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Abstract
We present a comprehensive framework for studying and leveraging morphological symmetries in robotic systems.
These are intrinsic properties of the robot’s morphology, frequently observed in animal biology and robotics, which stem
from the replication of kinematic structures and the symmetrical distribution of mass. We illustrate how these symmetries
extend to the robot’s state space and both proprioceptive and exteroceptive sensor measurements, resulting in
the equivariance of the robot’s equations of motion and optimal control policies. Thus, we recognize morphological
symmetries as a relevant and previously unexplored physics-informed geometric prior, with significant implications for
both data-driven and analytical methods used in modeling, control, estimation and design in robotics. For data-driven
methods, we demonstrate that morphological symmetries can enhance the sample efficiency and generalization of
machine learning models through data augmentation, or by applying equivariant/invariant constraints on the model’s
architecture. In the context of analytical methods, we employ abstract harmonic analysis to decompose the robot’s
dynamics into a superposition of lower-dimensional, independent dynamics. We substantiate our claims with both
synthetic and real-world experiments conducted on bipedal and quadrupedal robots. Lastly, we introduce the repository
MORPHOSYMM to facilitate the practical use of the theory and applications outlined in this work.
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1 Introduction

The field of robotics has recently witnessed a surge in the
adoption of data-driven methods for modeling, estimation,
and control. This trend is primarily fueled by several
factors: (i) the ability of these methods to process complex
data measurements, such as depth images, tactile sensing,
and time-series data; (ii) their capacity to handle dynamic
phenomena that are difficult to model, like friction and
backlash; and (iii) their potential to bypass restrictive
modeling/mathematical assumptions, such as the Markov
property or ideal actuator dynamics. However, these methods
often require high quantity and quality training data, which
can be challenging, risky, or even impossible to obtain in
robotics, especially for agile behaviors.

To mitigate this data dependency, contemporary machine
learning methods aim to incorporate geometric priors,
including symmetries and physics-informed inductive biases,
into the learning process (Bronstein et al. 2021; Brehmer
et al. 2023; Weiler et al. 2023; De Haan et al. 2023).
These priors have been instrumental in the success and
interpretability of traditional computational methods for
modeling, estimation, and control. In this work, we
characterize the morphological symmetries of robot as a
type of physics-informed geometric prior. When effectively
leveraged in data-driven methods, these symmetries can
enhance the sample efficiency and generalization of machine
learning models for modeling, estimation, and control in

robotics. Thus, this approach significantly mitigates the
challenges of data collection in robotics.

Essentially, morphological symmetries are structural
symmetries of a robot’s body that allow the robot to
reconfigure itself to mimic some spatial transformations
(i.e., rotations, reflections and/or translations). The simplest
and most common example of such symmetries is the
bilateral/sagittal symmetry in humans and many animals,
where each side of the body is a mirror image of the other.
This symmetry allows individuals to easily mimic a mirrored
body pose by simply permuting the roles of their arms
and legs. While this bilateral symmetry is common in both
humans and robotic systems, robots can exhibit a broader
number of such symmetries. For instance, certain quadruped
robots have the ability to mimic up to eight distinct spatial
transformations, as illustrated in fig. 1.

The primary incentive for studying these symmetries in
practice is that they serve as a significant geometric prior
when modeling and controlling the temporal evolution of the
robot. This is because morphological symmetries manifest in
the robot’s state vector space, equations of motion, control
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Figure 1. (a) Caley diagram of the morphological symmetries of the Mini Cheetah quadruped robot (Katz et al. 2019) (see
animation1). The robot’s symmetries relate any system state with eight distinct symmetric states, each exhibiting identical or
equivalent dynamics. These symmetries stem from the robot’s ability to reconfigure its state, emulating three orthogonal reflections
in 3D space: reflection with respect to the yz-plane (gs), xz-plane (gt), and xy-plane (gf ). The robot’s symmetry group is
composed of the three reflections and any composition of these transformations (e.g., gs � gt), resulting in the group
G = K4 � C2 = C2 � C2 � C2 = fe; gsg � fe; gtg � fe; gfg (see fig. 2). (b) Morphological symmetries manifest in the robot’s
dynamics, control policies, and both proprioceptive and exteroceptive sensor readings (e.g., contact points/forces, RGBD images).
Consequently, any controlled trajectory of motion [(qt; _qt)]

T
t=0, along with the trajectory of sensor readings, can be augmented to

feasible controlled trajectories and sensor readings for each of the 8 symmetric states [(g .� qt; g .� _qt)]
T
t=0 for all g 2 G (see

animation2). (c) These trajectories, conceptualized as point trajectories evolving within the robot’s configuration space
Q := SE3 �M, are decomposed into the 6-dimensional manifold of the robot’s base configurations (the special Euclidean group
SE3) and the 12-dimensional manifold of joint-space configurationsM. Morphological symmetries, imposing geometric constraints
on SE3 andM, serve as a physics-informed geometric prior useful in robotics methods (refer to section 6).

policies, and proprioceptive and exteroceptive sensor data
measurements used to perceive the robot’s environment.
Intuitively, when a person encounters an obstacle with their
right leg while walking, the optimal visuomotor control
response, required to react and balance, is essentially a
mirrored version of the reaction if the mirrored event happens
with the left leg. This is because the dynamics of both
mirrored body poses at the moment of contact are equivalent
(up to a reflection), implying that the optimal control
policy should also be symmetric and respond equivalently
to these mirrored events. The same reasoning applies to the
8 equivalent states of the Mini Cheetah robot in fig. 1.

Despite the significance of this geometric prior, mor-
phological symmetries are often overlooked in both data-
driven and analytical methods for modeling, control, and
estimation. This is primarily because analytical models of
rigid body dynamics, commonly used in robotics, implicitly
leverage these symmetries due to their accurate represen-
tation of physics. Therefore, incorporating morphological
symmetries into data-driven methods can be seen as a way to
transfer one of the key inductive biases in analytical models
to the data-driven paradigm.

Furthermore, analytical models can significantly benefit
from the explicit exploitation of these symmetries. As
detailed in section 5.5, the symmetric structure of a robot
state space can be leveraged, through abstract harmonic
analysis, to identify a decomposition of the robot’s state
space into orthogonal subspaces. This decomposition allows

us to model and control the robot’s dynamics as a
superposition of independent lower-dimensional dynamics.

Structural symmetries in physics The symmetries we
study in this paper in the context of robotics share
similarities with structural symmetries in particle physics,
often referred to as point-group symmetries (Dresselhaus
et al. 2007, 8.3). In physics, these symmetries arise from the
replication of identical particles or atoms within molecules,
atoms, or crystal structures. The principles underlying
these symmetries, along with the analytical and data-driven
methods used to exploit them in both traditional and
contemporary atomistic and molecular dynamics (Cornwell
1997; Noé et al. 2020; Jumper et al. 2021; Klein et al.
2023), can be transferred to robotics. However, the utilization
and implications of these symmetries in robotics diverge
significantly from those in physics.

