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Abstract

We present a comprehensive framework for studying and leveraging morphological symmetries in robotic systems.
These are intrinsic properties of the robot’s morphology, frequently observed in animal biology and robotics, which stem
from the replication of kinematic structures and the symmetrical distribution of mass. We illustrate how these symmetries
extend to the robot’s state space and both proprioceptive and exteroceptive sensor measurements, resulting in
the equivariance of the robot’s equations of motion and optimal control policies. Thus, we recognize morphological
symmetries as a relevant and previously unexplored physics-informed geometric prior, with significant implications for
both data-driven and analytical methods used in modeling, control, estimation and design in robotics. For data-driven
methods, we demonstrate that morphological symmetries can enhance the sample efficiency and generalization of
machine learning models through data augmentation, or by applying equivariant/invariant constraints on the model’s
architecture. In the context of analytical methods, we employ abstract harmonic analysis to decompose the robot’s
dynamics into a superposition of lower-dimensional, independent dynamics. We substantiate our claims with both
synthetic and real-world experiments conducted on bipedal and quadrupedal robots. Lastly, we introduce the repository
MoORPHOSYMM to facilitate the practical use of the theory and applications outlined in this work.
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1 Introduction robotics. Thus, this approach significantly mitigates the
challenges of data collection in robotics.

Essentially, morphological symmetries are structural
symmetries of a robot’s body that allow the robot to
reconfigure itself to mimic some spatial transformations
(i.e., rotations, reflections and/or translations). The simplest
and most common example of such symmetries is the
bilateral/sagittal symmetry in humans and many animals,
where each side of the body is a mirror image of the other.
This symmetry allows individuals to easily mimic a mirrored
body pose by simply permuting the roles of their arms
and legs. While this bilateral symmetry is common in both
humans and robotic systems, robots can exhibit a broader
number of such symmetries. For instance, certain quadruped
robots have the ability to mimic up to eight distinct spatial
transformations, as illustrated in fig. 1.

The primary incentive for studying these symmetries in
practice is that they serve as a significant geometric prior

including symmetries and physics-informed inductive biases, ~When modeling and controlling the temporal evolution of the
into the learning process (Bronstein et al. 2021; Brehmer robot. This is because morphological symmetries manifest in

et al. 2023; Weiler et al. 2023; De Haan et al. 2023). the robot’s state vector space, equations of motion, control

These priors have been instrumental in the success and

interpretability of traditional computational methods for

modeling, estimation, and control. In this work, we TRobot Motor Intelligence — Heriot-Watt University

characterize the morphological symmetries of robot as a iDynamic Legged Systems — Istituto Italiano di Tecnologia (IIT)
. . . . Computational Statistics and Machine Learning — IIT

type of thSICS 1nf0rr.ned geometric prior. When eff@ctwely “Institut de Robotica i Informatica Industrial, CSIC-UPC
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enhance the sample efficiency and generalization of machine  corresponding author:
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The field of robotics has recently witnessed a surge in the
adoption of data-driven methods for modeling, estimation,
and control. This trend is primarily fueled by several
factors: (i) the ability of these methods to process complex
data measurements, such as depth images, tactile sensing,
and time-series data; (ii) their capacity to handle dynamic
phenomena that are difficult to model, like friction and
backlash; and (iii) their potential to bypass restrictive
modeling/mathematical assumptions, such as the Markov
property or ideal actuator dynamics. However, these methods
often require high quantity and quality training data, which
can be challenging, risky, or even impossible to obtain in
robotics, especially for agile behaviors.

To mitigate this data dependency, contemporary machine
learning methods aim to incorporate geometric priors,
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Figure 1. (a) Caley diagram of the morphological symmetries of the Mini Cheetah quadruped robot (Katz et al. 2019) (see
animation'). The robot’s symmetries relate any system state with eight distinct symmetric states, each exhibiting identical or
equivalent dynamics. These symmetries stem from the robot’s ability to reconfigure its state, emulating three orthogonal reflections
in 3D space: reflection with respect to the yz-plane (gs), Xz-plane (gt), and Xy-plane (g¢). The robot’s symmetry group is

composed of the three reflections and any composition of these transformations (e.g., gs
C,="fe;gsg Te;geg fe; grg (see fig. 2). (b) Morphological symmetries manifest in the robot’s

