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Abstract Introduction. Every 3 seconds someone devel-

ops dementia worldwide. Brain-training exercises, prefer-

ably involving also physical activity, have shown their

potential to monitor and improve the brain function

of people affected by Alzheimer Disease (AD) or Mild

Cognitive Impairment (MCI).

Objectives. This paper presents a cognitive robotic

system designed to assist mild dementia patients dur-

ing brain-training sessions of sorting tokens, an exercise

inspired by the Syndrom KurzTest neuropsychological

test (SKT).

Methods. The system is able to perceive, learn and

adapt to the user’s behaviour and is composed of two

main modules. The adaptive module based on repre-

senting the human-robot interaction as a planning prob-

lem, that can adapt to the user performance offering

different encouragement and recommendation actions

using both verbal and gesture communication in order

to minimize the time spent to solve the exercise. As

safety is a very important issue, the cognitive system is

enriched with a safety module that monitors the possi-

bility of physical contact and reacts accordingly.

Results. The cognitive system is presented as well

as its embodiment in a real robot. Simulated experi-

ments are performed to i) evaluate the adaptability of
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Robòtica i Informàtica Industrial, CSIC-UPC, C/Llorens i
Artigas 4-6, 08028 Barcelona, Spain. {aandriella, torras,

galenya}@iri.upc.edu

the system to different patient use-cases and ii) vali-

date the coherence of the proposed safety module. A

real experiment in the lab, with able users, is used as

preliminary evaluation to validate the overall approach.

Conclusions. Results in laboratory conditions show

that the two presented modules effectively provide ad-

ditional and essential functionalities to the system, al-

though further work is necessary to guarantee robust-

ness and timely response of the robot before testing it

with patients.

Keywords Cognitive Robotic System · Cognitive

training · HRI · Robot Safety · Socially Assistive

Robotics · Adaptive Robot

1 Introduction

Assistive Robotics is an emerging area of research due

to the rapid growth in the number of elderly people and

the demand for more specialized assistance. With the

support and assistance of the robot, therapists could

provide more effective training and monitor multiple

patients simultaneously.

Alzheimer’s disease is a degenerative brain disease

and the most common cause of dementia. As reported

from the World Alzheimer Report 2018 [1], the num-

ber of people suffering from Alzheimer’s Disease (AD)

worldwide is estimated to be around 50 million, more

than the population of Spain. This number is projected

to increase to more than 132 million by 2050, as popu-

lations age. Total direct costs of AD and dementia are

estimated around US$1 trillion by 2018. Dementia is

characterized by a decline of memory, language, and

other cognitive capabilities that affects a person’s abil-

ity to perform everyday activities [22]. While there is

no cure for these kinds of diseases, non-pharmacological



2 Antonio Andriella1, Carme Torras and Guillem Alenyà

Fig. 1: In the proposed exercise the patient has to place the tokens in the top row of the board in ascending order.

The robot observes and provides assistance while the user is playing. The level of assistance (from Lev 1 to Lev 4)

is selected according to the user performance and moves history. An initial preference on the levels of interaction

is provided by the caregiver.

therapies aim to delay the loss of mental abilities, to

help patients stay independent in everyday life for as

long as possible, and to increase their well-being and

quality of life. Non-pharmacological therapy focuses on

enhancing mental, physical and emotional activities.

One of the tests that is currently being used to as-

sess the cognitive decline of mild dementia patients is

called Syndrom KurzTest (SKT) [18]. SKT is a short

neuropsychological test to evaluate cognitive deficits in

memory and attention. In this work, inspired by the

SKT, we design in collaboration with our partner hos-

pital Fundació ACE1 a brain-training exercise called

sorting tokens. In this exercise, the patient has to place

a number of tokens in a given order on a board with

the help of a cognitive robot.

In order to allow robots to assist humans and co-

operate with them in scenarios like rehabilitation, as-

sistive or medical, it is necessary to develop effective

and robust methods to provide safety in close-proximity

human-robot interaction. In this specific context, hu-

mans and robots share the same workspace and may

come into contact. We can divide these interactions in

three categories: no physical contact, as assumed in this

work; contact forces are part of the task; contact forces

are part of the guidance or collaboration.

1 http://www.fundacioace.org/en

In this paper, we tackle safety according to the stan-

dard ISO 10218 that formalizes the requirements and

guidelines for safe design, and to the technical specifi-

cation ISO/TS 15066 [39] that specifies a collaborative

method for “power and force limiting”. As a result, we

provide a way to execute a motion from the robot that

is as accurate and fast as possible while consistent with

safety constraints.

We have already presented a general HRI frame-

work [4] to tackle this problem that consists of two

different interaction loops: first, the caregiver interacts

with the robot to set up the initial desired behaviour of

the robot (for example, more helpful or more challeng-

ing); second, the robot interacts with the patient while

he is playing the sorting tokens exercise.

In this paper we concentrate on the second loop, the

interaction between the robot and the patient (see Fig-

ure 1), and define a new Cognitive System Framework

by extending our previous Human-Robot Interaction

(HRI) framework. The two main contributions of this

paper are:

i. an adaptive module, which relies on symbolic plan-

ning, able to select at each step of the brain-training

exercise the most suitable action of engagement to

support the patient,
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ii. a safety module that monitors in real-time the user’s

safety and reacts accordingly adapting the robot be-

haviour.

The adaptive module will adjust and personalize the

robot behaviour based on experienced user interactions,

selecting among all the available actions the most ap-

propriate one. The safety component will monitor the

user behaviour and react when a hazardous event is de-

tected. It is based on the assumption that the robot

is safety-aware. A safety-aware agent knows when its

actions, executed in the current state, could hurt or en-

danger a person and actively refrains from performing

them [6].

The Cognitive System is first evaluated in simula-

tion to ensure repeatability when testing its adaptabil-

ity, and in a simple real robot scenario when validating

its feasibility. At this stage, evaluation with real pa-

tients is outside the scope of our work. Our aim is not

to provide a definitive engineering solution that requires

robust perception and robot execution, but rather to

present a Cognitive System Framework in which the

robot is able to adapt to the user and react to sporadic

unexpected behaviours on the basis of previous inter-

action experiences. With the proposed framework we

also aim to provide caregivers with a tool that can be

employed for administering brain-training exercises like

the one presented here.

2 Related Work

Robots are expected to autonomously accomplish a va-

riety of tasks in real world environments that are con-

stantly changing. In order to cope with these requests,

robots must not only be provided with predefined rules

of behaviour or fixed sets of actions routines, but also

they have to be able to perceive, learn and adapt to

the surrounding environment. We can define Cogni-

tive Robotics according to Levesque et al. [35] defini-

tion: “Cognitive Robotics is the study of the knowledge

representation and reasoning problems faced by an au-

tonomous robot in a dynamic and unknown world”.

Socially Assistive Robots (SAR) in Eldercare aim to

endow robots with the ability to support older adults,

through social assistance, rather than physical, in con-

valescence, rehabilitation, and training. However, since

in SAR usually robots share the workspace and interact

with vulnerable people, they still need to behave safely

with respect to them. Moreover, in order to be effec-

tive, any kind of therapy provided by the robot has to

be tailored to the user’s needs.

2.1 Cognitive Robotic Systems

A number of cognitive robotic systems have been devel-

oped on different robotics platforms, based on logic pro-

gramming languages (e.g. Situation Calculus, Golog,

Prolog or Description Logic).

