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Abstract—The problem of restoring the orthonormality of a noisy
rotation matrix by finding its nearest correct rotation matrix arises
in many areas of robotics, computer graphics, and computer vision.
When the Frobenius norm is taken as the measure of closeness,the
solution is usually computed using the singular value decomposition
(SVD). A closed-form formula exists but, as it involves the roots of a
polynomial of third degree, it is assumed to be too complicated and
numerically ill-conditioned. In this paper, we show how, by carefully
using some algebraic recipes scattered in the literature, it is possible to
derive a simple and yet numerically stable formula for most practical
applications. Moreover, by relying on a result that permits obtaining
the quaternion corresponding to the sought optimal rotation matrix, we
present another closed-form formula that provides a good approximation
to the optimal one using only the elementary algebraic operations of
addition, subtraction, multiplication and division. These two closed-form
formulas are compared with respect to the SVD in terms of accuracy
and computational cost.

Index Terms—Rotation matrices, quaternions, singular value decom-
position, third degree polynomials.

I. I NTRODUCTION

Rotations in 3D are commonly represented using3×3 proper
orthogonal matrices (also known asrotation matrices). A matrix,
say R, is said to be orthogonal ifRRT is equal to the identity
and to be proper if, in addition, det(R) = 1. In other words,
the three row and column vectors ofR represent a right-handed
orthonormal reference frame. There are some applications in robotics,
computer vision, and computer graphics in whichnoisy rotation
matrices are generated. That is, rotation matrices that satisfy the
two aforementioned conditions approximately. Due to floating point
precision errors, we have that, for example, the result of cumulatively
multiplying rotation matrices is a noisy rotation matrix [1]. Likewise,
the integration of angular velocity differential equations leads to a
rotation matrix that progressively departs from orthogonality as time
increases [2]. A way to alleviate these problems consists inrepre-
senting rotations using unit quaternions, which are only converted to
rotation matrices when required. Floating point precisionerrors in
these cases lead to non-unit quaternions, but normalizing them is a
trivial task. Unfortunately, using quaternions is not always desirable
or even possible. For example, rotating a vector by a quaternion using
the sandwich formula [3] is computationally much more expensive
than rotating it using the standard multiplication by the corresponding
rotation matrix [4]. Noisy rotation matrices not only ariseas the
result of floating point operations. For example, one simplesolution
to the problem of determining the rotation matrix that is thebest
fit to a given set of measured rotations consists in averagingall
measurements (see [5] and the references therein). However, the result
is not, in general, a proper orthogonal matrix. Then, the need arise for
orthonormalizing noisy rotation matrices, a process that essentially
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Fig. 1. Following the standard robotics notation, the column vectors of the
rotation matrixRi can be made explicit asRi = (ni oi ai) [6]. These
vectors determine a reference frame. Then, in this figure, the Frobenius norm
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consist in finding thenearest rotation matrix that satisfies the two
aforementioned conditions exactly.

A naive way to restore the orthonormality of a noisy rotation
matrix consists in applying the Gram-Schmidt process to itsrows
or columns. Despite its popularity due to its simple geometric
interpretation, the result is rather arbitrary as it depends on the order
in which the rows or the columns of the matrix are taken. This is why,
whenever possible, the problem is solved by relying on the SVD of
the noisy rotation matrix which computes its nearest rotation matrix
according to the Frobenius norm. This paper focuses on the derivation
of new closed-form formulas to obtain this result.

This paper is organized as follows. Section II briefly reviews
some basic facts on the nearest exact rotation matrix to a given
noisy rotation matrix in terms of the Frobenius norm. An exact
closed-form formula for the computation of this rotation matrix is
presented in Section III. This formula combines Smith’s method for
the computation of the required eigenvalues and Franca’s method to
avoid the explicit computation of the corresponding eigenvectors. The
goal in Section IV is to introduce an alternative closed-form formula,
involving only the four elementary arithmetic operations (addition,
subtraction, multiplication, and division). This derivation is based
on a heuristic argument for averaging quaternions which leads to
an approximation to the optimum. Section V presents an exhaustive
performance analysis of the the two closed-form formulas. Finally,
Section VI summarizes the main contributions.

II. BACKGROUND

The first problem faced when trying to find thenearest proper
orthogonal matrix, saŷR, to a noisy rotation matrix, sayR, is how
to define a measure of closeness endowed with physical meaning.
The Euclidean or Frobenius norm (denoted as‖·‖

F
) of R−R̂ (i.e.,

the square root of the sum of squares of the elements ofR−R̂) is
commonly used to this end. The reasons for choosing this normare
multiple:

• Although it does not seem to be a reasonable measure of angular
difference, it has a simple geometric interpretation (see Fig. 1).