G:K4 C2:C2 Cz

gt), resulting in the group

dynamics, control policies, and both proprioceptive and exteroceptive sensor readings (e.g., contact points/forces, RGBD images).
Consequently, any controlled trajectory of motion [(g¢; Gt)]{=o, along with the trajectory of sensor readings, can be augmented to
feasible controlled trajectories and sensor readings for each of the 8 symmetric states [(g . Gt; g . Gt)]i=o for all g 2 G (see
animation?). (c) These trajectories, conceptualized as point trajectories evolving within the robot’s configuration space

Q = SE3

M, are decomposed into the 6-dimensional manifold of the robot’s base configurations (the special Euclidean group

SE3) and the 12-dimensional manifold of joint-space configurations M. Morphological symmetries, imposing geometric constraints
on SEz and M, serve as a physics-informed geometric prior useful in robotics methods (refer to section 6).

policies, and proprioceptive and exteroceptive sensor data
measurements used to perceive the robot’s environment.
Intuitively, when a person encounters an obstacle with their
right leg while walking, the optimal visuomotor control
response, required to react and balance, is essentially a
mirrored version of the reaction if the mirrored event happens
with the left leg. This is because the dynamics of both
mirrored body poses at the moment of contact are equivalent
(up to a reflection), implying that the optimal control
policy should also be symmetric and respond equivalently
to these mirrored events. The same reasoning applies to the
8 equivalent states of the Mini Cheetah robot in fig. 1.

Despite the significance of this geometric prior, mor-
phological symmetries are often overlooked in both data-
driven and analytical methods for modeling, control, and
estimation. This is primarily because analytical models of
rigid body dynamics, commonly used in robotics, implicitly
leverage these symmetries due to their accurate represen-
tation of physics. Therefore, incorporating morphological
symmetries into data-driven methods can be seen as a way to
transfer one of the key inductive biases in analytical models
to the data-driven paradigm.

Furthermore, analytical models can significantly benefit
from the explicit exploitation of these symmetries. As
detailed in section 5.5, the symmetric structure of a robot
state space can be leveraged, through abstract harmonic
analysis, to identify a decomposition of the robot’s state
space into orthogonal subspaces. This decomposition allows
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us to model and control the robot’s dynamics as a
superposition of independent lower-dimensional dynamics.

Structural symmetries in physics The symmetries we
study in this paper in the context of robotics share
similarities with structural symmetries in particle physics,
often referred to as point-group symmetries (Dresselhaus
et al. 2007, 8.3). In physics, these symmetries arise from the
replication of identical particles or atoms within molecules,
atoms, or crystal structures. The principles underlying
these symmetries, along with the analytical and data-driven
methods used to exploit them in both traditional and
contemporary atomistic and molecular dynamics (Cornwell
1997; Noé et al. 2020; Jumper et al. 2021; Klein et al.
2023), can be transferred to robotics. However, the utilization
and implications of these symmetries in robotics diverge
significantly from those in physics.

Unlike physics, where the primary objective is to model
dynamics, the focus in robotics is on controlling these
dynamics. Moreover, the morphology of a robot is a stable
and often controlled aspect of the system, unlike in physics
where symmetries are subject to temporal changes with the
gain or loss of particles. This stability in robotics renders
these symmetries a consistent inductive bias, unaffected by
time, specific motion tasks, or the operational environment.
These properties, combined with the precision in the design
and manufacturing of mechanical systems, and the numerical
benefits associated with morphological symmetries, provide
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a design space of robotic systems for optimally leveragirexistence and the identi cation of the symmetry group.

this geometric prior. There, we also introduce the use of harmonic analysis on
the system'’s joint space. Section 6 provides an overview of
Contributions morphological symmetries applications, such as data aug-

. . . . mentation, equivariant/invariant function approximation, and
This work introduces a comprehensive theoretical and pr q bp

tical K for studvi dl : holoai ynamics' Harmonics Analysis. Finally, section 7 presents
Ical framework or studying and leveraging morpnologiy, ,, experiments and results, with concluding remarks given
cal symmetries in robotics. These structural symmetneﬁ, .