Carbone et al. [10] describe a model-based approach

to flexible behaviours considering the execution context

and the goals, and present the main functionalities of

a rescue robot system by considering HRI in the do-

main of the RoboCup Rescue competition. The main

advantages of their approach are: i) the system is self-

aware about the current situation, at different levels of

abstraction; ii) the operator can take advantage of the

control system they proposed in order to have a bet-

ter perception (using e.g. mapping, localization, learn-

ing) of the mission status. De Giacomo et al. [14] de-

fine a framework for reasoning about actions through a

knowledge-base system on a robot with reactive capa-

bilities. The reasoning capability is provided by Propo-

sitional Dynamic Logic (PDL). In another work, De

Giacomo et al. [15] present a logic framework for repre-

senting dynamic systems based on DL, which allows for

the formalization of sensing actions. Ferrein et al. [20]

propose a novel method of on-line decision theoretic

planning and execution on Golog, which is especially

appropriate for robotic applications with frequent sen-

sor updates.

Leimagnan et al. [34] present an architecture for the

decision layer of social robots. In particular, they focus

on the deliberative layer of the robot designed to share

space and tasks with a human, and to reason in a way

that takes into account human actions and decisions. In

the same direction is the work of Devin et al. [16]. They

propose a Human-Aware architecture for managing in-

teractions when the robot and the human share the

same goal and workspace. To this end, a Human-Aware

Task Planner has been used to define the sequence of

actions to perform and to decide whether and when the

robot should intervene. Bhat et al. [7] present a neural

architecture for goal-direct reasoning and cooperation

between multiple robots in an industrial task, where

two robots work together for assembling objects in a

shared workspace.

An interesting work from a different perspective,

that uses some concepts from neurobiology of the brain,

is proposed by Mohan et al. [42]. In their work they

present some preliminary developments on the DAR-

WIN robots in relation to their abilities to learn and

reason. The novelty on the proposed approach are: i)

the integration in the computational architecture of

some ideas of connecomics in order to go beyond the

current limitations of the state of the art machine learn-
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ing systems and ii) the incorporation of behavioural

studies based on how conceptual knowledge is organized

in the brain.

2.2 SAR for Therapies and Rehabilitation

The literature on assistive robots for individuals suffer-

ing from AD or MCI has not been fully investigated

in the past years and very little long-term research has

been done. Tapus et al. [51] focus on assistive human-

machine interaction methods with the purpose of facil-

itating research toward SAR systems capable of sup-

porting and assisting people in daily life. Although the

application domains are quite different (children with

Autism Spectrum Disorders, post-stroke rehabilitation,

elderly people with MCI or AD) there is an underlying

common need for a system capable of providing several

degrees of assistance, such as encouragement and feed-

back, toward the assigned task or program. Salichs et

al. [46] propose a social robot called Mini that is able to

administer one-to-one cognitive stimulation therapies

to older adults previously defined by caregivers. The

robot interacts with the user through different inter-

action modalities, such as screen, gestures and speech,

among all. In [44], Prula and collegues, empower the

robot Mini with a bioinspired decision-making system

to adapt the robot’s behaviour to different user’s ca-

pabilities with the aim to improve the overall user’s

experience. Fan et al. [19] develop a robotic system ar-

chitecture with the purpose of maintaining functional

abilities as well as socialization in order adults and

achieving long-term engagement. The system defines a

multi-user engagement-based mathematical models for

robot interaction. The validation of their system shows

that robot is positively accepted by older adults with

and without cognitive impairment and it can be used

for one-to-one and multi-user HRI. Tapus et al. [50]

focus on the study of the interactive and cognitive as-

pects of robot behaviour in an assistive scenario de-

signed for people suffering from MD and/or AD. The

robot acts as music therapist and tries to stimulate the

patient through active listening. The objectives are re-

call, memory and social interaction. McColl et al. [41]

present an assistive robot able of providing cognitive

assistance, through engagement and motivation, in or-

der to investigate user compliance during meal-time in-

teractions. Martin et al. [38] describe the use of a hu-

manoid robot as a cognitive stimulation tool in therapy

of people with MCI. They develop four types of roboth-

erapy sessions: physiotherapy, music, storytelling and

logic-language sessions. The preliminary results with

patients with moderate dementia show that their neu-

ropsychiatric symptoms tend to improve over those fol-

lowing classic therapy methods. A novel approach is

presented by Gnjatovic [23]. Here, he introduces a plat-

form that enables the caregiver to design a robot’s di-

alog behaviour. The presented platform is therapist-

centered and domain-independent. It enables the ther-

apist to dynamically model the interaction domain and

the dictionary, the interaction context, and the different

robot’s dialogue strategy.

2.3 Safety in HRI

The task of maintaining safety in HRI is multidisci-

plinary in nature, and researchers have approached it

in a variety of ways. We divide these approaches into

three categories, following the work of Lasota et al. [32].

2.3.1 Safety Through Control

The first category is safety through control. In that cat-

egory, the pre- and post- collision control methods are

investigated. This involves methods that limit parame-

ters, such as speed and related force of the robot, or pre-

vent collisions by defining safety regions or guiding the

robot away from humans. Broquere et al. [8] introduce

a motion trajectory planner to try to satisfy safety and

comfort by limiting acceleration and velocity in carte-

sian space. Laffranchi et al. [30] present an energy-based

control strategy to be used in systems in which the

robot works very close to or cooperating with humans.
Instead of planning trajectories, they propose a method

that limits the dangerous behaviour of the robot when

there is an impact, by bounding the energy stored into

the system to a maximum value. Heinzmann et al. [26]

bound the torque commands of a position control algo-

rithm to values that guarantee safety. These restrictions

limit the potential impact force generated in the case of

a collision with a person. Haddadin et al. [25] present a

lightweight robot designed for interactive and coopera-

tive tasks and they show how reactive control strategies

could have a significant effect to guarantee safety to the

human during the interaction. Lasota et al. [33] present

a real-time safety system capable to allow safe human-

robot interaction that works for very low distances of

separation between the two bodies, without the need

of robot hardware modification or replacement. Golz et

al. [24] devise a method to combine collision monitoring

and contact estimation from proprioceptive sensation in

order to develop a classification system to discriminate

between intended and unintended contact types.
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2.3.2 Safety Through Motion Planning

The second category of methods is safety through mo-

tion planning, in which safer planning is performed in

order to avoid possible collision. Sisbot et al. [48] de-

velop a framework for not only safe but also socially ac-

ceptable robot motions. To accomplish this, they con-

sider the human kinematics, vision field, posture and

the legibility of the robot’s actions. Another framework

developed by Sisbot et al. [49] combines various aspects

of the previous work, and incorporates considerations

for making motion more comfortable by limiting jerk

and acceleration. Mainprice et al. [37] propose a plan-

ner to generate collision free paths that are admisible

and understandable to the human. They use constraints

like human vision field and separation distance to drive

cost-based search in order to plan safe robot motion

within cluttered environments. Cambon et al. [9] aim

to create a task planner that is aware of the geomet-

rical constraints and the consequences of its actions in

the environment. They try to investigate the bond be-

tween task planning and manipulation planning that

allows for a more powerful treatment of geometric pre-

conditions and effects of robot actions in realistic envi-

ronments.

2.3.3 Safety Using Prediction

The third category is safety using prediction, which in-

volves the prediction of human actions and motions.

