and validation, respectively. For each combination, we considered the best candidates with minimal Kullback-Leibler divergence between the normalized distributions of each split. We pick the top candidate, leaving the validation split for testing purposes, and repeat the adhoc procedure using the training split, to obtain the top \(K=3 \) splits for model cross-validation. This strategy allows us to define data splits in a way that overlapping or consecutive user-specific sequences, that may capture the same social interaction, are put together, while maintaining the statistical distribution of the data. Given the relatively small size of our dataset, we applied the data augmentation strategy proposed by [7] to mitigate the overfitting problem. In a glance, we compute PCA and add random noise in the direction of the eigenvectors, and proportional to the eigenvalues times a Gaussian random variable \(X \sim \mathcal{N}(\mu = 0, \sigma = 0.01) \). This way we ensure that the original labels are preserved in new augmented samples. Since the dataset is highly imbalanced, we assess the competing models with two metrics, overall accuracy (abbreviated acc) and macro f1-score. We maximize f1-score for model selection, giving the same importance to all classes, instead of performing well just on over-represented classes. We address class imbalance further by using a class weighting scheme embedded in the global loss function [27]. It follows our final model configuration, obtained with grid search over the next parameters: number of neurons = 128, learning rate \(\alpha = 2e-3 \), dropout rate = 0.3, L2 regularization \(\lambda = 1e-3 \) and number of training iterations = 150. We used Adam [28] to optimize the model, with a step decay schedule halving the initial \(\alpha \) every 50 iterations.

4.2. Discussion

Social relations Although, f1-score and acc validate the results in distinct ways, both follow the same trend for models categorizing relations in table 2 (prefix REL and DOM for
Table 2: Social relation and domain recognition results.

<table>
<thead>
<tr>
<th>F1-score [%]</th>
<th>Acc [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>REL-ONLY</td>
<td>32.19</td>
</tr>
<tr>
<td>REL-MT-I</td>
<td>31.06</td>
</tr>
<tr>
<td>REL-MT-TD</td>
<td>33.26</td>
</tr>
<tr>
<td>DOM-ONLY</td>
<td>44.52</td>
</tr>
<tr>
<td>DOM-MT-I</td>
<td>38.38</td>
</tr>
<tr>
<td>DOM-MT-TD</td>
<td>42.49</td>
</tr>
<tr>
<td>REL-SVM-PIPA</td>
<td>-</td>
</tr>
<tr>
<td>DOM-SVM-PIPA</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3: Recognition results by attribute groups with MT-TD.

<table>
<thead>
<tr>
<th>F1-score [%]</th>
<th>Acc [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>REL-FACE</td>
<td>23.39</td>
</tr>
<tr>
<td>REL-BODY</td>
<td>25.30</td>
</tr>
<tr>
<td>REL-CTX</td>
<td>25.18</td>
</tr>
<tr>
<td>REL-ALL</td>
<td>33.26</td>
</tr>
<tr>
<td>DOM-FACE</td>
<td>34.42</td>
</tr>
<tr>
<td>DOM-BODY</td>
<td>31.69</td>
</tr>
<tr>
<td>DOM-CTX</td>
<td>33.61</td>
</tr>
<tr>
<td>DOM-ALL</td>
<td>42.49</td>
</tr>
</tbody>
</table>

5. CONCLUSIONS

This paper addressed for the first time the categorization of social relations following Bugental’s conceptualization in the domain of egocentric photostreams. A new egocentric dataset of social events acquired under unconstrained conditions, has been released and a family of models employing CNN models for feature extraction and a LSTM-based classifier have been tested providing a benchmark. Moreover, by applying multi-task learning with a hierarchical label space in a top-down approach, our model provides a solid baseline for the task of relation recognition, while outperforming straightforward alternatives.
6. REFERENCES

