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On Closed-Form Formulas for the
3D Nearest Rotation Matrix Problem

Soheil Sarabandi, Arya Shabani, Josep M. Porta and
Federico Thomas

Abstract—The problem of restoring the orthonormality of a noisy
rotation matrix by finding its nearest correct rotation matrix arises
in many areas of robotics, computer graphics, and computer igion.
When the Frobenius norm is taken as the measure of closenesthe
solution is usually computed using the singular value decoposition
(SVD). A closed-form formula exists but, as it involves the oots of a
polynomial of third degree, it is assumed to be too complicad and
numerically ill-conditioned. In this paper, we show how, by carefully
using some algebraic recipes scattered in the literaturet is possible to
derive a simple and yet numerically stable formula for most pactical
applications. Moreover, by relying on a result that permits obtaining
the quaternion corresponding to the sought optimal rotation matrix, we
present another closed-form formula that provides a good aproximation  consist in finding thenearest rotation matrix that satisfies the two
to th_e optimal one using o‘nly‘the elem_e_nt_ary algebraic opetions of aforementioned conditions exactly.
addition, subtraction, multiplication and division. These two closed-form

Fig. 1. Following the standard robotics notation, the calumectors of the
rotation matrixR; can be made explicit aR; = (n; o; a;) [6]. These
vectors determine a reference frame. Then, in this figueeFtlobenius norm

of the difference betweeR: and Ry is equal toy/d3 + d2 + d3.

formulas are compared with respect to the SVD in terms of accracy A .naive way to restore the orthonormalit.y of a noisy rptation

and computational cost. matrix consists in applying the Gram-Schmidt process toratss
Index Terms—Rotation matrices, quaternions, singular value decom- pr Column.s. Despite 'ts. popularlty.due to .|ts simple georetr

position, third degree polynomials. interpretation, the result is rather arbitrary as it dejgeon the order

in which the rows or the columns of the matrix are taken. Thisfy,
whenever possible, the problem is solved by relying on th® $¥
|. INTRODUCTION the noisy rotation matrix which computes its nearest rotathatrix
according to the Frobenius norm. This paper focuses on ttieatien

Rotations in 3D are commonly represented usBig3 proper > Mt
of new closed-form formulas to obtain this result.

orthogonal matrices (also known astation matrices). A matrix, i X X X i .
say R, is said to be orthogonal iRR” is equal to the identity This paper is organized as follows. Section Il briefly redew
and to be proper if, in addition, d®) = 1. In other words, SOMe basic facts on the nearest exact rotation matrix to engiv
the three row and column vectors &t represent a right-handed noisy rotation matrix in terms of the Frobenius norm. An éxac

orthonormal reference frame. There are some applicatiorabotics, closed-form formula for the computation of this rotationtmais
computer vision, and computer graphics in whinbisy rotation presented in Section lll. This formula combines Smith’s et for

matrices are generated. That is, rotation matrices thasfgahe (e computation of the required eigenvalues and Francafsadeio

two aforementioned conditions approximately. Due to flupgpoint 2V0id the explicit computation of the corresponding eigetors. The

precision errors, we have that, for example, the result ofudatively ~90@l in Section IV'is to introduce an alternative closedyidormula,

multiplying rotation matrices is a noisy rotation matri§.[Likewise, 1nvolving only the four elementary arithmetic operatiorsidition,

the integration of angular velocity differential equasoleads to a SuPtraction, multiplication, and division). This derikat is based

rotation matrix that progressively departs from orthodionas time ©n @ heuristic argument for averaging quaternions whickise®

increases [2]. A way to alleviate these problems consisteefme- &N @Pproximation to the optimum. Section V presents an esthvau

senting rotations using unit quaternions, which are ontyeded to Performance analysis of the the two closed-form formulasalfy,

rotation matrices when required. Floating point precisesrors in  Section VI summarizes the main contributions.