This method is particularly efficient when humans and

robots are working in close proximity, since it is very

important to forsee the actions and movements of hu-

mans to achieve safety in a dynamic HRI environment.

Dominey et al. [17] develop a method for reasoning

about the actions performed, which incorporates an

interaction history to facilitate anticipatory robot be-

haviour. Hoffman et al. [27] develop a framework that

utilizes a cost-based Markov process to anticipate hu-

man actions and select actions based on the robot’s

confidence in the validity of the prediction and risk.

Another method of encoding a human-robot collabo-

rative task with a probabilistic framework is explored

by Nikolaidis et al. [43]. They build on a prior investi-

gation, a human-inspired technique that evaluates the

convergence of a robot computation teaming model and

a human teammate’s mental model. Whereas the previ-

ous works focus on short-term prediction of actions, Li

and Fu [36] develop a framework for prediction of longer

duration actions by discovering three key aspects of ac-

tivity: causality, context-cue, and predictability. They

propose a method in which the observed action units

are used as a context to predict the next possible ac-

Fig. 2: A Wam arm2 is providing assistance to a user

combining speech and gestures based on his perfor-

mance while he is playing a sorting tokens exercise.
.

tion unit, or predict the intention of the whole activity.

Alami et al. [3] focus their work on the organization of

the robot decisional abilities and, in particular, on the

management of human interaction as part of the robot

control architecture. This architecture allows the robot

to accomplish its tasks and also produces behaviours

that support its engagement during the interaction with

the human. Ragaglia et al. [45] present a methodology

to evaluate the severity of an impact between a human

worker and an industrial robot. On the basis of this

severity evaluation, the robot executes a safety-oriented

strategy, ranging from speed reduction, protective stop

and trajectory variation. Kulic et al. [29] propose plan-

ning and control strategies relying on measures of dan-

ger during interaction. The level of danger is estimated

based on factors influencing the impact force during a

collision, such as the velocity, the distance between the

robot and the humans, and the robot inertia.

3 Cognitive System Framework

Our Cognitive System is embodied in a robot, which

is able to perceive, learn, adapt and react to user be-

haviours and the status of the exercise. During the ex-

ercise, and based on the patient’s actions, the robot

could assist and support the user combining gestures

and verbal interaction modalities. An example of sort-

ing tokens scenario set-up is shown in Figure 2. More

details about the sorting tokens exercise will be pro-

vided in Section 4.

In order for the Cognitive System to perceive and

monitor in real time the state of the board, we endow

it with a perception system based on a Kinect cam-

era. The different tokens are detected using classical

image processing techniques. We first detect the tokens

2 https://www.barrett.com/wam-arm/
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shape using Hough Transform, then the number, using

an Adaptive Template-Matching algorithm and finally

if we use colored tokens we check the result of the clas-

sification with color segmentation based on the value

of Peak Signal-to-Noise ratio (PSNR) and Structural

Similarity (SSIM).

As mentioned in Section 1, the Cognitive System in-

cludes two main components: an adaptive and a safety

module. The adaptive module is responsible to select

at each step of the exercise the most suitable level of

engagement for a specific patient (see Section 3.1). The

safety module defines a coordinated repertoire of safety

procedures that are selected and implemented to re-

spond to potential hazards through expected levels of

interaction with the user (see Section 3.2).

3.1 Adaptive Module

We represent the entire sorting tokens exercise domain

in Planning Domain Definition Language (PDDL 2.1).

With this formalism, it is possible to model a high-

level symbolic planning problem and separate it into

two major parts: domain description and related prob-

lem description.

In our previous framework [4], we already demon-

strated that the HRI problem can be effectively mod-

eled using PDDL, and that an off-the-shelf planner can

be used then to manage the interaction between the

robot and the patient. However, in this framework, the

robot can provide assistance only based on the levels

set up by the caregiver and it can switch from one level

to the other (more assistive) only for wrong moves of

the user. In addition, it does not take into account the

state of the user or the past interactions.

The extension we propose here is a step forward in

this direction: the adaptive module provides reasoning

capabilities to the Cognitive System, and is able to take

into account the user actions history and the status of

the exercise. We assume that the logic of the sorting

tokens exercise, that is the correct sequence of moves,

is available. This is not a limitation as it can be hard-

coded for simple exercises or, in general, obtained using

a game solver. Given that, the system knows the next

correct move, that we call subGoal (for example, move

the token 2 to location 3), the Cognitive System we

present here is in charge of deciding the robot-user in-

teractions that help the patient in doing this expected

move.

The different actions of engagement we consider are

described in Table 1. Four incremental levels of interac-

tion are defined (from the least to the most assistive):

i. Encouragement. The robot tries to persuade the

user using verbal interactions.

ii. Suggest a subset. The robot suggests a subset of

solutions, using speech and gesture it points to an

area of the board.

iii. Suggest a solution. The robot communicates ver-

bally the solution to the user and also points to the

correct location of the token.

iv. Fully assistive. The robot picks up the correct token

and offers it to the user so he has only to place it in

the correct location.

The selection of the correct level of engagement has

a key importance. Increasing the level could result in a

loss of engagement by the patient since the task will be

performed almost entirely by the robot. On the other

hand, the selection of a lower level of interaction, may

result in insufficient assistance by the robot. This could

mean the patient feeling frustration for not having achieved

the goal, or discouragement for having spent too much

time to complete it.

Once the user has performed a move, if it is a cor-

rect one, the robot will congratulate and engage him

again for the next move. Otherwise, the robot will tell

the user the problem and move back the token onto

the original location to restart. When the game is com-

pleted the robot greets the user giving him information

about completion time and number of mistakes.

Algorithm 1 defines the logics of the adaptive sys-

tem in order to select at each step of the brain-training

exercise the best action of engagement given a subGoal

sg (defined as the state where one token is replaced in

the correct position on the board), a planningDomain,

a cost vector A (that contains the value of each action

of engagement) and the current state s.

Since the problem of finding the best suited action

of engagement is defined as an optimization problem,

at each step t of the exercise, the planner finds the

path with the minimum cost that consists of selecting

the action of engagement e with the lower cost and

the waiting action for user move w (line 2). After the

execution (line 3 and 4), depending on the correctness

of the action performed by the user, the cost for that

engagement action is updated to learn its effectiveness

and adequacy.

The cost A′(e) of performing the action of engage-

ment e is defined as

A′(e)← A(e) + α · [C(e)+ γ ·R(e)−A(e)] (1)

where A(e) is the cost at step (t-1).

C(e) is defined as:

C(e) = E(e) +M(user) +M(robot), (2)
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Verbal/Gesture Engagement Level Robot Interaction Example of behaviour

Verbal Instruction Hi, I’m Socrates. I will play the exercise with you.
The goal is to place all the tokens in ascending order.
Please try to be as fast as possible. Let’s start!

Verbal Lev 1 Encouragement Hey try to move a token on the board.
I know you can do it!

Verbal Lev 1 Encouragement Remember all the tokens must be sorted in ascending order

Verbal Lev 1 Encouragement Learn from your mistakes ...
Try to move the correct one!

Both Lev 2 Suggest subset Hey, the solution could be one of these:
Px, Py, Pz. Try to move the token there!

Both Lev 2 Suggest subset Hey, try to follow my hand. The solution is between Px and Pz.
Now try to move the token there!

Both Lev 2 Suggest subset Hey, keep into account your mistakes ...
Try one of those: Px, Py, Pz.