. ) . in’section 8.

inherent of a robot's body, extend to symmetries in the

system's state space and dynamics. Our aim is to formally

de ne these symmetries, characterize their conditions & Background

existence, "’.‘”d elucidate thelrllmphcatlons N bqth analytic lere, we provide an introduction to group and representation
and data-driven methods. While these symmetries are reaq

identi able in simol ith basi gory, the mathematical frameworks essential for studying
denti able in simple systems with basic symmetry grOUp%gmmetries. We aim to familiarize readers with the key

such as biIat_eraI _sy_mmetry, ourthe_oretical frame\_/vork Pavg ncepts and notation that will be used throughout this
the way for identifying and exploiting morphological SYMarticle. As these elds might be unfamiliar in the context
metries in complex real-world robotic systems. This includ robotics, we suggest an initial read-through for a

hufrpanc();ds, (t:]_uadrupegs,t wgeeled EO'EOF" dronﬁ_s,hmodu neral understanding, and revisiting each concept as they
SOTL, and confinuum robots. Lur contrioutions, which can tite  yoferenced in the following sections. For a more

summarized as follows, involve: comprehensive introduction, we recommend the works of
E Characterizing how morphological symmetries manife$¥eiler et al. (2023) for a machine learning perspective, and
as symmetries in the system's state space, sen&mlig (2005); Lanczos (2020) for insights into robotics.

readings, the equivariance of the equations of motion and f bi
optimal control policies. Symmetry Groups In essence, a symmetry of an object,

whether it be a vector space, a manifold, or a robot, refers
E Identifying the generalized mass matrix's equivariancg an invertible transformation that preserves a signi cant
as the de ning property of symmetric robotic systems. property of the object, such as the vector space metric, the
In the context of rigid body dynamics, this enable us to: ~ curvature of the manifold, or the energy of the robot.
_ » . Group theory studies sets of symmetry transformations as
h Establish the conditions for morphological symmetry .t mathematical constructs independent of the objects
eX|st(?nc§, dened as analytical constraints on @iy, \which these symmetries are associated. This abstraction
robot's kinematic and dynamic parameters (SeCtions 32,65 hene cial in our work, as it facilitates the analysis
and 5.3). Using these, we introduce an algorithig yhe symmetries inherent in the laws of physics, various
for the systematic identi cation of these symmetrieg,qiic systems, and sensor data measurements, all as
(section 5.4). _ _ _ distinct manifestations of the same symmetry group.
h Apply abstract harmonic analysis to exploit the sym- |, 15 apsiract form, a symmetry group can be expressed

metric structure in the robots joint space (Section 5.5\ 5 set of invertible symmetry transformations, denoted
This technique enables the decomposition of joint SPage G = fe- a: 0, % g :1:g. This set is closed under the
- y » Y1 y » oY

dynamics into a superposition of simpler, independerg erations ofcomposition : G G 7! G, and inversion
lower-dimensional dynamical systems, a concept 1:G 7! G. This implies that for anyg::g, 2 G, the

term as Dynamics’ Harmonic Analysis (DHA). compositiong; @, is also a member o&. Similarly, for

To promote the use of the theory and tools developed amyg 2 G, the inverseg™® belongs toG and satis esg?
this work, we present the repositorydvpHoSyMM 2 which g = e, wheree is the identity (or trivial) transformation.
facilitates the use of data augmentation, DHA, and tHéroups are characterized by their structure, de ned by
construction of equivariant/invariant neural networks, usirifjeir orderjGj, which represents the number of unique
EscNN(Cesa et al. 2021), for a growing library of symmetri€lements in the group, and the composition rules of these
robots. elements. For example, consider the simplest group, the

This paper extends our previous work (Ordonez-Apraég ection group C, = fe;g jos = eg, composed of the
et al. 2023), by providing a more comprehensive analydidvial transformation and a re ection transformatian,
of morphological symmetries with an extended study on tiaracterized bgs := gs gs = €.
conditions for their existence in rigid body dynamics, and b

introducing the use of abstract harmonic analysis to leverage®tP Structure and subgroups e e —u g
the symmetric structure of the robot's joint space dynamics.0 comprehend - the struptgre / /
of a (symmetry) group, it is ¢ g '
. often bene cial to break it down
Outline into simpler symmetry groups & O 4 o
We begin by introducing group and representation theoand analyze how these smaller /
from a robotics perspective in section 2, followed by a digiroups interact to form the : .