Unlike physics, where the primary objective is to model
dynamics, the focus in robotics is on controlling these
dynamics. Moreover, the morphology of a robot is a stable
and often controlled aspect of the system, unlike in physics
where symmetries are subject to temporal changes with the
gain or loss of particles. This stability in robotics renders
these symmetries a consistent inductive bias, unaffected by
time, specific motion tasks, or the operational environment.
These properties, combined with the precision in the design
and manufacturing of mechanical systems, and the numerical
benefits associated with morphological symmetries, provide
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a design space of robotic systems for optimally leveraging
this geometric prior.

Contributions
This work introduces a comprehensive theoretical and prac-
tical framework for studying and leveraging morphologi-
cal symmetries in robotics. These structural symmetries,
inherent of a robot's body, extend to symmetries in the
system's state space and dynamics. Our aim is to formally
de�ne these symmetries, characterize their conditions of
existence, and elucidate their implications in both analytical
and data-driven methods. While these symmetries are readily
identi�able in simple systems with basic symmetry groups,
such as bilateral symmetry, our theoretical framework paves
the way for identifying and exploiting morphological sym-
metries in complex real-world robotic systems. This includes
humanoids, quadrupeds, wheeled robots, drones, modular,
soft, and continuum robots. Our contributions, which can be
summarized as follows, involve:

E Characterizing how morphological symmetries manifest
as symmetries in the system's state space, sensor
readings, the equivariance of the equations of motion and
optimal control policies.

E Identifying the generalized mass matrix's equivariance
as the de�ning property of symmetric robotic systems.

In the context of rigid body dynamics, this enable us to:

h Establish the conditions for morphological symmetry
existence, de�ned as analytical constraints on the
robot's kinematic and dynamic parameters (sections 5.2
and 5.3). Using these, we introduce an algorithm
for the systematic identi�cation of these symmetries
(section 5.4).

h Apply abstract harmonic analysis to exploit the sym-
metric structure in the robot's joint space (section 5.5).
This technique enables the decomposition of joint space
dynamics into a superposition of simpler, independent,
lower-dimensional dynamical systems, a concept we
term as Dynamics' Harmonic Analysis (DHA).

To promote the use of the theory and tools developed in
this work, we present the repository MORPHOSYMM ,3 which
facilitates the use of data augmentation, DHA, and the
construction of equivariant/invariant neural networks, using
ESCNN(Cesa et al. 2021), for a growing library of symmetric
robots.

This paper extends our previous work (Ordonez-Apraez
et al. 2023), by providing a more comprehensive analysis
of morphological symmetries with an extended study on the
conditions for their existence in rigid body dynamics, and by
introducing the use of abstract harmonic analysis to leverage
the symmetric structure of the robot's joint space dynamics.

Outline
We begin by introducing group and representation theory
from a robotics perspective in section 2, followed by a dis-
cussion on symmetries in Lagrangian mechanics in section 3.
The concept of morphological symmetries is presented in
section 4, while section 5 delves into their application in
rigid body dynamics, including the conditions for symmetry

existence and the identi�cation of the symmetry group.
There, we also introduce the use of harmonic analysis on
the system's joint space. Section 6 provides an overview of
morphological symmetries applications, such as data aug-
mentation, equivariant/invariant function approximation, and
Dynamics' Harmonics Analysis. Finally, section 7 presents
our experiments and results, with concluding remarks given
in section 8.

2 Background

Here, we provide an introduction to group and representation
theory, the mathematical frameworks essential for studying
symmetries. We aim to familiarize readers with the key
concepts and notation that will be used throughout this
article. As these �elds might be unfamiliar in the context
of robotics, we suggest an initial read-through for a
general understanding, and revisiting each concept as they
are referenced in the following sections. For a more
comprehensive introduction, we recommend the works of
Weiler et al. (2023) for a machine learning perspective, and
Selig (2005); Lanczos (2020) for insights into robotics.

Symmetry Groups In essence, a symmetry of an object,
whether it be a vector space, a manifold, or a robot, refers
to an invertible transformation that preserves a signi�cant
property of the object, such as the vector space metric, the
curvature of the manifold, or the energy of the robot.

Group theory studies sets of symmetry transformations as
abstract mathematical constructs independent of the objects
with which these symmetries are associated. This abstraction
proves bene�cial in our work, as it facilitates the analysis
of the symmetries inherent in the laws of physics, various
robotic systems, and sensor data measurements, all as
distinct manifestations of the same symmetry group.

In its abstract form, a symmetry group can be expressed
as a set of invertible symmetry transformations, denoted
as G = f e; g1; g� 1

1 ; g2; : : : g. This set is closed under the
operations ofcomposition� : G � G 7! G, and inversion
(�)-1 : G 7! G. This implies that for anyg1; g2 2 G, the
compositiong1 � g2 is also a member ofG. Similarly, for
any g 2 G, the inverseg-1 belongs toG and satis�esg-1 �

g = e, where e is the identity (or trivial) transformation.
Groups are characterized by their structure, de�ned by
their order jGj, which represents the number of unique
elements in the group, and the composition rules of these
elements. For example, consider the simplest group, the
re�ection group C2 = f e; gs jg2

s = eg, composed of the
trivial transformation and a re�ection transformationgs,
characterized byg2

s := gs � gs = e.

gs � gt

gs � gt � gf

gs

gt � gf

gt

gs � gf gf

e

Figure 2. Structure of the
group G = C2 � C2 � C2

Group structure and subgroups
To comprehend the structure
of a (symmetry) group, it is
often bene�cial to break it down
into simpler symmetry groups
and analyze how these smaller
groups interact to form the
larger structure. For example,
the symmetry groupG of the
Mini Cheetah robot in �g. 1,
is of order jGj = 8 , and can
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be de�ned as the direct product
of three distinct re�ection groups,G = C2 � C2 � C2 as
depicted in �g. 2. A subset of a group of symmetries,
G0 � G, is a symmetry subgroup if the subset is closed
under composition and inversion, which is denoted asG0 <
G. In our example above, the groupG contains three
distinct subgroups of two elements each:f e; gsg; f e; gt g,
and f e; gf g, depicted in �g. 2. Although these three
re�ections describe distinct transformations, these groups
are structurally equivalent orisomorphic(iso� “same” and
morphic� “shape/structure”) to a re�ection group. This
means that, there exists a bijective map between the elements
of the two groups, and this map preserves the group's
structure. We denote the isomorphism property asf e; gsg �=
f e; gt g �= f e; gf g �= C2.

Group actions We are mostly interested in the action of
a symmetry transformation on speci�c objects, such as the
robot's state and sensor data measurements. Therefore, we
need to de�ne how speci�c objects are transformed by
an elementg 2 G. Formally, the action of a symmetry
transformationg 2 G on a setS is de�ned as a map. : G �
S 7! S, taking an element of the group and set and returning
another set element, i.e.,g . s 2 S if s 2 S. This map is
associativeunder group composition,(g1 � g2) . s = g1 .

(g2 . s), and respects the identity transformatione . s = s.

Group representations
To de�ne a symmetry transformation not on a set but on
a vector spaceX � Rn , we utilize agroup representation.
By de�nition, a group representation on the spaceX
is a map� X : G 7! GL(X ) that assigns invertible linear
maps to group elements. When choosing a basis set for
the vector space, this linear maps will be represented
as matrices, enabling us to model the group composition
operator as matrix-matrix multiplication, i.e.,� X (g1 � g2) =
� X (g1)� X (g2), symmetry inversion by matrix inversion,
� X (g-1) = � X (g)-1, and the action of a symmetry on a point
x 2 X to be expressed as a matrix-vector multiplication,
i.e., g . x := � X (g)x 2 X . Note thatGL(X ) is the group
of invertible linear maps onX . Whenever a vector space
possesses a group representation, we refer to it as a
symmetric space.