Both Lev 3 Suggest solution The correct location for token Px is Lx.

Both Lev 4 Fully assistive This is the correct token, move it in location Lx.

Verbal Correct move Congratulations, you have made a successful move.

Both Wrong move Unfortunately, you made the wrong move.
I will move the token back to its initial location.

Table 1: Example of Robot interaction actions.

Algorithm 1 Adaptive Algorithm

1: # e ∈ engagement action, w ∈ expected user move
2: {e,w} = plannerCall(sg, planningDomain, A, s)
3: engageAction(e)
4: observePatientMove(w)
5: if moveIsCorrect() then
6: update R(e) . Use Eq. 3
7: else if moveIsNotCorrect() || noMove(t) then
8: update R(e) . Use Eq. 4

9: update C(e) . Use Eq. 2
10: update A(e) using C(e) and R(e) . Use Eq. 1

and represents the total time related to an action of

engagement e (line 9).

This value is obtained summing up: the time re-

quired for an engagement action to be performed E(e),

that is variable and depends for example on the modal-

ities of interaction reported in Table 1 (only speech like

Lev 1 or speech and gestures like Lev 2, Lev 3 and

Lev 4), the reaction time of the user to move the token

M(user), that is also used in the report to the caregiver

to analyze the user performance, and the action time

to move back the token in the original position by the

robot if a token has been moved to a wrong location

by the user M(robot). This last variable is actually al-

most a constant and can be set to a defined value at

the beginning of the game.

An important part of the adaptive module is the

function R(e) which is the update of the reward of the

action of engagement e after the user makes a move.

That value will be treated as a positive reward if the

user makes a successful move (line 6):

R(e) = −[(n blocks left/attempts)] · (1−G(e));

(3)

or on the contrary, as a penalty, if the user makes a

wrong move (line 8):

R(e) = [(1 + (n blocks done)) · (attempts)] ·G(e)

(4)

where G(e) ∈ [0, 1] is a weight relative to an action of

engagement, attempts is the number of attempts for

placing the correct token on the board, n blocks left is

the number of tokens that still have to be moved in the

correct position on the board and n blocks done is the

number of tokens already placed in the correct position

on the board. The higher the level, the higher should be

G(e). Note that difficulty of the exercise changes over

time: at the beginning there are more tokens to move

so it is harder for the user to guess the correct move,

whereas at the last only move a single token is available.
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Also, the Cognitive System should consider differently

a failure after a simple engagement action (Lev 1 in

Table 1) or after a more helpful engagement (Lev 3/4

in Table 1). G(e) is a way to account for the amount of

assistance the user receives.

For example, suppose the robot engages the user

providing him a suggestion (Lev 2 Table 1) if the user

makes a correct move, R(e) is equal to: -(5/1)*(1-0.5)

= -2.5, where n block left is 5, attempts is 1 and G(e)

is 0.5. Suppose now we are at the very end of the game

and the user makes a correct move after an engage-

ment action e (Lev 2 Table 1), the reward now will be

-(1/1)*(1-0.5) = -0.5. So the lower the level of engage-

ment and the number of attempts and the higher is the

number of tokens to place on the board the higher will

be the reward.

On the contrary, suppose the robot engages the user

providing him a suggestion (Lev 2 Table 1) but this time

he makes a wrong move, R(e) is equal to: (1*1)*(0.5)

= 0.5, where n block done is 0, attempts is 1 and G(e)

is 0.5. Hypothesize now we are at the very end of the

game and the user makes a wrong move after an en-

gagement action e (Lev 2 Table 1), the penalty now

will be (5*1)*(0.5) = 2.5. So the higher the level of en-

gagement, the number of attempts and the number of

tokens placed on the board, the higher the penalty will

be.

Note that we have not interpreted yet the signifi-

cance of the parameters α and γ in Equation 1. It is

done now that we have described the rest of the com-

ponents. The γ value defines how much influence is as-

signed to the estimation of future action for a defined

level e. A factor of 0 will make the Cognitive System

evaluate the cost of the function mainly based on C(e)

that is the total time related to an action of engagement

e, while a value of 1 will make the system considering

the overcome of the previous actions to estimate the

next action for level e. The α value can be considered

a learning factor and determines to what extent the

newly acquired information will override the previous

one. A factor close to 0 will make the Cognitive System

not use any information about the outcome of the pre-

vious actions of engagement e, while a value close to 1

will make the Cognitive System give more importance

to the most recent action.

3.2 Safety module

In order to enable a robot to exhibit competent be-

haviour, with the aim to avoid unwanted physical in-

teractions with humans, we introduce a Safety Module.

The presented module has been designed as generic as

possible in order to be potentially extended to any kind

of users. However, it is worth highlighting that some be-

havioural characteristics, specifically for patients with

dementia, have not been integrated yet. For instance,

frustration, confusion, anger, overbalancing, as well as

other risks due to the complex clinical needs of the pa-

tients.

This module has a monitoring loop to ensure that

the dangerous behaviours of the user can be detected.

They can be detected at two different times:

– At planning time: the safety problem is detected be-

fore starting the engagement action. The Cognitive

System will try to persuade the user, or alterna-

tively, change the safety of its own actions as re-

ported in Table 2.

– Execution time: the safety problem is detected while

the robot action is being executed. The robot has to

possibly stop immediately the execution and react

to the dangerous event. We consider the following

robot actions: warn the user about his behaviour,

move to a safer position, change velocity and accel-

eration of the trajectory in order to be safer in case

of collision, or stop.

The robot should ensure safety compliance in its actions

and motion. To this end, a compliant feed-forward con-

troller [11] is used to guarantee a safe contact in case it

happens. It works as follows: an inverse dynamic model

of the robot had been learned and implemented in or-

der to exert the minimum necessary torque to follow the

desired motion. Knowing the dynamics of the robot al-

lows to have a small PD gain term to compensate for

model errors and deviations, even detecting contact if

necessary as reported by Colome et al. in [12]. This
control scheme results in a safe behaviour with low stiff-

ness control, while keeping a good positioning precision.

Moreover, the controller can then slow down or even

stop motion and switch to gravity compensation mode

if there is a detected contact and/or a large deviation

from the desired position.

Figure 3 shows the diagram of the safety module.

The safety module integrated in our Cognitive System

monitors the patient behaviour. When an anomalous

behaviour of the user is detected, the robot assigns it a

level of safety.

We define a safety value SF (t, a) used to evaluate

the next action of the robot, when an unsafe behaviour

is detected. This value is defined as

SF (t, a) = SF (t− 1, a) + θ·
[SF (t− 1, a) · (t elapsed+ SF level)]

(5)

where SF (t− 1, a) is the value of safety at time t− 1,

SF level ∈ {0, 1} and can have different values based
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Fig. 3: Macro blocks of the safety module. Highlighted

in green the selected events triggered after an haz-

ardous action has been detected: as soon as a danger-

ous event is detected (Planning Time), based on its risk

level (Medium level), the safety algorithm computes the

value SF and based on that, the system will determine

the safety action to perform (e.g. ”Your behaviour is

too risky, from now on I won’t support you anymore

with gestures”).

on the corresponding safety level detected (see Fig-

ure 4); and t elapsed is the time the user spends in

the unsafe zone. θ determines how fast to switch from

one action to another. In other words, with that pa-

rameter we can define the level of severity of the robot.