• It leads to a closed-form formula. If we would use the 2-norm
the closeness measure would be given by the largest singular
value ofR−R̂ which is not easy to deal with [7].

• Using it, the solution is unique. If we would use the 2-norm,
the solution is not necessarily unique [7].

Thus, using the Frobenius norm, our problem can be stated in
algebraic terms as follows: given the noisy rotation matrixR, the
problem consists in finding the matrix̂R that minimizes

∥

∥

∥
R̂−R

∥

∥

∥

2

F
= trace

(

(R̂−R)(R̂−R)T
)

= ρ21+ρ22+ρ23, (1)
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Fig. 2. Percentage of matrices with negative determinant asa function of the
level of noise added to randomly generated rotation matrices.

subject toR̂T R̂ = I, whereρi, i = 1, 2, 3, are the eigenvalues of
R̂−R. Using Lagrange multipliers, it can be proved that the optimal
solution to this constrained optimization problem, in the case thatR
is not singular, is given by [8], [9]:

R̂ = R
(

R
T
R
)− 1

2

= R (I+E)−
1

2 , (2)

where

E = R
T
R− I (3)

can be seen as an error matrix.
Now, isolatingR from (2), we have that

R = R̂H, (4)

whereH=(RTR)
1

2 . Equation (4) is called the polar decomposition
of R. The polar decomposition can be obtained from the SVD
(Singular Value Decomposition) and vice versa. Indeed ifR =
UΣVT is an SVD thenR = (UVT )(VΣVT ) = R̂H is a polar
decomposition. Therefore,̂R = UVT [10].

It is easy to verify thatR̂ thus obtained is orthonormal,i.e.
R̂T R̂ = I. However, there is no guarantee that det(R̂) = +1. To
represent a proper rotation, the orthonormal matrixR̂ has to satisfy
this condition as well, otherwise it represents a reflection. There is
no easy way to enforce this condition, and with highly noisy rotation
matrices, we may have that det(R̂) = −1.

If det(R) < 0, the nearest rotation matrix can be obtained as [11,
p. 421]:

R = U diag(1, 1,−1)VT . (5)

This is a useful refinement that cannot be introduced in (2). As a
consequence, this is an advantage of using SVD.

To assess the prevalence of the cases in which det(R) < 0,
let us randomly generate106 rotation matrices whose elements are
contaminated with additive uncorrelated uniformly distributed noise
in the interval[−δ, δ]. Then, if we plot the percentage of the resulting
matrices whose determinant is negative as we varyδ from 0 to 3.5,
we obtain the plot in Fig. 2. Inversions of signs arise forδ > 0.5
which is an extremely high level of noise. Thus, for most practical
applications, equation (2) can be directly used provided that we have

an efficient way to compute
(

RTR
)− 1

2 . Next, we show how to derive
a closed-form formula for this computation that avoids the numerical
computation of the matrix square root.

III. A N EXACT CLOSED-FORM FORMULA

If det(R) 6= 0, A = RTR is symmetric and positive definitive.
Then, it can be diagonalized as follows:

A = V
T





λ1 0 0
0 λ2 0
0 0 λ3



V, (6)

where{λi} is the set of non-negative real eigenvalues ofA. Then,
it can be proved that [12]

A
− 1

2 = V
T







1√
λ1

0 0

0 1√
λ2

0

0 0 1√
λ3






V. (7)

The problem is thus essentially reduced to diagonalizeA. Although
conceptually simple, the derivation of a closed-form formula based
on this idea is full of unexpected difficulties. Let us start with the
computation of{λi}.