G-invariant and G-equivariant maps A map between two
symmetric vector spacesf : X ! Y often falls within
two categories: group invariant or group equivariant. The
map f is consideredG-invariant if its output remains
unchanged regardless of the transformation applied to the
input. Instead, a map is consideredG-equivariant when the
result of applying a transformation to the input, followed by
computing the function, is equivalent to �rst computing the
function and then applying the transformation to the output.
Formally, these conditions can be expressed as follows:

y = f (� X (g)x )
| {z }

G-invariant

and � Y (g)y = f (� X (g)x )
| {z }

G-equivariant

j 8 g 2 G; x 2 X :

(1)

Linear maps, change of basis and the conjugate action
The action of a symmetry transformationg can be viewed
as a point transformation, mapping each pointx 2 X to its

symmetric counterpartg . x , or as a change of basis inX .
Speci�cally, if SX = f �x 0; � � � ; �x n g is a basis set for the
vector space, the action ofg on the basis set yields another
valid basis setg . SX := f g . �x 0; � � � ; g . �x n g.

The action of a group element on a linear map's matrix
representation, which rede�nes the map in the symmetry-
transformed basis, is referred to as theconjugate action. Let
A : X 7! X be a linear map on the symmetric vector space
X . The map's matrix representation depends on the chosen
basis forX . Therefore, under a change of basis by a giveng,
the map's matrix representation is rede�ned as:

g � A = � X (g)A � X (g)-1 : (2)

The group of rigid transformations in Euclidean space In
the context of robotics, a crucial group of symmetries is
the group of Euclidean isometries (or rigid transformations)
in d-dimensions. This group is usually denoted as the
matrix Euclidean groupEd := Od n T d (typically, d refers
to a 3-dimensional space, but we present some simpli�ed
examples in two dimensionsd = 2 ). Here, Od represents
the orthogonal group, which includes all rotations and
re�ections, andTd represents the translation group ind-
dimensional space. To de�ne a morphological symmetry,
we study this group in is abstract (non-matrix) form.
Speci�cally, let GE

�= Ed denote a groupisomorphic to
Ed, where transformations are abstracted from their usual
d-dimensional space of action. Throughout this work,
we de�ne distinct representations for these symmetry
transformations. However, when we use these symmetries
as transformations of points, vectors, and spatial vectors in
d + 1 -dimensions, we default to the standard homogenous
matrix representation:

� Rd+1 (g) := X g =
� R g r g

0 1

�
2 Ed;

� Rd(g) := R g 2 Od j 8 g 2 GE ;
(3)

where � Rd+1 represents eachg 2 GE as an homogeneous
transformation matrixX g 2 Ed. This isometry is comprised
of a rotation/re�ection matrix R g, a member of the
orthogonal group Od, and a translation vectorr g 2
Rd. The representation� Rd , defaults to assigning the
rotation/re�ection matrix R g to each g 2 GE . When
discussing rotation, re�ection, or translation actions ind-
dimensions, we typically use standard robotics notationX g

andR g instead of� Rd+1 (g) and� Rd(g), respectively.

Inequivalent representations of Euclidean isometries The
motivation behind the distinction betweenGE and the
Euclidean groupEd, is to establish distinct, inequivalent
representations of Euclidean isometries. In other words, to
de�ne alternative ways for applying rotations, re�ections,
and translations to the robot's state. Speci�cally, as detailed
in sections 4 and 5, we de�ne a morphological symmetry by
representing eachg 2 GE as a transformation of the robot's
joint space con�guration.

In this context, two representations of the same group,
de�ned on the same space� a

X ; � b
X : G 7! GL(X ), are

considered equivalent, denoted as� a
X (g) � � b

X (g), if they
can be related by a change of basis inX . That is, if there
exist a linear mapT : X 7! X , such that:

� a
X (g) � � b

X (g) if � a
X (g) = T � b

X (g)T -1 j 8 g 2 G: (4)
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Figure 3. (a) The temporal evolution of the robot Boston Dynamics' Atlas robot, when subjected to a horizontal spatial re�ection,
results in an unreachable symmetric state (gs . q; gs . _q), consequence of the physical inability to apply re�ections to rigid bodies
(Selig 2005, 2.5). Despite this, the dynamics of the original state (q; _q) and its virtual counterpart are equivalent up to a re�ection of
space, maintaining their temporal evolution related by the symmetry gs . (b) Similarly, the temporal evolution of the original state and
a horizontally translated state (gx . q; gx . _q) remain equivariant, with gx being a feasible symmetry transformation.

Decomposition of group representations Given two group
representations,� X and� Y, acting on distinct vector spaces
X and Y respectively, we can construct a new group
representation on the spaceX � Y . This construction,
known as the direct sum, effectively combines the two
representations into a block-diagonal form. Formally, the
direct sum of two representations is de�ned as follows:

� X � Y (g) = � X (g) � � Y (g) :=
”

� X ( g) 0
0 � Y ( g)

—
j 8 g 2 G: (5)

In sections 6 and 7, we utilize the direct sum to build group
representations on spaces derived from different sensor data
measurements. Conversely, in section 5.5, we decompose
the representation acting on the robot's joint space into
a block-diagonal form. This decomposition, known as an
isotypic decomposition(a key result from abstract harmonic
analysis), will provide numerical bene�ts for the analysis and
the simulation of the system's dynamics.

Harmonic analysis and the isotypic decomposition Our
use of harmonic analysis in modeling robotic systems
reduces to leveraging the theoretical and numerical
advantages of a speci�c basis of a symmetric vector spaceX .
This basis, known as theisotypic basis, has the property that
it exposes the decomposition ofX into orthogonal lower-
dimensional subspaces, along with the decompostion of� X

into a direct sum of representations on each subspace:

X = X1 � ? X2 � ? � � � � ? Xn iso = � ? n iso

k=1 Xk ;

� X � � X1 � � X2 � � � � � � Xn iso
= � n iso

k=1 � Xk :
(6)

The number of isotypic subspaces is determined by the
niso unique irreducible representations (irreps) f �� k gn iso

k=1 of
the groupG. Each isotypic subspace's representation� Xk is
constructed as the direct sum of multiple copies of the same
type of irreducible representations, i.e.,� Xk � �� k � � � � � �� k .

Theseirreps are the fundamental building blocks of any
group representation ofG. Eachirrep, �� k : G ! GL( �Xk ),
describes a unique symmetry pattern, characterized by a
subset of symmetry transformations within the group, and
the associated space�Xk is the smallest �nite-dimensional
space that can express theirrep symmetry pattern. For
instance, as our groupsG will be subgroups of the Euclidean
group, an exampleirrep is that of a re�ection symmetry (�� r ),
which require a1-dimensional line to act on (�Xr � R), or

irreps describing rotations by an angle2� =a, �� 2 � =a , which
require a2-dimensional space (�X2 � =a � R2 � C) to act on.