these cases lead to non-unit quaternions, but normalifiam tis a

trivial task. Unfortunately, using quaternions is not aiwalesirable

or even possible. For example, rotating a vector by a quiatersing ~ The first problem faced when trying to find thearest proper

the sandwich formula [3] is computationally much more exgam orthogonal matrix, sajR, to a noisy rotation matrix, salR, is how

than rotating it using the standard multiplication by theresponding to define a measure of closeness endowed with physical ngeanin

rotation matrix [4]. Noisy rotation matrices not only ariss the The Euclidean or Frobenius norm (denoted|a,) of R-R (i.e,

result of floating point operations. For example, one singalleition the square root of the sum of squares of the elemenB-eR) is

to the problem of determining the rotation matrix that is thest commonly used to this end. The reasons for choosing this rmwem

fit to a given set of measured rotations consists in averagihg multiple:

measurements (see [5] and the references therein). Hovlegeesult o Although it does not seem to be a reasonable measure of angula

is not, in general, a proper orthogonal matrix. Then, thelraetse for difference, it has a simple geometric interpretation (see B.

orthonormalizing noisy rotation matrices, a process tissentially o It leads to a closed-form formula. If we would use the 2-norm
the closeness measure would be given by the largest singular
value of R—R which is not easy to deal with [7].

o Using it, the solution is unique. If we would use the 2-norm,

Il. BACKGROUND

The authors are with the Institut de Robodtica i Informatidn-
dustrial (CSIC-UPC), Llorens Artigas 4-6, 08028 Barcelon8pain.
{ssarabandi,ashabani,porta, fthomas}@iri.upc.edu

This work was partially supported by the Spanish MinistryExfonomy the solution is not necessarily unique [7].
ggdGCompetitiveness through the projects DP12017-88288¢PMDM-2016- Thus, using the Frobenius norm, our problem can be stated in
56.

This paper has supplementary downloadable multimedia rraatd his algebraic terms as follows: given the noisy rotation mali the

material consists of a software package written in C++, amcequivalent Problem consists in finding the matriR that minimizes
MATLAB toolbox, that permits to reproduce the results prease in Sec- . 2 . . T s a2 o
tion V. Contact with Josep M. Porta for questions about thiterial. HR—RHF = tl’aCe((R—R)(R—R) ) = p1+patps, (1)
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Fig. 2. Percentage of matrices with negative determinaiat fasction of the
level of noise added to randomly generated rotation matrice

II1. AN EXACT CLOSED-FORM FORMULA

If det(R) # 0, A = RTR is symmetric and positive definitive.
Then, it can be diagonalized as follows:

M 0 0
A=VT|0 x 0]V, (6)
0 0 X3

where{\;} is the set of non-negative real eigenvaluesAof Then,
it can be proved that [12]

R v, -
o0 IS

The problem is thus essentially reduced to diagonaAizé\lthough

subject toRTR = I wherep;, i = 1,2,3, are the eigenvalues of conceptually simple, the derivation of a closed-form folanbhased
R-R. Using Lagrange multipliers, it can be proved that the optim on this idea is full of unexpected difficulties. Let us staithathe

solution to this constrained optimization problem, in tlase thaiR
is not singular, is given by [8], [9]:

1
2

R:R(RTR) —R(I+E)?, )
where
E=R'R-1I ©)
can be seen as an error matrix.
Now, isolatingR. from (2), we have that
R =RH, (4)

whereH:(RTR)%. Equation (4) is called the polar decomposition
of R. The polar decomposition can be obtained from the SVD

(Singular Value Decomposition) and vice versa. IndeedRif =
UxV7T is an SVD thenR = (UVT)(VEVT) = RH is a polar
decomposition. Therefor& = UV7 [10].

It is easy to verify thatR thus obtained is orthonormal,e.
RTR = I. However, there is no guarantee that(@t = +1. To
represent a proper rotation, the orthonormal maRihas to satisfy
this condition as well, otherwise it represents a reflectibimere is
no easy way to enforce this condition, and with highly noistation
matrices, we may have that @&) = —1.

computation of{\;}.