If the computed value is low, the robot will try all the

possible safety actions before stopping the exercise and

contacting the caregiver. On the contrary, if the value

of θ is high, then the robot will exhibit a more conser-

vative and protective behaviour and will react to the

patient’s behaviour with safer actions (e.g. no actions

of persuading the user, and after the first unsafe event

turn the robot to not use anymore gesture, or back to

a safe position). We will evaluate the effect of different

values of θ in Section 5.

The physical meaning of the three safety levels de-

fined is shown in Figure 4. We defined three different

levels of safety: low, medium and high. The first level

is enabled when the user is too close to the board (Fig-

ure 4a). The medium level is activated when the user

enters the safety zone and he is on the planned motion

trajectory of the robot (Figure 4b). The last level is

the most dangerous and is activated when the user is

on the robot’s motion trajectory and they are so close

that they can collide (Figure 4c).

3.3 Implementation Notes

The low-level robot movements, as well as the verbal

sentences, are programmed using Robot Operating Sys-

tem (ROS). The verbal sentences have been reproduced

writing a ROS wrapper for Google Translator. In this

way, any language supported by Google Translator can

potentially be used to reproduce the robot’s voice. A

repertory of sentences for each robot action (some of

them listed in Table 1) has been created in order to

provide the final user with the feeling of interacting

with a robot that exhibits more varied behaviours. At

the moment, sentences are selected randomly.

The actions that involve gestures (as reported in Ta-

ble 1, second column) correspond to engagement levels

2, 3 and 4. The robot is provided also with an additional

action, move token back, that consists to move the token

back to its original location when the user’s movement

is not the correct one. Actions Fully Assistive and move

token back require a robot’s additional capability, such

as grasping with a certain degree of accuracy a token.

Robot motions are generated using Dynamic Move-

ment Primitives (DMP) at a joint level, in which the

robot’s trajectory is computed with a second order sys-

tem. In order to have a pure damped attractor to the

goal the shaping function is set to 0 [28].

The three different safety levels, defined in the pre-

vious section, can be computed automatically based on

the distance of the user’s hands to the board. We de-

fined a minimum and maximum distance range for each

level when the vision system is used and the value is

normalized considering the minimum and the maximum

distance allowed. One of the most promising alterna-

tives we have evaluated is using OpenPose [47]. Open-

Pose is a real-time system to detect the human body,

including hand and facial key-points on single images.

The superposed skeletons on Figure 4 are the represen-

tation of OpenPose estimations. As it is possible to note

in Figure 4b and Figure 4c, although the performance

of OpenPose is really impressive in general scenarios,

we faced problems in our setup most of the time due to

occlusions of the user’s hands (Figure. 4b left hand and

Figure 4c right hand).

At the moment we do not attempt to detect auto-

matically these levels and they are triggered manually

by an operator. We are focused on evaluating the re-

active behaviour of the robot when an unsafe event is

triggered and how the events of unsafe were detected is

out of the scope of this paper.

The selection of one of the safety actions listed in

Table 2 is based on the value SF . In other words, for

each safety action in the table we define a range under

which that action will be triggered. The switch from
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(a) Low level (b) Medium level (c) High level

Fig. 4: Three different levels of safety. The virtual red box shows the safety zone, inside which the robot is called

to intervene in order to ensure safety for the user. (a) The low level of safety is active since the user hands are too

close to the board. (b) The medium level of safety is detected since the user is inside the safety zone but quite far

from the planned robot motion trajectory. The robot can not perform any kind of actions until the user does not

remove his hands. (c) The user is inside the safety zone and on the robot motion trajectory. The user is so close

that they can collide hence the robot stops immediately its motion and reacts taking into account the safety value

SF (Equation 5).

Safety action
Unsafe action

timing
Safety Preference

Persuade user planning 1
Only verbal engagement planning 2

Abort game and contact caregiver planning 3
Persuade user execution 1

Reduce acceleration/velocity execution 2
Back to a safe position execution 3
Gravity compensation execution 4

Abort game and contact caregiver execution 5

Table 2: List of robot safety actions.

one action to the other is mainly controlled by θ. For

example, in the case of unsafe action at planning time,

the ranges for each action could be defined as follows:

– 0-0.5 for Persuade user action
– 0.5-0.8 for Only verbal engagement action

– 0.8-1.0 Abort game and contact caregiver action

Moreover, as in the case of the engagement actions (Ta-

ble 1), the same action can be repeated several times in

different ways, in order to provide the user the feeling

that the robot is understanding his action and at the

same time to gain trustfulness to keep him engaged in

the game.

As shown in Table 2, if the returned safety value is

very high (meaning the cognitive system has no safety

actions to propose), independently of when the haz-

ardous event is detected, as last resort, the robot will

abort the game and contact the caregiver, asking for as-

sistance (safety preference 3 for unsafe action detected

at planning time and safety preference 5 for unsafe ac-

tion detected at execution time).

It is important to stress what we already mentioned

before (Section 1) about our approach to face risky

events. Although path re-planning and find alternative

trajectories is a valid strategy, we believe that in our

scenario they are not so effective because of the con-

straints we have in time and space. In time, as the task

is to cooperatively complete the game in as little time

as possible, it is better to devote the time interacting

with the patient than spending time re-planning tra-

jectories. In space, as the working space (the board) is

small, the number of different trajectories for grasping

a token avoiding the collision is limited and thus usually

a valid trajectory cannot be found (space constraint).

Differently our approach is to persuade the user to

engage in a better cooperation using symbolic high-level
planning to model human-robot interaction. Even when

an hazardous event is detected several times, the Cog-

nitive System always attempts to find a different way

to convince the user in order to come back to a safe

behaviour and continue the game. In addition, it is im-

portant to note that both modules cooperate in main-

taining the state of the patient and the overall episodic

memory. As reported in Table 2, there is one safety ac-

tion that can affect the robot’s adaptive behaviour. Yet,

if the safety module decides not to support anymore

the user with gestures, then in the next interaction the

Cognitive System will provide the user with only verbal

assistance. This additional level of safety will affect the

robot’s interaction modalities and thus the robot won’t

move anymore its arm either in the case of move token

back action, when the user makes a mistake. In that

case, the robot tells the user to move the token back to

its initial location and it will not provide any further

assistance until that action from the user is performed.

In all other circumstances in which the robot stops its
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action for a safety reason, the system retries the same

assistive action as soon as safe conditions are restored.

4 The Sorting Tokens Exercise

The proposed brain-training exercise has been designed

for people with AD, and in general for different stages

of MCI, in collaboration with Fundació ACE. Fundació

ACE is a research center specialized in the treatment

of patients affected by AD and other dementias, whose

therapists, psychologists and neurologists support us

providing medical and clinical perspective to our work.

Recent studies suggest that cognitive exercises in

the form of games-like can lead to improvement [40], [31],

[5] or slow down decline [21] of a number of cognitive

functions, such as attention and memory capabilities.

We use SKT as an inspiration for designing the

proposed exercise called sorting tokens: short, simple

and play-like. SKT is only occasionally administered

for assessing patients’ cognitive impairment of memory

and attention. In contrast, our brain-training exercise

can be potentially administered frequently for cognitive

training, as well as for evaluation. The exercise has been

designed to train patients’ cognitive skills (memory and

attention) and motor functions (grasping) [13], as well

as to evaluate their performance over time.