This implies that as� Xk � �� k � � � � � �� k , the associated
isotypic subspace is equivalent toXk � �Xk � � � � � �Xk .
Consequently,Xk will only feature the subset of symmetry
transformations associated with theirrep �� k . This property is
what ensures the orthogonality between isotypic subspaces
(see Shur's lemma (Knapp 1986, Prop 1.5)), a property we
exploit in section 5.5 to decompose the robot's dynamics.

Lastly, we highlight the isotypic decomposition is
achieved simply by �nding the appropriate change of
basisT : X 7! X that exposes the block-diagonal structure
descrived in eq. (6). For further details, refer to Golubitsky
et al. (2012, Thm-2.5) or Ordoñez-Apraez et al. (2023).

3 Symmetries in Lagrangian mechanics

In the context of dynamical systems, a symmetry is
interpreted as a transformation that associates distinct system
states with identical or equivalent dynamics. Essentially,
this means that if two states are related by a symmetry
transformation, the temporal evolution of one mirrors the
symmetry-transformed temporal evolution of the other (see
�g. 3a and animation 2).

To formalize this property in robotics, we shall study
symmetries from the lens of Lagrangian mechanics, a
modeling framework applicable to a wide range of robot
types, including rigid body, continuum, soft, and modular
robots. In this framework, the robot's state is determined
by the position and velocities of itsnq degrees of freedom
(DoF), de�ned as the independent generalized position
coordinatesq 2 Q � Rn q and velocity coordinates_q 2
Tq Q � Rn q . WhereQ denotes the constrained con�guration
space (a smooth manifold) (Lanczos 2020, chpt 1.5), and
Tq Q represents the con�guration tangent space atq (a
local tangent plane). Thus, the system's state is numerically
represented as a point in thephase space(q; _q) 2 T Q :=
Q � T q Q � R2n q . Furthermore, the system's dynamics (i.e.,
the temporal evolution of points inT Q) are governed by
the equations of motion (EoM). These are derived from
the Euler-Lagrange differential equations, according to the
principle of least action (Lanczos 2020, II.11):

d
dt

@L(q; _q)
@_q

�
@L(q; _q)

@q
= 0 () M (q) •q

| {z }
inertial

= � (q; _q)
| {z }
moving

; (7)
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d
dt

@L(q; _q)
@_q

�
@L(q; _q)

@q
= 0 =

d
dt

@L(g . q; g . _q)
@(g . _q)

�
@L(g . q; g . _q)

@(g . q)

d
dt

@L(q; _q)
@_q

�
@L(q; _q)

@q
= 0 =

•
d
dt

@L(g . q; g . _q)
@_q

˜
@_q

@(g . _q)
�

•
@L(g . q; g . _q)

@q

˜
@q

@(g . q)

d
dt

@L(q; _q)
@_q

�
@L(q; _q)

@q
= 0 =

•
d
dt

@L(g . q; g . _q)
@_q

�
@L(g . q; g . _q)

@q

˜
� Q(g) � 1

�
�
�
�
@(g . _q)

@_q
=

@(g . q)
@q

= � Q(g)

g . [M (q) •q � � (q; _q)] = 0 = M (g . q)g . •q � � (g . q; g . _q) = 0

(9)

which, in their general form, can be stated as an
equivalence between inertial and moving forces in the
space of generalized coordinates. In this space,M : Q 7!
Rn q � n q represents the generalized mass matrix function,
and � : T Q 7! Rn q denotes the generalized force �eld
function, determining the effective force result of control
actions, contacts, internal constraints such as joint limits,
gravitational forces, and external disturbances. These EoM
are entirely derived from the Lagrangian scalar functionL :
T Q 7! R+ , which measures the excess of kinetic energyT :
T Q 7! R+ over the energy associated with mechanical work
function4 U : T Q 7! R+ , that is L (q; _q) := T(q; _q) �
U(q; _q) (Lanczos 2020).

In this context, a symmetryg is de�ned as anenergy
preserving transformation relating equivalent states in
distinct regions of the phase space (Wieber 2006). This
property is formalized as theinvariance of the system's
Lagrangian under the symmetry transformation, formally
expressed as:

De�nition 1. (Symmetric robotic system). Consider a
robot with generalized position coordinatesq 2 Q � Rn q ,
velocity coordinates_q 2 Tq Q � Rn q , and LagrangianL :
T Q 7! R+ . The system is deemed to possess a symmetry
groupG if its Lagrangian isG-invariant. That is if:

L (q; _q) = L (g . q; g . _q) j 8 g 2 G; (q; _q) 2 T Q : (8)

The symmetric state(g . q; g . _q) is derived through a
linear transformation given by(� Q(g)q; � Q(g) _q). Here,
� Q(g) is the group representation in the con�guration
space, and� Q(g) = � Tq Q(g), given thatg . _q := � Tq Q(g) _q :=
d(g . q )=dt = � Q(g) _q. States(q; _q) and(g . q; g . _q), related
by a symmetryg, as in eq. (8), will henceforth be denoted as
symmetric states.

G-equivariant equations of motion From a practical
perspective, the importance of studying symmetry stems
from the fact that these transformations relate the dynamics
of a state(q; _q) with that of the symmetric state(g . q; g .

_q). This suggests that modeling and controlling our robotic
system in the vicinity of a single state suf�ces to model and
control the robot in the vicinityof all symmetric states.

This geometric property is characterized analytically by
the G-equivariance of the system's EoM, obtained from
deriving the EoM in the original and symmetry transformed
coordinates, for anyg 2 G, as depicted in eq. (9) and in
Wheeler (2014).
The G-invariant Lagrangian and theG-equivariant EoM
are equivalent statements that de�ne the conditions under
which a symmetry exists. Speci�cally, eq. (9) de�nes a
symmetry as a transformation that relates the instantaneous
inertial and moving forces impacting symmetric states.
This property provides a pathway for characterizing and
identifying properties of symmetric systems.

Proposition 1. (Symmetric robots exhibitG-equivariant
mass matrix and control policies).Reframing eq.(9) as
an equality constraint of inertial and moving forces between
symmetric states, we deduce that for a symmetry to exist,
both the generalized mass matrixM and force �eld � need
to beG-equivariant, i.e.,

g � M (q) = M (g . q); and

g . � (q; _q) = � (g . q; g . _q):
(10)

The equivariance ofM implies that the inertial properties
at the con�gurationg . q are equivalent (up to a symmetry-
induced change of basis) to those of the con�gurationq (refer
to eq. (2)). Similarly, the equivariance of� requires that both
the system's passive dynamics and control policy areG-
equivariant functions. As discussed in section 6.2, optimal
control policies for symmetric robotic systems are inherently
equivariant.

To build an intuitive understanding, consider the Atlas
robot shown in �g. 3a. Here, the symmetrygs, representing
a re�ection of space, relates two symmetric system states
(q0; _q0) and(gs . q0; gs . _q0). As per eq. (8), this symmetry
arises from their shared kinetic and potential energies, as
well as the equal work done by instantaneous contact forces.
Consequently, by eq. (9), the instantaneous dynamics of
both states are linked by the symmetry transformation. This
means that the system's motion trajectory originating from
(q0; _q0) will mirror the motion trajectory starting from(gs .

q0; gs . _q0), after applying the transformationgs. Moreover,
by eq. (10), the symmetric relationship between the motion
trajectories is maintained as long as the forces acting on
both systems, including contacts and control actions, remain
related by the symmetry transformation. A similar analysis
holds when considering the translation symmetry groupG =
Tx for the Atlas robot (�g. 3b), where eachg 2 Tx represents
a horizontal translation of the robot and the environment.