A simple method to computé);} can be found in [13]. Let us
define3m = tracgA), 2¢g = det A — mI), and let6p equal to the
sum of squares of the elements (@ — mI). Then, we have that

A1 =m+2y/pcosé, (8)
A2 = m + 2,/p(cos + V/3sin 6), 9)
A3 = m + 2,/p(cosf — V/3sin f), (10)
where
1
. 3 _ 2
0 — 3atan2( D —g ,q) . (11)

Since the characteristic polynomial & is a third-order polyno-
mial, it is not surprising to recognize Cardano’s formulag8)-(11).
The termp3—¢? corresponds to the discriminant of the characteristic
polynomial of A [14]. When A has two equal eigenvalues, round-
off errors might lead to a small negative value for this dis@mant.
Any implementation should consider this possibility. Wereheise
atan2, the 2-argument arctangent, instead of the standetahgent
function, because it directly resolves the quadrant anityigny taking
into account the sign of (for ¢ > 0, the solution must lie in the
first quadrant, fo; < 0 it must be located in the second). Moreover,
atanZz, 0) is well-defined contrarily to what happens with its single

If det(R) < 0, the nearest rotation matrix can be obtained as [1&rgument counterpart. Furthermore, observe that, whatisvéhe

p. 421]:

R = Udiag(1,1,—-1)V”. (5)

value returned by atar@, 0), we have that\; = X2 = A3 = m
becausep = 0.

Alternative formulations to the above one can be found, for

This is a useful refinement that cannot be introduced in (2).aA example, in [15] and [16]. In [15], the case in whiph—g? is below

consequence, this is an advantage of using SVD.
To assess the prevalence of the cases in whicliRjet< 0,

a certain tolerance is treated separately. In [16], this ierexpanded
and simplified to improve numerical accuracy. Nevertheldbg

let us randomly generate)® rotation matrices whose elements arémplementation of these alternative formulations showat tthey

contaminated with additive uncorrelated uniformly distited noise

perform worse because they explicitly compute the coeffisieof

in the interval[—4, §]. Then, if we plot the percentage of the resultinghe characteristic polynomial oA thus introducing unnecessary

matrices whose determinant is negative as we vafyom 0 to 3.5,
we obtain the plot in Fig. 2. Inversions of signs arise dor> 0.5

which is an extremely high level of noise. Thus, for most ficat
applications, equation (2) can be dilrectly used provided We have

operations.

Now, we should compute the eigenvectorsfof(i.e., the columns
of V). Nevertheless, for low levels of noise, the three eigaresl
are arbitrarily close td, but finding the eigenvectors of a multiple

an efficient way to comput(aRTR)f? Next, we show how to derive eigenvalue is numerically ill-conditioned [17]. Thus, & better to

a closed-form formula for this computation that avoids tbenarical
computation of the matrix square root.

avoid the explicit computation of these eigenvectors. Tig #nd,
two strategies can be found in the literature.
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First, observe thaV in (6) can also be seen as a rotation matrix

which can be factorized using, for instance, XYZ Euler asglEhen,
equation (6) can be expressed as

A =R:(—¢3)Ry(—¢2)Ra(—¢1)

A1 0 0
0 A2 0 R. (¢1)Ry (¢2)RZ (¢3)7 (12)
0 0 X3

which can be solved fop;. This approach is followed in [18] and
[19]. Unfortunately, the resulting formulas become quiteolved.

Alternatively, the approach presented in [15], which haered
little attention, provides a simpler solution to the problelndeed,
if we apply the Cayley-Hamilton theorem —which states thadrg
square real matrix satisfies its own characteristic polyiabm to
A%, we have that

(A1 - i) (a1 i) (a4 - vi)

— A% —asA+aA% —al =0, 13)

where

a2 = VA1 + VA2 +VAs,

a1 = VA2 + VA1 ds + Vs,

apg = vV )\1)\2)\3.
Now, if we multiply (13) byA% and we substitute\ 2 from (13) in
the result, we obtain
1

AT = —— (asaol+ (a3 —a))A — A%).  (14)
aza1 — aop
Moreover, if we multiply (13) byA*% we obtain
G (mT-wA? +A). (15)
ao

Finally, substituting (14) in (15), rearranging terms, aubstituting
the result in (2), we have that

R=RA 7 = R(bsA% — by A + boI), (16)
where

bp = — 22 17)

ao(aza1 — ao)

2 —
by — ao + az2(as — 2a1) (18)

ao(aza1 — ao)

2 2

by — azai — ao(aj + a1) (19)

ao(a2a1 — ao)

Now, it it worth observing what happens for low levels of ris

In this case,\; ~ 1. Then,az ~ 3, a1 ~ 3, andag ~ 1. As a
consequence,
R~ éR(Z&RTRRTR ~10R”R + 15I). (20)

It is interesting to note that this formula coincides witte tbne
obtained by computing the Taylor series expansiorEofip to the
third term and substituting the result in (2). This formwaaictually
used in [20] in an iterative algorithm intended to convergdit
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Fig. 3. Range of values for the eigenvalues Af(top), and its condition
number (bottom) as a function of the added noise. When thsens over.5,
the lower bound for the eigenvalues is zero. As a consequéneeondition
number goes to infinity.