The objective of sorting tokens is to sort numbered

tokens in ascending/descending order on a board, in the

shortest time possible while minimising the intervention

of the robot. All the tokens have to be sorted by the pa-

tient (thus stimulating their cognitive and motor skills)

while the robot only provides assistance. To this end,

every time the user makes an error, the robot moves

the token back to its initial location and provides one

of the levels of engagement defined in Table 1.

It is out of the scope of the current work to design

a robotic system able to administer autonomously the

full SKT since that would be extremely difficult. On

the contrary, we propose an exercise, consisting of a

board and tokens, which can be easily modified to have

different levels of difficulty and where the robot can be

employed by a caregiver to act as an assistant.

It is worth mentioning that although this paper is

mainly focused on the loop of interaction between the

robot and the patient, in the general approach we rely

heavily on the caregiver input (what we call the first

loop of interaction) [4]. Thus, the presented work has

been designed taking into account that caregivers and

patients with dementia agree in receiving assistance

from a robot [2]. To this end, we build a robot sys-

tem from specific caregivers’ need: provide more effec-

tive cognitive therapies in terms of quality and quantity.

Quality, since we aim to provide the caregiver with in-

teresting output data, like the number of mistakes, reac-

tion time, levels of assistance provided, disengagement

occurrence, among others. All these data are impossible

to collect during a usual therapist-patient interaction.

Quantity, since the robot is able to administer as many

exercises as the caregiver sets over time. In this way, the

caregiver can potentially set multiple robots and only

monitor them while they are administering the exercise

to several patients simultaneously.

Hence, we envisage our system as an additional tool

to increase the caregiver effectiveness and not as their

replacement.

5 Experiments

The brain-training scenario used to evaluate the Cog-

nitive System has already been presented in Section 4.

Five numbered tokens were arranged randomly on a

row on the board. The goal was to place each token in

ascending order in the correct location on the board as

fast as possible.

As we mainly want to validate the system capabil-

ities, for a deeper and complete analysis we performed

most of the experimentation in simulation. The main

reasons were efficiency and data analysis. To find the

value of the involved parameters and the strategy (se-

quence of engagement actions) that performed better,

it requested several tests and efforts to understand the

sensitivity of the parameters. A simulation environment

reduced the computational and the execution time and

increased the number of possible trials for a more com-
plete evaluation of the results. With the optimal setting,

we aimed to validate the effectiveness of our Cognitive

System using a real robot manipulator and able users.

We recruited 5 participants among students and re-

searchers working in our laboratory with a background

in robotics and between the ages of 22 and 40. We asked

them to play several times with the system and behave

differently in order to evaluate the overall reliability of

the entire system.

5.1 Simulated Experiments

We performed three different simulated experiments:

the first to assess the system response with respect to

different user behaviours, the second to evaluate the

influence of α and γ (see Equation 1) and the last one

to tune the θ (see Equation 5) parameter of the safety

module.
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Patient Model Errors Cumulative Cost Total Time
Very mild dementia No 27.45 25 sec

Mild dementia Init 100.45 90 sec
Mild dementia End 230.1 105 sec

Severe dementia Many 406.2 145 sec

Table 3: Simulation results with different patients
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Fig. 5: Analysis of the cumulative cost function for four

different patient behaviour (defined in Table 3). Each

exercise is composed of 5 different moves. Marks ex-

actly on a number (1 to 5) correspond to correct moves.

Marks between two correct moves correspond to failed

user attempts.

5.1.1 Evaluation of Robot Adaptability

For the first experiment we defined four user-profiles

corresponding to users with different levels of impair-

ment and, consequently, with different capabilities to

complete the sorting tokens exercise. We consider 4 dif-

ferent patients (see Table 3): i) patient with very mild

dementia who could play almost all the exercise with-

out any additional support except the encouragement,

ii) patient with mild dementia that made mistakes in

the early stages, iii) patient with mild dementia who

made mistakes at the very end, and iv) patient with

severe dementia that randomly guessed the moves. To

simulate a user profile, a sequence of predefined moves

is randomly generated, and defined according to the

level of cognitive impairment. Moreover, the variables

in the global cost function were initialized and com-

puted as follows: M(robot) was set to 0 for the sake

of simplicity; E(e) was set to a constant based on the

collected measurements with the robot (3s, 8s, 10s and

15s for Lev 1, Lev 2, Lev 3 and Lev 4, respectively) and

M(user) was randomly generated.

For a more comprehensive evaluation, it is impor-

tant to mention that the values of α = 0.8 and γ = 0.6

have been selected in accordance to the experiments we

will propose in Section 5.1.2 in which we evaluated the

influence that these two parameters have on the selec-

tion of the actions of engagement.

For each user profile, we run 20 exercises and sum-

marize the mean of the numerical results in Figure 5.

On the x-axis, we defined the number of correct moves

performed from the user, on the y-axis the cumulative

cost computed with our adaptive algorithm. The marks

on each line define the attempts of each user during

the exercise. The number of marks between one correct

move to the other defines the number of attempts of

the user to guess the correct move. As can be observed

comparing the evolution of the four lines, the Cogni-

tive System correctly selected different behaviours for

each one of the different patients to provide them with

proper assistance in order to complete the exercise. Ob-
viously, this had a considerable impact on the cumula-

tive cost but also on the completion time (Total time

in Table 3).

Overall, it can be observed that in the early steps

(to reach the correct token 1 and 2) the cumulative cost

has not many variations for any of the patients espe-

cially for the ones that make a wrong move. The reason

is that the cost of performing several engagement ac-

tions at this early stage (Equation 3) combined with the

penalty of the patient doing wrong moves (Equation 4)

is balanced by the difficulty of the brain-training exer-

cise. On the contrary, the value of the cumulative cost

has a considerable variation at the end of the exercise

(to reach token 4 or 5) because failures at the end are

penalized as the exercise becomes easier.

The red line (dot mark) shows the plot relative to

the user that had very mild dementia and performed

the correct move at every step t. The line is almost

flat, meaning the robot kept the level of engagement

to the lowest one and only encouraged the user (Lev

1) to be as fast as possible in solving the game. It is

worth to note that even in this situation, a different

action of engagement can be performed by the robot.

In fact, even though the user makes the correct move,

if the user takes too much time to perform a move, at

the next step, the robot can decide to furnish him with

more assistance in order to speed up the game.

In the second and third use-cases since the simulated

patients had mild dementia, their behaviour could be

very different based on the mental impairment level.

In the second use-case, the user can play the correct

moves with confidence only when the exercise became

easier, that happened after some tokens were placed

on the board with the support of the robot. The blue
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line (square mark) describes the interaction over time

of that patient. As can be noted, the user’s mistakes

did not affect significantly the cumulative cost function

since they were performed at the very beginning. The

increasing of the curve at the end was mainly due to the

changes of engagement levels since the user made few

mistakes, thus the cost of performing a more assistive

and effective action of engagement had an impact on

the cost function.

In the third use-case, we assumed the user could

perform the correct moves in the very early stages and

then started losing attention. Line magenta (o mark)

shows this trend. At the beginning, the robot kept the

engagement level at the lower level (Lev 1) since the pa-

tient performance in these steps were good enough to

decide to switch to a higher level of interaction. After

few steps, the patient started making wrong moves, in

that case, the robot penalized the user actions, taking

into account the number of the tokens left on the board

and the number of attempts for each token, as defined in

Equation 4. Moreover, at each user mistake, the robot

could decide to change its level of interaction toward

one more suitable that can unlock the current state of

the user but at the cost of performing a higher level

of engagement. The sudden rise up of the curve after

the user moved the third token in the correct position,

shows that behaviour. It is worth highlighting how al-

though the total number of mistakes were almost the

same for use-cases 2 and 3, the time to complete the

game and the cumulative cost value were considerable

different (Table 3). This is mainly because making mis-

takes at the beginning or at the end of the game had

a completely different impact on the cumulative cost

(Equation 4).