Feasible and unfeasible symmetries In our analysis,
we distinguish betweenfeasible symmetries, which yield
another reachable state within the constrained phase space
(g . q; g . _q) 2 T Q, for any given state(q; _q) (e.g., g 2
Tx in �g. 3b), and infeasiblesymmetries, which lead to
states outside of the constrained phase space. Infeasible
symmetries can occur wheng involves a re�ection of bodies
(see �g. 3a), or when the resultant symmetric state violates
some state constraint, such as joints position/velocity limits.

Floating base robotic systems In our analysis of locomot-
ing and �xed-base robotic systems, we assume, without loss
of generality, that our robot is a �oating-base dynamical
system evolving in3-dimensions. This allows us to decom-
pose the state intoq = ( r B ; � B ; qjs ) and _q = ( _r B ; w B ; _qjs ),
wherer B 2 R3 and� 2 R3 correspond to the base's position
and orientation, respectively, and_r B 2 R3 and w B 2 R3

represent the base's linear and angular velocities, respec-
tively. Similarly, qjs 2 M � Rn j describe the joint space
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(q ; _q ) (gs . q ; gs . _q ) (q ; _q )
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(q ; _q ) (q ; _q )

(gr . q ; gr . _q )

(a) (b) (c) (d)

(gs .� q ; gs .� _q )

(gr .� q ; gr .� _q )

Figure 4. (a) Atlas robot undergoing an unfeasible horizontal spatial re�ection gs , leading to an unreachable symmetric state
(gs . q; gs . _q). (b) The same robot experiencing a feasible horizontal spatial re�ection gs through a morphological symmetry,
resulting in a reachable equivalent state (gs .� q; gs .� _q). (c) Mini Cheetah robot subjected to a feasible 180� rotation gr , yielding the
equivalent state (gr . q; gr . _q). (d) The same robot undergoing a feasible 180� rotation gr through a morphological symmetry,
leading to the reachable equivalent state (gr .� q; gr .� _q).

con�guration and velocity coordinates of the robot'snj =
nq � 6 internal DoF (Ostrowski and Burdick 1996).

The 6-dimensional (minimal coordinate) representation
of (r B ; � B ) and ( _r B ; w B ) is advantageous for state
interpretability and the derivation of the EoM (eq. (9)).
However, for computational ef�ciency, algebraic simplicity,
singularities and the non-commutative nature of rotations
in 3-dimensions, rigid body con�gurations in space
are represented in practice in homogenous matrix form
(maximal coordinates). Speci�cally, the base's position
con�guration is represented byX B :=

� R B r B
0 1

�
2 SEd,

where R B 2 SOd is the rotation matrix representing
the base's orientation. Similarly, the base's velocity
con�guration is given by _X B :=

”
[w B ]� _r B

0 1

—
2 sed, where

[w B ]� 2 sod is the skew symmetric matrix representation of
the angular velocityw B (Sol�a et al. 2021). With a mild abuse
of notation, we will hereafter represent the system's state
asq = ( r B ; � B ; qjs ) ' (X B ; qjs ), and _q = ( _r B ; w B ; _qjs ) '
( _X B ; _qjs ). This step is required to de�ne the action of
euclidean isometries on(r B ; � B ) and ( _r B ; w B ) in matrix
form (see eq. (3)).

4 Morphological Symmetries

Morphological symmetries are fundamentally associated
with the capability of speci�c robotic systems to emulate
Euclidean isometries—such as spatial rotations, re�ections,
or translations—through feasible state transformations. This
implies that the robot can reach distinct state con�gurations,
all dynamically equivalent to the state result of applying
Euclidean isometries to the robot. A de�ning feature of these
symmetries is that they are inherent properties of the robot,
unaffected by time, speci�c motion tasks, or the operating
environment. They stem from morphological or structural
similarities resulting from replicated kinematic chains and
body parts with symmetric mass distributions.

Before introducing a formal de�nition, let us consider
the Atlas humanoid robot, which possesses the simplest
morphological symmetry group, the re�ection groupG =
C2. In �g. 4a, the robot and its surrounding environment
are subjected to an unfeasible re�ection transformation,
which involves the physically unattainable re�ection of
rigid bodies, leading to the unreachable symmetric state
(gs . q; gs . _q). In contrast, �g. 4b illustrates a scenario
where the environment undergoes a similar re�ection, yet

the robot experiences a feasible state transformation. This
transformation adjusts the robot's state to(gs .� q; gs .� _q), a
reachable and dynamically equivalent state to(gs . q; gs .

_q). These distinct symmetry transformations of the robot's
state represent two inequivalent representations (refer to
section 6.2) of the action of the re�ectional symmetrygs,
de�ned as:

(gs . q; gs . _q) :=
€”

X g s X B
q js

—
;
”

X g s
_X B

_q js

—Š
and

(gs .� q; gs .� _q) :=
�h

X g s X B X -1
g s

� M (gs )q js

i
;
h

X g s
_X B X -1

g s
� Tq M (gs ) _q js

i�
:

(11)

The former state transformation, resulting in(gs . q; gs . _q),
describes the standard action of a re�ection isometry, which
involves re�ecting the robot's rigid bodies while maintaining
the joint space con�guration unchanged (or invariant). In
contrast, the action of a morphological symmetry, denoted
by the operator.� , describes a feasible state transformation
that results in the reachable state(gs .� q; gs .� _q). This
transformation includes a reorientation of the base's bodyg �

X B := X gs X B X -1
gs

2 SEd (refer to eq. (2)), coupled with
a non-trivial transformation of the joint space (or internal)
con�gurationg . qjs := � M (gs)qjs .

A similar analysis applies to the Mini Cheetah quadruped
robot, which exhibits a morphological symmetry group
of order jGj = 8 . Focusing on the subgroupf e; gr g <
G, �g. 4c illustrates the standard action of the isometry
gr , depicting a feasible180� rotation of both the robot
and its environment. This feasible transformation leads to
the reachable symmetric state(gr . q; gr . _q). In contrast,
�g. 4d illustrates the morphological symmetry action of
gr . This alternative transformation results in a distinct
symmetric state(gr .� q; gr .� _q) that preserves dynamic
equivalence to(gr . q; gr . _q).