A simple method to compute{λi} can be found in [13]. Let us
define3m = trace(A), 2q = det(A−mI), and let6p equal to the
sum of squares of the elements of(A−mI). Then, we have that

λ1 = m+ 2
√
p cos θ, (8)

λ2 = m+ 2
√
p(cos θ +

√
3 sin θ), (9)

λ3 = m+ 2
√
p(cos θ −

√
3 sin θ), (10)

where

θ =
1

3
atan2

(

√

p3 − q2, q
)

. (11)

Since the characteristic polynomial ofA is a third-order polyno-
mial, it is not surprising to recognize Cardano’s formulas in (8)-(11).
The termp3−q2 corresponds to the discriminant of the characteristic
polynomial ofA [14]. WhenA has two equal eigenvalues, round-
off errors might lead to a small negative value for this discriminant.
Any implementation should consider this possibility. We here use
atan2, the 2-argument arctangent, instead of the standard arctangent
function, because it directly resolves the quadrant ambiguity by taking
into account the sign ofq (for q > 0, the solution must lie in the
first quadrant, forq < 0 it must be located in the second). Moreover,
atan2(x, 0) is well-defined contrarily to what happens with its single
argument counterpart. Furthermore, observe that, whatever is the
value returned by atan2(0, 0), we have thatλ1 = λ2 = λ3 = m
becausep = 0.

Alternative formulations to the above one can be found, for
example, in [15] and [16]. In [15], the case in whichp3−q2 is below
a certain tolerance is treated separately. In [16], this term is expanded
and simplified to improve numerical accuracy. Nevertheless, the
implementation of these alternative formulations shows that they
perform worse because they explicitly compute the coefficients of
the characteristic polynomial ofA thus introducing unnecessary
operations.

Now, we should compute the eigenvectors ofA (i.e., the columns
of V). Nevertheless, for low levels of noise, the three eigenvalues
are arbitrarily close to1, but finding the eigenvectors of a multiple
eigenvalue is numerically ill-conditioned [17]. Thus, it is better to
avoid the explicit computation of these eigenvectors. To this end,
two strategies can be found in the literature.
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First, observe thatV in (6) can also be seen as a rotation matrix
which can be factorized using, for instance, XYZ Euler angles. Then,
equation (6) can be expressed as

A = Rz(−φ3)Ry(−φ2)Rx(−φ1)




λ1 0 0
0 λ2 0
0 0 λ3



Rx(φ1)Ry(φ2)Rz(φ3), (12)

which can be solved forφi. This approach is followed in [18] and
[19]. Unfortunately, the resulting formulas become quite involved.

Alternatively, the approach presented in [15], which has received
little attention, provides a simpler solution to the problem. Indeed,
if we apply the Cayley-Hamilton theorem —which states that every
square real matrix satisfies its own characteristic polynomial— to
A

1

2 , we have that
(

A
1

2 −
√
λ1I

)(

A
1

2 −
√
λ2I

)(

A
1

2 −
√
λ3I

)

= A
3

2 − a2A+ a1A
1

2 − a0I = 0, (13)

where

a2 =
√
λ1 +

√
λ2 +

√
λ3,

a1 =
√
λ1λ2 +

√
λ1λ3 +

√
λ2λ3,

a0 =
√
λ1λ2λ3.

Now, if we multiply (13) byA
1

2 and we substituteA
3

2 from (13) in
the result, we obtain

A
1

2 =
1

a2a1 − a0

(

a2a0I+ (a2

2 − a1)A−A
2
)

. (14)

Moreover, if we multiply (13) byA− 1

2 we obtain

A
− 1

2 =
1

a0

(

a1I− a2A
1

2 +A
)

. (15)

Finally, substituting (14) in (15), rearranging terms, andsubstituting
the result in (2), we have that

R̂ = RA
− 1

2 = R(b2A
2 − b1A+ b0I), (16)

where

b2 =
a2

a0(a2a1 − a0)
, (17)

b1 =
a0 + a2(a

2

2 − 2a1)

a0(a2a1 − a0)
, (18)

b0 =
a2a

2

1 − a0(a
2

2 + a1)

a0(a2a1 − a0)
. (19)

Now, it it worth observing what happens for low levels of noise.
In this case,λi ≈ 1. Then, a2 ≈ 3, a1 ≈ 3, and a0 ≈ 1. As a
consequence,

R̂ ≈ 1

8
R(3RT

RR
T
R− 10RT

R+ 15I). (20)

It is interesting to note that this formula coincides with the one
obtained by computing the Taylor series expansion ofE up to the
third term and substituting the result in (2). This formula is actually
used in [20] in an iterative algorithm intended to converge to R̂.

Equation (16) clearly fails if one of the eigenvalues is zero.
Moreover, since the sign of det(R̂) is the same as that of det(R), it
actually provides a closed-form formula for the nearest orthogonal
matrix, not the nearest rotation matrix. Thus, it is only valid if
det(R)>0, that is, if δ<0.5. Unfortunately, this bound is actually
optimistic because the above formulation leads to a loss of accuracy
when the eigenvalues differ significantly in magnitude [21], [22].
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Fig. 3. Range of values for the eigenvalues ofA (top), and its condition
number (bottom) as a function of the added noise. When this noise is over0.5,
the lower bound for the eigenvalues is zero. As a consequence, the condition
number goes to infinity.