For exact rotation matrices, the three eigenvaluef\cdre equal
to 1. To see what happens with noisy matrices, we can randomly
generatel0° rotation matrices whose elements, as in the experiment
performed in Section II, are contaminated with additivearnelated
uniformly distributed noise in the interv@h-d, §]. Then, we compute
the range of the eigenvalues of thes&® matrices. If we repeat
this experiment for different values of, we obtain the region
depicted in Fig. 3 (top). The ratio between the upper and towe
bound gives us a measure of dispersion between the eigesvalu
Observe that, sincé\ is symmetric, this ratio gives us an upper
bound for its condition number. Far > 0.5, the condition number
is clearly unbounded [Fig. 3 (bottom)]. As a rule of thumbthe
condition number:(A) = 10¥, then one may lose up tb digits of
accuracy. Therefore, since the machine epsilon usingesjprgicision
arithmetics is approximatelyl0~", the level of noise should not
exceed, according to Fig. 3(bottom), 0.4 for accurate tesdlhis
bound is experimentally verified in Section V.

IV. AN APPROXIMATE CLOSEDFORM FORMULA

Euler’s theorem of rigid-body rotations states that themtation of
a body after having undergone any sequence of rotationsiisaent
to a single rotation of that body through an ang@labout an axis that
we will represent by the unit vectali = (n.n,n.)”. A rotation

Equation (16) clearly fails if one of the eigenvalues is zerdnatrix, expressed in terms af and 6, has the following form (see

Moreover, since the sign of d@t) is the same as that of d&), it
actually provides a closed-form formula for the neareshagobnal
matrix, not the nearest rotation matrix. Thus, it is only idaif

detR)>0, that is, if §<0.5. Unfortunately, this bound is actually

optimistic because the above formulation leads to a lossafracy
when the eigenvalues differ significantly in magnitude [Z2P].

[6, p. 30] for an elementary deduction):

R(n,0) =
c+n2(1—c)
nyng(l—c)+n.s
nzng(l—c)—nys

nznz(l—c)+nys
nynz(l—c)—ngs
c+n2(1—c)

ngny(l—c)—n.s
c+n?2!(1—c)
nzny(l—c) + nzs

, (21)



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS

TABLE |
THE FOUR CONSISTENT SETS OF SIGNS FOR THE COMPONENTS §F

g1

+

Signfra2 — r23)

sign@ris — r31)

signfr21 — r12)

g2

Signfra2 — ra23)

+

sign(ra1 + ri2)

sign(r1z + r31)

o3

sign@ris — ra1)

sign(ra1 + ri2)

+

sign(rs2 + r23)

04

signfr21 — ri2)

sign(r13 + r31)

sign(rs2 + r23)

+

wheres = sin§ and ¢ = cos 6. Now, if we introduce the following
change of variables

go = kcos(0/2), (22)
g1 = kngsin(6/2), (23)
g2 = knysin(6/2), (24)
g3 = kn.sin(0/2), (25)

The problem of averaging quaternions arises in many diftere
applications [29]. The simple average (excluding condizetors asy
is treated as a vector in homogeneous coordinates)

4
q: E U,
i=1

where u; denotes the column of U, has a subtle flaw. Sinca;
and —u; represent the same rotation (quaternions provide a double

(29)

where k is an arbitrary non-null real number, then (21) can b@overing of the rotation group), changing the sign of anyshould

rewritten as

, a8+ai —a5—a3
R(q) = 2(q192+qoqs3)
a3 +ai+a5+a3 2(q1g3—qoq2)

2(q193+qoq2)
2anty—om)
96—91—92+q3

2(‘]1 q2 —QOQ3)
B-G—-G—6
2(q2q3+qoq1)

(26)

whereq = (qo, 41,92, g3)
as the components of a non-unit quaternion representingdhee

not change the average. Nevertheless, it is clear that (@93 dot
have this property.