In both examples, the standard action of a Euclidean
isometry g 2 GE alters the robotand its environment,
resulting in a system state(g . q; g . _q) that may or
may not be reachable. In contrast, the action of a
morphological symmetry de�nes afeasible robot's state
transformation, resulting in a reachable state(g .� q; g .�

_q) that is dynamically equivalent to(g . q; g . _q). This
transformation entails reorienting the robot's base and non-
trivial transformation of its joint space con�guration. These
properties can be formalized for any robotic as follows:

De�nition 2. (Morphological Symmetry). Consider a
robot with generalized position coordinatesq 2 Q � Rn q
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and velocity coordinates_q 2 Tq Q � Rn q . Let L : T Q 7!
R denote the system's Lagrangian. An Euclidean isometry
g 2 GE is deemed a system's morphological symmetry if the
action has two inequivalent representations yielding distinct
symmetric states(g . q; g . _q) and(g .� q; g .� _q), being(g .�

q; g .� _q) a reachable state. That is if:

L (q; _q) = L (g . q; g . _q) = L (g .� q; g .� _q)

j 8 (q; _q); (g .� q; g .� _q) 2 T Q ;

(g . q; g . _q) 6= ( g .� q; g .� _q):

(12)

Hereafter, we denote the morphological symmetry group of
a robotic system asG. This group comprises all Euclidean
isometries that satisfy de�nition 2, that isG � GE . In a
nutshell, the action of a morphological symmetry signi�es
an alternative pathway for applying speci�c rotations,
re�ections, and translations to the robot's state.

Modeling the dynamics of symmetric systems A morpho-
logical symmetryg 2 G can be viewed as a point trans-
formation in the robot's con�guration space, linking any
reachable state(q; _q) to its set of symmetric states, featur-
ing equivalent dynamics, denoted asG(q; _q) = f (g .� q; g .�

_q) j g 2 Gg. This relationship is a crucial geometric prior
when modeling the system's dynamics, as it requires any
optimal analytical or data-driven model to beG-equivariant
(Ordõnez-Apraez et al. 2023, Proposition 2).

In fact, analytical models of rigid body dynamics for
systems with morphological symmetries are inherentlyG-
equivariant due to their reliance on the analytical generalized
mass matrix function (eq. (10)). For symmetric robots
without analytical or tractable dynamics models, such
as continuum, soft, or modular robots, morphological
symmetries provide a valuable geometric prior, which in
practice could improve the generalization of data-driven
models and mitigate the challenges posed by the curse of
dimensionality (Higgins et al. 2022; Bietti et al. 2021). For
more details, refer to section 6.

Control policy constraints By proposition 1, a robotic
system with a symmetry groupG is required to possess
a G-equivariant control policy, as non-equivariant control
forces break theG-equivariance of the system's EoM
(eq. (9)). This property is of special value in the case
of morphological symmetries, considering that, under mild
assumptions, optimal control policies of symmetric systems
are inherentlyG-equivariant functions (Zinkevich and Balch
2001), as detailed in section 6.2.

In essence, this implies that for a bipedal system such as
the Atlas robot (�g. 4b), the optimal control policy is an
ambidextrouspolicy. That is, the optimal action for a state
(q; _q) is equivalent to the control action for the symmetry-
transformed state(g .� q; g .� _q). This principle extends to
systems with larger symmetry groups, such as the Mini
Cheetah robot depicted in �g. 1 (see animation 1).

Morphological constraints The presence of morphological
symmetries in robotic systems, such as the Atlas robot (�g. 4)
and the Mini Cheetah robot (�g. 1), is closely linked to
the G-equivariance of the robot's generalized mass matrix
(eq. (10)). This property arises from symmetries in mass
distribution and the duplication of bodies and kinematic
chains, consequence of proposition 1. For example, the

Atlas robot can mimic a spatial re�ection due to its sagittal
symmetry and duplicated limbs, while the Mini Cheetah,
with its replicated legs and symmetric cuboid torso, can
emulate three spatial re�ections.

To understand these morphological constraints, we are
required to delve into a speci�c type of a robot architecture.
In the following section we focus on rigid body dynamics,
however, note that the analysis presented can be easily
adapted to continuum, soft, and modular robots.

5 Morphological symmetries in rigid body
systems

In this section, our objective is to characterize the
implications of morphological symmetries in rigid body
systems. These systems consist ofnb interconnected
rigid bodies evolving inEd. Given that symmetries are
transformations that preserve energy (de�nition 1), we aim
to discern the symmetry constraints on the kinematic and
dynamics parameters. Concretely, we analyze the conditions
of G-invariance of the system's kinetic energyT(q; _q) =
T(g .� q; g .� _q).

5.1 Rigid body systems
The kinetic energy in rigid body dynamics is calculated
by summing the energies of all constituent bodies in
the system:T( _r ; w ) = 1

2

P n b
k mk _r |

k _r k + w |
k I k w k , where

mk 2 R+ , I k 2 Rd� d, _r k 2 Rd and w k 2 Rd represent
the mass, rotational inertia at the center of mass (CoM),
linear and velocity of bodyk, respectively. Although this
quantity can also be expressed in terms of the system's
generalized coordinates and generalized mass matrix
T(q; _q) = 1

2 _q| M (q) _q, we exploit the decomposition of the
state into its �oating-base and joint space con�gurationsq =
(X B ; qjs ). This is done to study the invariance of the kinetic
energy of the �oating-base bodyTB independently from that
of the joint space kinetic energyTM . These quantities are
expressed as:

TB (X B ) =
1
2

mB _r |
B _r B + w |

B I B w B and

TM (qjs ; _qjs ) =
1
2

_q|
js M (qjs ) _qjs ;

(13)

where

M (qjs ):=
n b � 1X

k

J t k (qjs ) | mk J t k (qjs )+ JR k (qjs ) | I k JR k (qjs ) (14)

denotes the joint space generalized mass matrix, constructed
from the mass, inertia, and the position and orientation
Jacobians Jt k : Q ! Rd� n j and JR k : Q ! Rd� n j of
each body. These Jacobians de�ne the state-dependent
mappings from generalized velocities to the kth body's linear
(B _r k = Jt k (qjs ) _qjs ) and angular (B w k = JR k (qjs ) _qjs )
velocity in Euclidean space, relative to the �oating-base
body's frame (Wieber 2006).

The computation of these Jacobians relies on the system's
kinematic parameters, which detail the relative positions and
orientations of links and joints, as well as the system's
dynamic parameters, which include the mass and inertia
of all bodies. Since the kinetic energy is dependent on
these parameters, the presence of a morphological symmetry
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Figure 5. (a) Re�ectional morphological symmetry is observed
in a body with a symmetric mass distribution. For such a body,
the unfeasible action of a re�ection of the body, g . R B , results
in a body con�guration that mirrors the inertia and kinetic
energy of the rotated body at g � R B . (b) However, if the
symmetry in mass distribution is disrupted, the states g . R B

and g � R B will exhibit different re�ected inertias and kinetic
energies when subjected to the equal angular velocities. This
results in the body's inability to mimic a re�ection of space.

inherently imposes constraints on the kinematic and dynamic
parameter space.

5.2 Constraints on the �oating-base's body
mass distribution

Consider the conditions under which a morphological
symmetry exists for the �oating-base body only. In this
case, the necessary LagrangianG-invariance from eq. (12)
reduces to the equality of kinetic energy between the base
body transformed by a Euclidean isometry, denoted asg .