cussion on symmetries in Lagrangian mechanics in sectiori&ger structure. For example,
The concept of morphological symmetries is presented the symmetry groupG of the
section 4, while section 5 delves into their application iMini Cheetah robot in g. 1, Figure 2. Structure of the
rigid body dynamics, including the conditions for symmetrjs of order jGj =8, and can 9P G=C C C
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be de ned as the direct product symmetric counterpad . X, or as a change of basis .

of three distinct re ection groups = C, C, C, as Specically, if Sx = fxg; i Xng is a basis set for the
depicted in g. 2. A subset of a group of symmetriesyector space, the action gfon the basis set yields another
G° G, is a symmetry subgroup if the subset is closedhlid basis set). Sx := fg. Xo;, ;9. Xn0.

under composition and inversion, which is denote@8s: The action of a group element on a linear map's matrix
G. In our example above, the group contains three representation, which rede nes the map in the symmetry-
distinct subgroups of two elements eadle; g;g;fe;gg, transformed basis, is referred to as tomjugate actionLet
and fe;g g, depicted in g. 2. Although these threeA : X 7! X be a linear map on the symmetric vector space
re ections describe distinct transformations, these groups. The map's matrix representation depends on the chosen
are structurally equivalent dsomorphic(iso “same” and basis forX . Therefore, under a change of basis by a gigen
morphic “shape/structure”) to a re ection group. Thisthe map's matrix representation is rede ned as:

means that, there exists a bijective map between the elements

— -1,
of the two groups, and this map preserves the group's g A= x(9A x(@ 2)
structure. We denote the isomorphism propertyessg = The group of rigid transformations in Euclidean space In
fe;gg=fe;gg= C,. the context of robotics, a crucial group of symmetries is

he group of Euclidean isometries (or rigid transformations)

Group actions We are mostly interested in the action O{n d-dimensions. This group is usually denoted as the
a symmetry transformation on speci ¢ objects, such as ttpﬁ

\ atrix Euclidean groufcy := Og n T 4 (typically, d refers
robot's state and sensor data measurements. Therefore, We 2 i cional space, but we present some simpli ed

need to de ne how specic objects_are transformed b)éxamples in two dimensions = 2). Here, Oy represents
fm e]lcementt_gz S.GFormaIIy;St_hed actlc()jn of a sy.meetrythe orthogonal group, which includes all rotations and
ransformatiorg on a sesis dened as a map: .re ections, andTq4 represents the translation group dn
S7! S, taking an element of the group and set and returni ensional space. To de ne a morphological symmetry,

anothgr .set element, i.eg,. s 2 S !f $2 S. This map is we study this group in is abstract (non-matrix) form.

associativeunder group gomp_osmor(gl 92)_' ST 0. Speci cally, let Ge = Eq denote a grougsomorphicto

(G - s), and respects the identity transformations = s. Eq, where transformations are abstracted from their usual
i d-dimensional space of action. Throughout this work,

Group representations we dene distinct representations for these symmetry

To de ne a symmetry transformation not on a set but otiansformations. However, when we use these symmetries

a vector spacX R", we utilize agroup representation as transformations of points, vectors, and spatial vectors in

By de nition, a group representation on the spaxe d+ 1-dimensions, we default to the standard homogenous

is a map x : G 7! GL(X) that assigns invertible linear matrix representation:

maps to group elements. When choosing a basis set for = R _

the vector space, this linear maps will be represented ret(9) = Xg= 7Y 2 Eqg; 3)

as matrices, enabling us to model the group composition Ri(0) = Rg2 04 j802 Gg;

operator as matrix-matrix multiplication, i.ex (g1 g) =
P P x (1 Ge) where rea represents eacly2 Gz as an homogeneous

, Symmetry inversion by matrix inversion, . . = . .
Xég_ll)) 2(92)( )X and tr):e action ofaZ mmetrv on a Oin{ransformanon matriX g 2 Eq. This isometry is comprised
xd A y y POINGf a rotation/re ection matrix Ry, a member of the

X 2 X to be expressed as a matrix-vector muItipIicationdrtho onal aroupOu. and a translation vector . 2
i.e.,,g. X := x(g)x 2 X. Note thatGL(X) is the group 9 group Ya, 9