Therefore, one possibility is thomogenize the signs ofu; prior
to averaging them. A simple way to implement this idea reagls a
follows:

4
a=>_signu;u)u,

i=1

(30)

T is a vector whose elements can be seeffhere the dot operator stands for the scalar productyarid chosen

so that|ju;||* > ||w*, i =1,...,4.

rotation asR [23]. Since equation (26) is independent from the value Summin.g up, the method we propose can be simply summarized
of k, this vector can actually be treated as a vector of homogene®S follows: given the noisy rotation matri, we computeU using

coordinates [24].
Now, givenR = (r;;)1<s,;<3, let us define the associateck 4
symmetric matrix

r11+ra2+raz+1 T32—T23
U= 1 T32—"23 r11—"22—733+1
4 13731 ro1+712
21 —T12 r31+713
T13—7r31 T21—"12
r21+712 r31+713 @7)
T22—T11—733+1 7324723
r32+723 r3z—ri1—re2+1

It was proved in [25], and later independently rediscovene(26]
and [27], that the dominant eigenvectordfis the quaternion whose
corresponding rotation matrix is equal R(RTR)2 (the dominant
eigenvector is the eigenvector associated with the eidigawahose
absolute value is maximal). A closed-form formula is dedive [25]
to obtain this dominant eigenvector, but it is far from taivias it
involves the computation of the roots of a fourth order polymal.
Alternatively, a numerical method is proposed in [27].

WhenR is not contaminated by nois&] is identically equal to
(see, for example, [3] or [28]):

goqo qoqr goq2 qogs
T q190 G191 4192 Q143
= 28
ad q2qo G291 g2G2 Qq2Q3 (28)
4390 g391 g3q2 Qq3q3

Thus, for exact rotation matrices, all the columndbére equal up
to a scalar factor. The same applies to its rows as it is synené&or
noisy rotation matrices, this is not longer true. Then, assg that
the elements of the rotation matrix are contaminated by walzied
noise, it is reasonable to average the column vectors ofif2gpme
way to get an estimation af.

(27), thenqg using (30), and finallyR(q) using (26). Observe that
this method always returns a rotation matrix independeaflyhe
sign of defR)) by using only the four basic arithmetic operations.
The idea of orthonormalizing a noisy rotation matrix by ocering
it to quaternion form and then obtaining back the correspand
proper rotation matrix is not new. It is commonly implemehte
using the Shepperd-Markley method [30]. Very recently, irethod
presented in [28], based on Cayley’s factorization [31]shewn to
provide closer results to those obtained using the SVD tleepgerd-
Markley method. A unified view of the method we have just psgzb
and the one resulting from Cayley’s factorization is okedinby
substituting the arithmetic mean given in (30) by the sgdiarean
root. In this case, the result reads as follows:

a= (o1 w02 |[uz]l, o3 us|, oa [[ua]) ", (31)

where the signs of the components @f o;, have to be calculated
separately. Since we have a global sign ambiguity, we camnass
that the largest component gfis positive and assign the remaining
signs according to Table I.

In the next section, it is shown that the use of the arithmmsigan
in (30) provides better results in the worst case than theofiske
squared mean root in (31).

V. PERFORMANCE ANALYSIS

This paper has supplementary downloadable multimediariabte
which includes a C++ library implementing the methods déscr
in this paper, and a main program needed to reproduce thgsial
described below. The methods that have been analyzed are the
following:

1) The new exact method resulting from applying the closedif
formula given by equation (16).

2) The new approximate method resulting from applying the
closed-form formula given by equation (30).
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Fig. 4. Mean (top) and maximum (bottom) Frobenius norm betwandomly
generated noisy rotation matrices and the correspondiragesk rotation
matrices obtained with the five compared methods implerdemtesingle e ) ;
precision arithmetics10% random matrices are generated for each valué of gremsmn arithmetics1

3)

4)
5)
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Fig. 5. Mean (top) and maximum (bottom) orthogonality ewbthe rotation
matrices obtained with the five compared methods implerdemtesingle
05 random matrices are generated for each value of

The method given by equation (31) which results from usin - . .
Cayley’s factorization [28]. gnd Implicit QR SVD overlap as they all provide the optimasuit.