X B , and the body transformed by morphological symmetry,
represented asg � X B . This can be expressed as:

TB (g . X B ) = TB (g � X B ); (15)

where the action of the Euclidean isometry represents a
potential rotation or rotore�ection of the bodyR gR B 2 Od,
and a morphological symmetry is restricted to a rotation
R gR B R |

g 2 SOd, due to the feasibility requirement.
Since the con�gurationsg . X B and g � X B generally

differ, they are constrained to have the same mass distribution
to ensure an equivalent dynamics. In other words, this is
required to react identically to the application of a moving
force (refer to �g. 5). This requirement is translated to the
equality of the re�ected inertia tensors:

(g . R B ) �I B (g . R B ) -1 = ( g � R B ) �I B (g � R B ) -1

(R gR B ) �I B (R |
B R |

g ) = ( R gR B R |
g ) �I B (R gR |

B R |
g );

(16)

where I B = R B
�I B R |

B 2 Rd� d is the re�ected body
inertia at the con�gurationR B , and �I B is the body's diagonal
inertia tensor in a frame aligned with the body's principal
axes of inertia (Traversaro et al. 2016), which we show
in �g. 5a.

The ability of a body to adopt various con�gurations, each
sharing identical re�ected inertias as de�ned by eq. (16),

is an inherent characteristic of bodies with symmetrical
mass distributions. This property introduces redundancy in
the selection of orientation and handedness of a reference
frame attached to the body's CoM and aligned with the
body's principal axes of inertia. Consequently, this implies
the existence of a group of symmetry transformationsGB �
GE that can alter the body's con�guration while preserving
the re�ected inertia tensor:

GB = f g 2 GE j R B
�I B R |

B = R B (g-1
� �I B )R |

B ; 8 R B 2 SOdg;
(17)

in which the symmetryg 2 GB represents a transformation
relative to the body's principal axes of inertia, i.e.,R B R g.
Fig. 5a depicts an example of the re�ection along one of the
bodies principal axes of inertia relating the con�gurations.

5.2.1 Identifying candidate morphological symmetries
The group of symmetries in the mass distribution of the
robot's baseGB represents the set of in-place rotations
and re�ections under which the dynamics of this body
remain invariant. These are interpreted as the subgroup
of symmetries of Newtonian physics preserved by the
�oating-base's body mass distribution. Therefore, this group
represents a set of potential morphological symmetries of the
robot, as depicted in �g. 6a.

It is important to observe that both resulting body orien-
tations,g . R B = R gR B 2 On andg � R B = R gR B R |

g 2
SOd, share the same re�ected inertias. Consequently, when
subjected to identical velocities and forces, these two
base con�gurations have equivalent dynamics, as expressed
in eq. (15). Furthermore,g � R B represents a feasible body
con�guration even wheng corresponds to an unfeasible
isometry, such as a re�ection (see �g. 5).

To understand this fact, let's consider the two bodies
illustrated in �g. 5. In �g. 5a, this body exhibits a symmetric
mass distribution with respect to itsx principal axis of
inertia, leading toGB = f e; gg ' C2. In contrast, in �g. 5b,
this body lacks any symmetry in its mass distribution,
resulting inGB = f eg. The symmetric mass distribution of
body in �g. 5a enables it to emulate an otherwise unfeasible
spatial re�ection,g . R B , through a feasible rotationg � R B .
It is crucial to note that perturbing the mass distribution
disrupts this re�ectional symmetry, as evidenced by the
differing kinetic energy of theg-transformed body andg-
transformed body differ (refer to �g. 5b).

A practical example can be observed in the Mini
Cheetah robot's base body depicted in �g. 1. Its cuboid
body showcases three orthogonal re�ectional symmetries
in the Mini Cheetah's mass distribution, denoted asGB =
f e; gs; gt ; gf j g2

s = g2
t = g2

f = eg. These symmetries result
in an arbitrary selection of the reference frame attached
to its body, leading to the arbitrary determination of the
Mini Cheetah's forward/backward, up/down, and left/right
directions.

In both instances, the groupGB � GE , which describes
the symmetries in the robot's base mass distribution,
suggests potential Euclidean isometries that could result in
morphological symmetries of the robotic system. For robotic
systems with multiple unique (non-replicated) bodies (e.g.,
the head of the Atlas robot, see �g. 3), the group of candidate
morphological symmetries is limited to the subgroup of
Euclidean isometries that describe the symmetries of mass
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Figure 6. (a) Example robotic system, evolving in R2 , featuring a triangular base body which exhibits a symmetric mass
distribution characterized by the group of 3 rotations and 3 rotore�ections, the Dihedral group GB = D2�3 . However, the system's
morphological symmetry is limited to the rotational subgroup, G = C3 < GB , due to the absence of re�ectional symmetry in the
limbs' bodies mass distribution, which is necessary for mimicking the re�ection isometry gf with a feasible joint space
transformation. (b) The base body's symmetric mass distribution results in an arbitrary labeling of the robot's limbs (l1 ; l2 and l3),
enabling the robot to mimic a 120� spatial rotation through a joint space transformation that permutes the limbs' con�gurations.

distribution of all unique bodies. Whether a candidate
symmetry is indeed a morphological symmetry depends
on (i) the other bodies in the system's kinematic structure
and (ii) the robot's morphology admits a joint space
transformation that complies with de�nition 2.

5.3 Constraints on the kinematic structure
Modularity in the kinematic structure, speci�cally the
replication of identical or re�ected kinematic branches (or
substructures), provides the necessary conditions for the
existence of joint space action transformations. In these
cases, we consider Euclidean isometriesg 2 GB as potential
morphological symmetries of the robot. Concretely, given
that the con�guration of the �oating-base body transformed
by this isometry differs from the one transformed by
the morphological symmetry, (i.e.,g . X B 6= g � X B as
illustrated in �gs. 4 and 6), there must exist a joint space
action transformation

(g . qjs ; g . _qjs ) = ( � M (g)qjs ; � Tq M (g)qjs );

which ensures that both robot con�gurations exhibit equal
energy states and equivalent dynamics (eq. (12)).

Modular kinematic structure Robotic systems often exhibit
a balanced distribution of replicated kinematic branches
within their kinematic structure. Examples include the four
identical legs of the Mini Cheetah robot and the mirrored
arms and legs of the Atlas robot (refer to �g. 1 and �g. 3).
This replication introduces symmetries in the labeling (or
ordering) of these branches, which in practice enable the
interchange of role and con�guration of them under the
action of a morphological symmetry, to mimic the Euclidean
isometry.

As an example, consider the robot in �g. 6. The symmetric
mass distribution of this robot's base body, combined with
its replicated limbs, results in arbitrary ordering of its three
limbs. This symmetry allows the robot to replicate a120�

spatial rotation through a joint space transformation that
involves a permutation of its limb con�gurations and ensures
the equivalence of the robot's energy under the action of the

morphological symmetry. Similarly, �g. 1 shows how the
morphological symmetries of the Mini Cheetah robot result
in the arbitrary labeling of thefront/hindandleft/right legs.

5.3.1 Structure of the joint space action transformation
Assume the robot hasnk unique kinematic branches,
represented by the label setS = f s1; � � � ; sn k g. Each
branch si possessesndof (si ) 2 N DoF and is replicated
nrep (si ) 2 N times within the robot's kinematic structure.
The labels for the instances of each branchsi are denoted
asSi = f si; 1; � � � ; si;n rep (si ) g (see �g. 6b). As an example,
consider robot Atlas, featuring as unique kinematic chains
the leg, arm, and headS = f sarm ; sleg ; shead g. These
substructures are replicatednrep (sarm ) = nrep (sleg ) = 2
andnrep (shead ) = 1 times.