The last experiment involved a patient with severe

dementia that almost randomly guessed the correct move

when no assistance was provided by the robot. As it is

showed Figure 5 (green line triangle mark), the robot

tried to adapt its behaviour to the patient’s mistakes

after few steps and chose the most suitable level of en-

gagement, according to Equation 1, that might help the

user to guess the correct move. The number of attempts

as well as the number of mistakes impacted on the cu-

mulative cost, this is the reason why the curve increased

especially in the last stages.

5.1.2 Evaluation of α and γ

In the second experiment, we tried to get an intuition

about the influence of α and γ on the selection of the en-

gagement actions by the robot. As already explained in

Section 3.1, γ defines to what extent the reward/penalty

affects the selection of the next action of assistance.

Step Token From To
1 P2 L8 L1
2 P3 L7 L1
3 P1 L10 L1
4 P2 L8 L3
5 P4 L6 L2
6 P2 L8 L2
7 P4 L6 L4
8 P3 L10 L3
9 P4 L6 L5
10 P4 L6 L4
11 P5 L9 L5

(a)

Step Token From To
1 P1 L10 L1
2 P2 L8 L2
3 P4 L6 L3
4 P5 L9 L3
5 P4 L6 L3
6 P3 L7 L3
7 P5 L6 L4
8 P5 L9 L4
9 P5 L9 L4
10 P4 L6 L4
11 P5 L9 L5

(b)

Table 4: In Tables a and b, we list the sequence of

actions performed by two different users. The correct

moves are highlighted in gray. In Table a, the user is

able to perform the correct moves mainly at the begin-

ning, while, in Table b, the user performed the correct

moves mainly at the end of the game.
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Fig. 6: Analysis of α and γ with a patient that makes

mistakes at the beginning (the sequences of user moves

are reported in Table 4a).

While α rules how much influence is given to the new

information acquired. We assumed to have two differ-

ent users as in the previous experiment, the first one

that made mistakes at the very beginning of the game

and the latter that made mistakes at the very end (as

reported in Table 4). The objective was to evaluate in

both use-cases the robot actions of engagement when

α and γ are 0.2, when α and γ are 1.0 and when α

is 0.8 and γ is 0.6. These last values were selected to

be used in all the other experiments since we believe

they achieved a reasonable trade-off between two op-

posite robot behaviours that we will show in the next

paragraphs.

In the first case (Table 4a) as it is possible to notice

in Figure 6, under γ = 0.2 and α = 0.2 (blue line plus

mark) the robot had a conservative strategy, that means
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Fig. 7: Analysis of α and γ with a patient that makes

mistakes at the very end steps (The sequences of user

moves are reported in Table 4b).

it needed to fail several times on the same level before

switching to the next one. That kind of behaviour is

shown in the first three steps, in which, even though

the user failed, the robot still tried to re-engage him

with the same level of assistance. The reason is evident

if we look at Equation 1. Setting low values for γ and α,

caused the Cognitive System to consider very little the

information relative to the action outcome (Equations

3 and 4) and the global cost of the action (Equation 2).

A completely different behaviour of the robot was ob-

tained with γ = 1.0 and α = 1.0. The robot was more

reactive on each step and, as soon as the user failed,
it shifted to the next level of engagement. Another im-

portant aspect is the memory of the previous action

outcome. For each step in which the user succeeded (he

made the correct move), the robot tried to re-engage

him with the same level, because it was efficient and

rewarded from the algorithm (steps 3-4, 6-7) and only

in the last step it decided to provide less support since

the game was easier. The main difference with the for-

mer case (α=0.2 and γ=0.2) is that now, the system

gave more importance to the outcome of the most re-

cent actions and thus it was able to immediately react

to them. As a final test, we evaluated the robot actions

of engagement when γ = 0.6 and α = 0.8. As can be

seen in Figure 6 (green line circle mark) the robot be-

haviour can be considered a balance between the two

very different strategies presented in the previous tests.

On one hand, the robot tries to provide coherent assis-

tance to the user changing from one level to the other

according to his moves. On the other hand, it attempts

to challenge him by not providing too much assistance.

In Figure 7 we made the same analysis but with a

different patient profile. Here the patient made more

mistakes in the final steps as reported in Table 4b.

In this situation the behaviour of the robot, when

γ = 0.2 and α = 0.2 was a bit different (blue line dot

mark). The main reason behind a different behaviour

is that now the robot, in contrast to the previous case,

made the correct moves in the first steps (step 1, 2). It

can be noted that even though it considered very lit-

tle the previous action outcome, in that specific case,

because the first level of engagement resulted in a suc-

cessful strategy for the first two moves of the user, the

robot adopted it as a preferred action even in the next

steps (4, 7, 8). The main reason is straightforward if

we look at Equation 3. If the robot action of engage-

ment is successful means the user perform the correct

move, thus the system will reward it with a very high

value due to the higher complexity of the game at the

beginning.

On the contrary, the behaviour of the robot when

γ = 1.0 and α = 1.0 it was as we expected. After the

first two successful engagements at step 1 and 2, the

robot furnished again the same level (Lev 1) but the

user at this step made the wrong move. Hence, at the

next step, it decided to provide him with a higher level

of assistance (step 4, Lev 2). It is noteworthy that even

though at step 3, the robot assistance was not helpful

to the user, it still remains the preferred one. This is be-

cause Lev 1 was very effective at the very first steps and

the adaptive function (Equation 1) tends to promote it

with respect to the others. As in the previous case, as

soon as the robot found a successful engagement ac-

tion it maintained it for the next user move (step 6-7).

While the user performed a sequence of wrong moves

(step 7-8-9-10), the robot tried to switch from one level

of engagement to the other, but after several unsuc-

cessful attempts (trying again Lev 3 that was success-

ful at step 6) it decided to move back to the level that

had performed better so far; this explains why it came

back to engagement level 1 at stage 10 and 11 in the

last two moves. As in the previous use-case, we ana-

lyzed the robot action of engagement when γ = 0.6

and α = 0.8. The robot behaviour was, as expected,

a trade-off between the two opposite behaviours pre-

sented before. Instead of proposing the same action of

engagement several times (γ = 0.2 and α = 0.2) or

engaging the user immediately with a higher level of

assistance (γ = 1.0 and α = 1.0), its behaviour seemed

to be a balance between these two strategies.
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Fig. 8: Analysis of θ in Equation 5. To each differ-

ent range of value of θ corresponds different robot be-

haviour and consequently different safety actions.

5.1.3 Evaluation of the θ Parameter

In the third experiment, we evaluated the effectiveness

of our safety module. The θ parameter defines the dif-

ferent behaviours of the robot when an unsafe action of

the user is detected. In Figure 8 we show how a differ-

ent value of θ has a significant influence on the choice

of a defined safety action. On the x-axis, we define the

normalized value of summing up the elapsed time t plus

the level of safety. On the y-axis, the safety value SF

is normalized between 0 and 1. The initial value of SF

at time t=0 was set to 0.1.