For exact rotation matrices, the three eigenvalues ofA are equal
to 1. To see what happens with noisy matrices, we can randomly
generate106 rotation matrices whose elements, as in the experiment
performed in Section II, are contaminated with additive uncorrelated
uniformly distributed noise in the interval[−δ, δ]. Then, we compute
the range of the eigenvalues of these106 matrices. If we repeat
this experiment for different values ofδ, we obtain the region
depicted in Fig. 3 (top). The ratio between the upper and lower
bound gives us a measure of dispersion between the eigenvalues.
Observe that, sinceA is symmetric, this ratio gives us an upper
bound for its condition number. Forδ > 0.5, the condition number
is clearly unbounded [Fig. 3 (bottom)]. As a rule of thumb, ifthe
condition numberκ(A) = 10k, then one may lose up tok digits of
accuracy. Therefore, since the machine epsilon using single precision
arithmetics is approximately10−7, the level of noise should not
exceed, according to Fig. 3(bottom), 0.4 for accurate results. This
bound is experimentally verified in Section V.

IV. A N APPROXIMATE CLOSED-FORM FORMULA

Euler’s theorem of rigid-body rotations states that the orientation of
a body after having undergone any sequence of rotations is equivalent
to a single rotation of that body through an angleθ about an axis that
we will represent by the unit vector̂n = (nx ny nz)

T . A rotation
matrix, expressed in terms of̂n and θ, has the following form (see
[6, p. 30] for an elementary deduction):

R(n̂, θ) =




c+n2
x(1−c) nxny(1−c)−nzs nxnz(1−c)+nys

nynx(1−c)+nzs c+n2
y(1−c) nynz(1−c)−nxs

nznx(1−c)−nys nzny(1−c) + nxs c+n2
z(1− c)



, (21)
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TABLE I
THE FOUR CONSISTENT SETS OF SIGNS FOR THE COMPONENTS OFq̂.

σ1 + sign(r32 − r23) sign(r13 − r31) sign(r21 − r12)
σ2 sign(r32 − r23) + sign(r21 + r12) sign(r13 + r31)
σ3 sign(r13 − r31) sign(r21 + r12) + sign(r32 + r23)
σ4 sign(r21 − r12) sign(r13 + r31) sign(r32 + r23) +

wheres = sin θ and c = cos θ. Now, if we introduce the following
change of variables

q0 = k cos(θ/2), (22)

q1 = k nx sin(θ/2), (23)

q2 = k ny sin(θ/2), (24)

q3 = k nz sin(θ/2), (25)

where k is an arbitrary non-null real number, then (21) can be
rewritten as

R(q) =
1

q2
0
+q2

1
+q2

2
+q2

3





q20+q21−q22−q23
2(q1q2+q0q3)
2(q1q3−q0q2)

2(q1q2−q0q3) 2(q1q3+q0q2)
q20−q21−q22−q23 2(q2q3−q0q1)
2(q2q3+q0q1) q20−q21−q22+q23



 . (26)

whereq = (q0, q1, q2, q3)
T is a vector whose elements can be seen

as the components of a non-unit quaternion representing thesame
rotation asR [23]. Since equation (26) is independent from the value
of k, this vector can actually be treated as a vector of homogeneous
coordinates [24].

Now, givenR = (rij)1≤i,j≤3, let us define the associated4×4
symmetric matrix

U =
1

4









r11+r22+r33+1 r32−r23
r32−r23 r11−r22−r33+1
r13−r31 r21+r12
r21−r12 r31+r13

r13−r31 r21−r12
r21+r12 r31+r13

r22−r11−r33+1 r32+r23
r32+r23 r33−r11−r22+1









. (27)

It was proved in [25], and later independently rediscoveredin [26]
and [27], that the dominant eigenvector ofU is the quaternion whose
corresponding rotation matrix is equal toR(RTR)

1

2 (the dominant
eigenvector is the eigenvector associated with the eigenvalue whose
absolute value is maximal). A closed-form formula is derived in [25]
to obtain this dominant eigenvector, but it is far from trivial as it
involves the computation of the roots of a fourth order polynomial.
Alternatively, a numerical method is proposed in [27].