The action of a morphological symmetry in the joint space
results in a permutation of the roles of branches with the
same type, denoted asg . si;j := si;g ( j ) 2 Si , whereg(j ) is
the label thatj is mapped to under the permutation induced
by g. This leads to the decomposition of the joint space
con�guration space and its associated group representation:

g . si;j := si;g ( j ) 2 Si ; and

� Si (g)

– s i; 1
s i; 2

:::

™

=

– s i;g (1)
s i;g (2)

:::

™

j 8 i 2 [1; nk ]; j 2 [1; n rep (si )];

(18)

where� Ssi
(g) is the permutation representation acting on

the labels of the instances of branch typesi . Following our
example with the Atlas robot, the action ofgs in �g. 4b
induces a permutation of the left and right arm con�gurations
g . sarm; 1 = sarm; 2 and g . sarm; 2 = sarm; 1. Given that
these permutations do not mix the distinct branch types,
we can adopt a basis for the joint space con�guration
space leading to the decomposition of its associated group
representation, i.e.,

M := M [s1 ] � : : : � M [n k ] � Rn j ; and

� M := � M [s1 ] � � � � � � M [n k ] :
(19)

Each M [si ] :=
N n rep (si )

j =1 M si � Rn rep (si )n dof (si )

encapsulates the con�guration space of all instances of
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the kinematic branch typesi (see �g. 6b). Conversely,
M si � Rn dof (si ) represents the con�guration space of a
single instance of typesi . This suggests that the joint space
group representation� M is exclusively constructed from the
nk representations of each branch type, i.e.,[� M si

]n k
i =1 .

Intuitively, the transformation described by� M si
implies

an independent rotation/re�ection of the coordinate frames
attached to each joint within the kinematic branchsi . For
instance, when the branchsi is build from 1-dimensional
prismatic or revolute joints, its group representation� M si

results in diagonal matrices �lled with 1 and -1, describing
required re�ections on the axes of each DoF.

Equipped with the above-mentioned formalism, the joint
space group representation is de�ned as:

� M :=

" � M [s1 ]

: : :
� M [n k ]

#

; with � M [s i ] := � Si 
 � M s i
(20)

Where 
 denotes the Kronecker product. This matrix
product, in conjunction with the permutation of the
branch's con�gurations� Ssi

, is responsible for ensuring
that the group representation� M [si ]

applies the appropriate
rotation/re�ection of the joints coordinate frames across all
branches of typesi , as depicted in �g. 6.

5.3.2 Algebraic constraints in kinematic parameters
The approach delineated above provides insights into the
internal structure of the joint space group representation,
emphasizing the importance of the unique constituent group
representations� M si

necessary to de�ne the group action
in Q. Algebraically, the validity of the action of each
candidateg 2 GB can be veri�ed by checking whether the
transformation yields a kinematic structural symmetry—a
prerequisite for the existence of a morphological symmetry.
This requirement manifests as an equality between the linear
velocity of each body, transformed by the group action
g . _r si;j ;n , and the velocity of its permutation counterpart
_r si;g ( j ) ;n (see �g. 6b). Here, _r si;g ( j ) ;n denotes the linear
velocity of body n in the kinematic branchsi;g ( j ) . This
constraint is articulated, for anyn 2 [1; ndof (si )], as:

_r si;g ( j ) ;n = g . _r si;j ;n ;

Jt s i ;g ( j ) ;n (g . qjs )g . _qjs = g . Jt s i;j ;n (qjs );

Jt s i ;g ( j ) ;n (� M (g)qjs )� Tq M (g) = R gJt s i;j ;n (qjs ):

(21)

It is worth emphasizing that eq. (21) describes the
constraints in the kinematic parameters of the robot's
kinematic branches. An analog constraint is applied when
considering the angular velocities of the bodies.

5.4 Algorithmic identi�cation of a system's
morphological symmetry group

In previous sub-sections, we outline the necessary conditions
for the existence of morphological symmetry in rigid body
dynamics. These include speci�c constraints on the robot's
kinematic structure and on the mass distribution within rigid
bodies. While this analysis may seem extensive for simpler
systems or symmetry groups of low order, it provides a
fundamental framework for studying more complex systems
typically encountered in robotics. Such systems may have
a larger number of DoF or symmetries, where geometric

Identifying Morphological Symmetries
1: Identify unique bodies in the kinematic structure.
2: Identify the group GB of candidate MS, from the unique

bodies (eq. (16)).
3: Identify the unique kinematic structures

S = f s1 ; � � � ; sn k g. Their con�gurations spaces
M s i , and group representations � M s i

(eq. (19)).
4: Identify the instances of the kinematic branches Si =

f si; 1 ; � � � ; si;n rep ( s i ) g and their associated permuta-
tions � Ss i

(eq. (18)).
5: Build the group representation � M (eq. (20)).
6: Test each g 2 GB following eq. (21) and eq. (13).

Figure 7. Pseudo-code for identifying the morphological
symmetry group G in rigid body dynamics.

intuition alone may not be adequate. The pseudo-code in
�g. 7 provides a step-by-step guide for identifying the
morphological symmetry group. In the following section
we motivate our theoretical analysis by demonstrating the
practical bene�ts of identifying the morphological symmetry
group in the context of dynamic motion analysis.

5.5 Dynamics' harmonic analysis
In this section, we exploit the permutation symmetries in the
robot's joint space con�gurationM using abstract harmonic
analysis. Our objective is to elucidate the numerical and
modeling bene�ts of theisotypic basis, an alternative basis
set for M . Essentially, this basis provides an alternative
coordinate frame in which the dynamics of points inM are
decomposed as a superposition of independent and lower-
dimensional dynamics. Such decomposition leads to a �nite
number of subspaces, refer to as isotypic subspaces. Each
subspace represents a space of symmetry-constrained robot
con�gurations (see �g. 8).

This decomposition enables the description of any joint
space motion trajectory as a superposition of lower-
dimensional symmetric and synergistic modes of motions,
each governed by its own independent dynamics. We will
reefer to these directions of motion as the robot's NCMs
of motion (inspired by the analog term “normal vibrational
modes” in molecular dynamics (Dresselhaus et al. 2007,
chapter 8)). The quali�er ”normal” underscores the
orthogonality between the directions of motion associated
with each NCM. Furthermore, when the dynamics of each
NCM is independent of the other modes, the resultant
decomposition of the dynamics is refereed as DHA
(Ordõnez-Apraez et al. 2023).

To comprehend the decomposition of the dynamics, we
begin by characterizing the block-diagonal structure of
the joint space generalized mass matrix in the isotypic
basis. This structure is responsible for the independence of
dynamics between the NCMs.

Block-diagonal structure of the joint space generalized
mass matrix Recall that the group representation� M : G 7!
GL(Rn j ) implies that the joint space con�guration spaceM
is a symmetric space. Such spaces can be decomposed into
a direct sum of isotypic subspaces,M := M iso

1 � ? � � � � ?

M iso
n iso

, invariant under the action ofG (eq. (6)). That is, for
qjs 2 M iso

k , theng . qjs 2 M iso
k for all g 2 G. To achieve
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