The Jacobi SVD implemented in the Eigen3 C++ library [32]The curves for the maximum Frobenius norm error also pve‘dap

s : - 6 < 0.45. For larger values, as already predicted in Section lll, the

The Implicit QR SVD algorithm recently presented in [33]. o S . .

) . h L . exact method exhibits numerical instabilities. After kineegression,
This algorithm is specialized f&x 3 matrices and hence faster

than the aeneral Jacobi SVD the mean Frobenius norm error for the optimal results is doun
9 ) to be equal t01.3756. Despite the approximate method is based

To assess the performance of these methods, we have imp&meR, an arithmetic average resulting from a heuristic argumin

the following procedure using single-precision arithmetn a PC
with a 4,2 GHz Intel Core i7 processor:

1

2)

3)

4)

performs better than Cayley’s method. Its superiority maclwhen
observing the maximum error curves. After linear regrassite
Generatel 0° random quaternions using the algorithm detailechean Frobenius norm error for this approximate method tessil

in [34], which permits to generate sets of points uniformly.5264.

distributed onS®. If the elements of the rotation matrix are contaminated with
Convert these quaternions to rotation matrices whoseesles  zero-mean Gaussian noise with variance equab 2, instead of
are then contaminated with additive uncorrelated unifgrmluniformly distributed noise in the intervdl-d,d], the results do
distributed noise in the intervat-3, d]. not differ essentially from the ones given above. The pdiyitof
Compute the nearest rotation matrices for th¢s€ noisy generating the corresponding curves is also included aptonoin
rotation matrices using each of the above methods. the downloadable multimedia material.

Compute the maximum and the average Frobenius norm beTg asses the orthogonality errors of the obtained resukshave
tween the noisy matrices and the obtained matrices for eaglso computed the mean and the maximum of the Frobenius norm
method. of RR” I for § ranging from0 to 0.5. The results are plotted in

If this procedure is repeated for valuesdfanging from0 to 0.5, Fig. 5. The mean and the maximum orthogonality error curegs f
the plots in Fig. 4 are obtained. The curves for the mean fiabe the approximate and Cayley’s method overlap. They bothigeothe
norm error obtained using the exact close-form formulapda8VD, minimum orthogonality error because the last step in botthous
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consists in applying equation (26) which returns an exatttogional
matrix for any set of values fog;, i = 0, ..., 4, provided that not
all them are zero. The maximum orthogonality error curve tf@
exact method reveals that numerical instabilities arisesfo- 0.4,

as already observed. The orthogonality error is also thkesigone
for this method because it involves square roots and trigatiac
functions, but it is still neglectable for most practicalpéipations.

The average execution time of the five methods compared ab

is 0.13, 0.07, 0.03, 1.32, and 0.22 microseconds, respéftivi hus,

9] .

[8] C.R. Giardina, R. Bronson, and L. Wallen, “An optimal nwlization

scheme,”|IEEE Transactions on Aerospace and Electronic Systems, \Vol.
AES-11, No. 4, pp. 443-446, 1975.

Bar-ltzhack, “lterative optimal orthogonalizationf the strapdown
matrix,” |[EEE Transactions on Aerospace and Electronic Systems, \ol.
AES-11, No. 1, pp. 30-37, 1975.

[10] J. Mao, “Optimal orthonormalization of the strapdowmtnix by using

singular value decompositionComputers and Mathematics with Appli-
cations, Vol. 12, No. 3, pp. 353-362, 1986.

cfi’f] B. Siciliano, L. Sciavicco, L. Villani, and G. OrioloRobotics: Mod-

elling, Planning and Control, Springer Verlag, 2009.

the most commonly used method —the Jacobi SVD method- is fi&] H.C. Schweinler and E.P. Wigner, “Orthogonalizatioethods,"Journal

computationally most expensive alternative. The Impl@R SVD

method provides an important improvement thanks to itsiqart (13]

of Mathematical Physics, Vol. 11, No. 5, pp. 1693-1694, 1970.
0O.K. Smith, “Eigenvalues of a symmetric< 3 matrix,” Communications
of the ACM, Vol. 4, No. 4, p. 168, 1961.

larization to 3x3 matrices. An extra improvement is obtained by14] jF. Blinn, “How to solve a cubic equation, part 1: Theasé of the

using the exact closed-form formula presented in this pdgeally,
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