WhenR is not contaminated by noise,U is identically equal to
(see, for example, [3] or [28]):

qq
T =









q0q0 q0q1 q0q2 q0q3
q1q0 q1q1 q1q2 q1q3
q2q0 q2q1 q2q2 q2q3
q3q0 q3q1 q3q2 q3q3









. (28)

Thus, for exact rotation matrices, all the columns ofU are equal up
to a scalar factor. The same applies to its rows as it is symmetric. For
noisy rotation matrices, this is not longer true. Then, assuming that
the elements of the rotation matrix are contaminated by uncorrelated
noise, it is reasonable to average the column vectors of (27)in some
way to get an estimation ofq.

The problem of averaging quaternions arises in many different
applications [29]. The simple average (excluding constantfactors asq
is treated as a vector in homogeneous coordinates)

q̂ =
4

∑

i=1

ui, (29)

whereui denotes thei column of U, has a subtle flaw. Sinceui

and−ui represent the same rotation (quaternions provide a double
covering of the rotation group), changing the sign of anyui should
not change the average. Nevertheless, it is clear that (29) does not
have this property.

Therefore, one possibility is tohomogenize the signs ofui prior
to averaging them. A simple way to implement this idea reads as
follows:

q̂ =

4
∑

i=1

sign(uj ·ui)ui, (30)

where the dot operator stands for the scalar product, anduj is chosen
so that‖uj‖2 ≥ ‖ui‖2, i = 1, . . . , 4.

Summing up, the method we propose can be simply summarized
as follows: given the noisy rotation matrixR, we computeU using
(27), thenq̂ using (30), and finallyR(q̂) using (26). Observe that
this method always returns a rotation matrix independentlyof the
sign of det(R) by using only the four basic arithmetic operations.

The idea of orthonormalizing a noisy rotation matrix by converting
it to quaternion form and then obtaining back the corresponding
proper rotation matrix is not new. It is commonly implemented
using the Shepperd-Markley method [30]. Very recently, themethod
presented in [28], based on Cayley’s factorization [31], isshown to
provide closer results to those obtained using the SVD than Shepperd-
Markley method. A unified view of the method we have just proposed
and the one resulting from Cayley’s factorization is obtained by
substituting the arithmetic mean given in (30) by the squared mean
root. In this case, the result reads as follows:

q̂ = (σ1 ‖u1‖ , σ2 ‖u2‖ , σ3 ‖u3‖ , σ4 ‖u4‖)T , (31)

where the signs of the components ofq̂, σi, have to be calculated
separately. Since we have a global sign ambiguity, we can assume
that the largest component ofq̂ is positive and assign the remaining
signs according to Table I.

In the next section, it is shown that the use of the arithmeticmean
in (30) provides better results in the worst case than the useof the
squared mean root in (31).

V. PERFORMANCE ANALYSIS

This paper has supplementary downloadable multimedia material
which includes a C++ library implementing the methods described
in this paper, and a main program needed to reproduce the analysis
described below. The methods that have been analyzed are the
following:

1) The new exact method resulting from applying the closed-form
formula given by equation (16).

2) The new approximate method resulting from applying the
closed-form formula given by equation (30).
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Fig. 4. Mean (top) and maximum (bottom) Frobenius norm between randomly
generated noisy rotation matrices and the corresponding nearest rotation
matrices obtained with the five compared methods implemented in single
precision arithmetics.106 random matrices are generated for each value ofδ.

3) The method given by equation (31) which results from using
Cayley’s factorization [28].

4) The Jacobi SVD implemented in the Eigen3 C++ library [32].
5) The Implicit QR SVD algorithm recently presented in [33].

This algorithm is specialized for3×3 matrices and hence faster
than the general Jacobi SVD.

To assess the performance of these methods, we have implemented
the following procedure using single-precision arithmetic on a PC
with a 4,2 GHz Intel Core i7 processor:

1) Generate106 random quaternions using the algorithm detailed
in [34], which permits to generate sets of points uniformly
distributed onS3.

2) Convert these quaternions to rotation matrices whose elements
are then contaminated with additive uncorrelated uniformly
distributed noise in the interval[−δ, δ].

3) Compute the nearest rotation matrices for these106 noisy
rotation matrices using each of the above methods.

4) Compute the maximum and the average Frobenius norm be-
tween the noisy matrices and the obtained matrices for each
method.