For completeness, it is worth to mention that each

action has a subset of possible sub-actions. For exam-

ple, with the “persuade user” action, according to the

number of times that action is requested, the safety

module will produce a different sentence based on the

previous failure/s. A sentence could be generated with

a hint about the time elapsed as well as the number of

tokens left or the user performance at that time.

Another example is the “reduce acceleration/velocity”

action. In this case, if the action is called more than

one time, the robot will further decrease its arm speed

keeping into account the previous failure/s.

It can be observed, from the plots in Figure 8, that

for low values of θ (< 0.25), SF is quite small. In this

case, the safety module requires several attempts by

the robot to switch to a safer action. For instance, for

θ=0.10, the robot chose a safety action several times

and only at the very end, it moved to safer behaviours,

such as moving the arm back to its initial position or

in gravity compensation. In spite of this, its behaviour

is limited to a fraction of the available actions defined

in Table 2. This is because the maximum value of SF

is 0.3. Although the strategy to avoid higher levels of

safety could help to save time, sometimes it doesn’t pay

off in terms of persuasiveness and some user’s behaviour

could not be managed with the adequate safety action.

On the other hand, a θ value greater than 0.4, signifies

a more safety assertive behaviour, in which the robot

switches to a safer behaviour very rapidly, only trying

to persuade the user few times. For instance, in the case

of θ equal to 0.6, for values of (t elapsed + SF level)

greater than 0.65, corresponds SF equal to 1 (high-

est safety preference in Table 2). This means that, the

safest possible action was performed by the robot, such

as to contact the caregiver to ask for assistance. In

conclusion, we found that a value of θ between 0.22

and 0.28 was a good trade-off in terms of robot actions

severity. Hence, we used that value in the real experi-

ments.

5.2 Real Robot Experiment

The simulations performed in the previous sections can

be used to set up the α, γ and θ parameters, as well as

the initial cost of performing an action of engagement

A(e), if the user profile is given. We envisage that this

is a piece of information that the caregiver can provide,

as suggested in our previous work [4].

Here we validate our approach using a real robot and

show safety-critical situations. Since we administered

the test to able users, at this stage we did not include

the caregiver in the loop and we set up the initial values

of vector A(e) equal to 0. Moreover, according to the

results of the simulated experiments, we set α, γ and θ

equal to 0.8, 0.6 and 0.24, respectively.

At the beginning the robot explained the rules of

the exercise to the user, alerting him to not interfere

with its actions for safety reasons. Once the exercise

is running, the robot starts to interact with the user

using the lower level of engagement (Lev 1 as reported

in Table 1). As soon as the user makes a wrong move

the Cognitive System adapts its behaviour eventually

changing to a higher level of interaction (Lev 2, Lev

3, or Lev 4). We provide a video 3 showing one of the

executions where can be seen that the system behaves

as expected and adapts to the user.

As practical lessons learned, we use a two-finger

gripper to manipulate the tokens that sometimes may

fail because the positioning relies on an external camera

and slight calibration errors may introduce error.

During the experiment, the safety module is called

on purpose several times to evaluate how it adapted

3 https://youtu.be/xtS1yDIyrmQ

https://youtu.be/xtS1yDIyrmQ
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(a) (b)

Fig. 9: Example of safety action: back to initial position.

(a) The robot detects a wrong move of the user and

picks the token to move it back in the original location,

but it stops its movement because the user is inside the

safety zone. (b) The robot comes back to a safe position

and waits until the safety zone is free again.

(a) (b)

Fig. 10: Example of safety action: gravity compensa-

tion. (a) The robot is suggesting a subset of solutions

and pointing them on the board, until the user moves

his hands on the board. (b) The robot switches its arm

in gravity compensation since the user behaviour was

too risky.

in time to show the difference, in term of actions per-

formed, when the event was detected at planning or at

execution time.

The robot made several attempts to persuade the

user through predefined verbal sentences, with the aim

to quickly restore a safe context. When the user be-

haviour started to be too risky over time, it decided to

perform safer actions. In Figure 9, the robot detected a

wrong move from the user and tried to move back the

token to the original location. While it was performing

its movement (Figure 9a), the user moved his hands

inside the safety zone. The robot stopped its arm and

announced to the user that it moved back to a safety po-

sition (Figure 9b). The robot started playing again the

exercise, as soon as the safety conditions were restored.

During the brain-training exercise it still tried to sup-

port and help the user to behave in a safe manner, since

with his behaviour, he was putting himself in a poten-

tially dangerous situation as reported in Figure 10a. At

that moment the robot put its arm in gravity compen-

sation (Figure 10b), to avoid that any movement per-

formed at execution time could cause physical contact

with the user. Although our safety system is conceived

to avoid any kind of physical contact, it could happen

that the user touches accidentally or on purpose the

robot arm; in this case, having an action such as grav-

ity compensation should help to prevent injuries.

We provide a video 4 showing an execution where

all safety modes executed by the real robot can be ob-

served.

6 Conclusions

In this work, we aim to propose a robotic system as a

tool that can be employed by caregivers to administer

brain-training exercises to patients affected by different

forms of dementia. In the proposed scenario, the user

is called to solve the exercise of placing n tokens in as-

cending order on the board in the shortest possible time

with the support and assistance of a robot. We present

a new Cognitive System Framework by extending our

previous HRI framework [4] adding two components: an

adaptive module, that selects the most suitable level of

engagement according to the user actions and a safety

module that allows the robot to monitor the user per-

formance and react when a hazardous event is detected.

We focus explicitly on representing the key con-

cepts for specifying the adaptive and safety-aware con-

trol modules, like the definition of the levels of engage-

ment combining verbal and gesture communication and

the safety-relevant events, which are all formalized in

symbolic high-level planning language.

In order to dynamically adapt to the behaviour of

the user, we have developed two algorithms. The adap-

tive algorithm, which is able to learn and adapt the

robot engagement actions to the user behaviour in or-

der to provide enough assistance to complete the game.

The safety algorithm, which constantly monitors the

user and selects the most appropriate action to react to

an unsafe event.

We showed how the modules can be integrated into

our HRI framework, giving additional and essential func-

tionalities to the whole system. Finally, in Section 5 we

evaluated our modules on simulation, focusing mainly

on the adaptability of the system to different patient

use-cases and on validating the coherence of the safety

module. Then we performed some experiments in a

real scenario with able users to validate the overall ap-

proach.

Before the system can be evaluated with real pa-

tients, some engineering work has to be done in or-

der to improve the robustness of the perception system

4 https://youtu.be/pQ-RM_l1YkI

https://youtu.be/pQ-RM_l1YkI
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and the overall time response of the robot, mainly in

the speed used to perform some of the trajectories. A

further improvement to increase user acceptance and

engagement over time will be also explored. A ready-

to-use prototype would involve a cheaper and more ap-

pealing robot embodiment compared to the one used in

this work.

Since safety is really important, especially when a

robot interacts with patients s, our next goals are: on

one hand, to extend the safety module in order to take

into account other risks that can derive from the clinical

needs of the patients with dementia; and, on the other

hand, to evaluate the behaviour of the robot when a

physical contact is detected, since sometimes we can’t

avoid it. The idea is to extend the current safety module

with additional functionalities that can manage these

other kinds of unsafe events. For instance, using a force

sensor we can measure how much effort the user is

applying on the gripper and trigger several robot be-

haviours.
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