If this procedure is repeated for values ofδ ranging from0 to 0.5,
the plots in Fig. 4 are obtained. The curves for the mean Frobenius
norm error obtained using the exact close-form formula, Jacobi SVD,
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Fig. 5. Mean (top) and maximum (bottom) orthogonality errorof the rotation
matrices obtained with the five compared methods implemented in single
precision arithmetics.106 random matrices are generated for each value of
δ.

and Implicit QR SVD overlap as they all provide the optimal result.
The curves for the maximum Frobenius norm error also overlapfor
δ < 0.45. For larger values, as already predicted in Section III, the
exact method exhibits numerical instabilities. After linear regression,
the mean Frobenius norm error for the optimal results is found
to be equal to1.375δ. Despite the approximate method is based
on an arithmetic average resulting from a heuristic argument, it
performs better than Cayley’s method. Its superiority is clear when
observing the maximum error curves. After linear regression, the
mean Frobenius norm error for this approximate method results is
1.526δ.

If the elements of the rotation matrix are contaminated with
zero-mean Gaussian noise with variance equal toδ/2, instead of
uniformly distributed noise in the interval[−δ, δ], the results do
not differ essentially from the ones given above. The possibility of
generating the corresponding curves is also included as an option in
the downloadable multimedia material.

To asses the orthogonality errors of the obtained results, we have
also computed the mean and the maximum of the Frobenius norm
of R̂R̂T−I for δ ranging from0 to 0.5. The results are plotted in
Fig. 5. The mean and the maximum orthogonality error curves for
the approximate and Cayley’s method overlap. They both provide the
minimum orthogonality error because the last step in both methods
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consists in applying equation (26) which returns an exact orthogonal
matrix for any set of values forqi, i = 0, . . . , 4, provided that not
all them are zero. The maximum orthogonality error curve forthe
exact method reveals that numerical instabilities arise for δ > 0.4,
as already observed. The orthogonality error is also the highest one
for this method because it involves square roots and trigonometric
functions, but it is still neglectable for most practical applications.

The average execution time of the five methods compared above
is 0.13, 0.07, 0.03, 1.32, and 0.22 microseconds, respectively1. Thus,
the most commonly used method –the Jacobi SVD method– is the
computationally most expensive alternative. The ImplicitQR SVD
method provides an important improvement thanks to its particu-
larization to 3×3 matrices. An extra improvement is obtained by
using the exact closed-form formula presented in this paper. Finally,
if we accept an approximation to the optimal solution (with is
actually better than the one obtained using Cayley’s method), a
further improvement can be obtained using the closed-form formula
introduced in this paper that involves neither trigonometric functions
nor square roots.

VI. CONCLUSION

The problem of obtaining the nearest rotation matrix, in Frobenius
norm, to a given noisy rotation matrix can be straightforwardly solved
by computing the SVD of the noisy rotation matrix. Nevertheless,
this approach requires higher computational resources than simpler
closed-form solutions.

We have presented a compact exact closed-form formula whichis
numerically stable, for most practical problems, despite it involves
the computation of the roots a third-order polynomial. Moreover, a
new approximate method has also been presented. It was designed,
based on a simple heuristic argument, to rely only on the fourbasic
arithmetic operations. Nevertheless, to our surprise, it performs better
than Cayley’s method which, in turn, performs better than Shepperd-
Markley method, the standard method used to orthonormalizea noisy
rotation matrix by converting it to quaternion form and thenobtaining
back the corresponding proper rotation matrix. This approximate
method is particularly useful for implementation in embedded micro-
controllers with limited computational resources becauseit requires
neither square root nor trigonometric computations.

In the light of the presented results, we can say that the use of
SVD for solving the nearest rotation matrix problem can be advan-
tageously substituted by closed-form formulations in mostpractical
applications.
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[31] A. Pérez-Gracia and F. Thomas, “On Cayley’s factorization of 4D
rotations and applications,”Advances in Applied Clifford Algebras, Vol.
27, No. 1, pp. 523–538, 2017.

[32] G. Guennebaud, “Eigen: A C++ linear algebra library,”Eurograph-
ics/CGLibs. Available online at http://downloads.tuxfamily.org/eigen/
eigen CGLibs Giugno Pisa 2013.pdf, last accessed October 2019.

[33] T. Gast, C. Fu, C. Jiang, and J. Teran, “Implicit-shifted symmetric QR
singular value decomposition of3×3 matrices,” DTIC Report, University
of California, Los Angeles, 2018.

[34] G. Marsaglia, “Choosing a point from the surface of a sphere,” Annals
of Mathematical Statistics, Vol. 43, pp. 645-646, 1972.