. . . RY. The representation s, defaults to assigning the
of invertible linear maps orX. Whenever a vector space . . :
. . rotation/re ection matrix Ry to each g2 Gg. When
possesses a group representation, we refer to it as.a . ; : . .
: discussing rotation, re ection, or translation actionsdn
symmetric space . : ! .
dimensions, we typically use standard robotics nota¥gn

G-invariant and G-equivariant maps A map between two andR g instead of g« (g) and r¢(g), respectively.

symmetric yector spa(_:ef; :_X 'Y often fall_s V_V'th'n Inequivalent representations of Euclidean isometries The
two categories: group invariant or group equivariant. The ot ation behind the distinction betwee®. and the
map f is consideredG-invariant if its output remains g jijean groupEy, is to establish distinct, inequivalent
unchanged regardless of the transformation applied 10 the esentations of Euclidean isometries. In other words, to
Input. Instead,_ amap 1S con&dgr@dequwanant when the de ne alternative ways for applying rotations, re ections,
result Of applying a t_rans_formafuon to the input, folloyved BYind translations to the robot's state. Speci cally, as detailed
computing the function, is equivalent to rst computing th(—fn sections 4 and 5, we de ne a morphological symmetry by

function and then applying the transformation to the OUtPLPepresenting each)2 Ge as a transformation of the robot's

Formally, these conditions can be expressed as follows: joint space con guration.

B _ . . . In this context, two representations of the same group,
V= f({yx(g)xﬁ and |Y(g)y _{E( X(g)XQJS 92GiX2X:  Yened on the same spaced; % : G 7! GL(X), are
G-invariant G-equivariant O considered equivalent, denoted &s(g) b (g), if they
can be related by a change of basisXin That is, if there
Linear maps, change of basis and the conjugate action €xistalinear mag : X 7! X, such that:
The action of a symmetry transformatigncan be viewed a b e asn_ — b a4 .
as a point transformation, mapping each pair2 X to its x(@  x(@ T k(@=Tx(@T"j8g26G: (4)
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Figure 3. (a) The temporal evolution of the robot Boston Dynamics' Atlas robot, when subjected to a horizontal spatial re ection,
results in an unreachable symmetric state (gs . q;gs . 4), consequence of the physical inability to apply re ections to rigid bodies
(Selig 2005, 2.5). Despite this, the dynamics of the original state (g; @) and its virtual counterpart are equivalent up to a re ection of
space, maintaining their temporal evolution related by the symmetry gs. (b) Similarly, the temporal evolution of the original state and
a horizontally translated state (gx . 4;0x . ) remain equivariant, with gx being a feasible symmetry transformation.

Decomposition of group representations Given two group irreps describing rotations by an angbe=a, : .., which
representations,x and v, acting on distinct vector spacesrequire a2-dimensional spaceXt -, R? C)to act on.
X and Y respectively, we can construct a new group This implies that as y, ‘ «, the associated
representation on the spacé Y . This construction, isotypic subspace is equivalent &, Xk Xk.
known as the direct sum, effectively combines the tw8@onsequentlyXx will only feature the subset of symmetry
representations into a block-diagonal form. Formally, thieansformations associated with tineep . This property is
direct sum of two representations is de ned as follows:  what ensures the orthogonality between isotypic subspaces
" . (see Shur's lemma (Knapp 1986, Prop 1.5)), a property we
v (@= x(@ v(@= *9 ° jgg2G: (5) exploitinsection5.5todecompose the robot's dynamics.

0 v (9) i . . . ", .
Lastly, we highlight the isotypic decomposition is
In sections 6 and 7, we utilize the direct sum to build grougchieveyd gmpl;g b;{g nding tlhe y;gpropriate pch;ge Iof

representations on spaces dgrived fr.om different sensor q%@isT : X 7' X that exposes the block-diagonal structure
measurements. Conversely, in section 5.5, we decomp%‘%crived in eq. (6). For further details, refer to Golubitsky

the representation acting on the robot's joint space infg ., (2012, Thm-2.5) or Ordiez-Apraez et al. (2023)
a block-diagonal form. This decomposition, known as an ’ ' ' '

isotypic decompositioa key result from abstract harmonic . . .

analysis), will provide numerical bene ts for the analysis angf Symmetries in Lagrangian mechanics

the simulation of the system's dynamics. In the context of dynamical systems, a symmetry is
) ) ) ) B interpreted as a transformation that associates distinct system

Harmonic analysis and the isotypic decomposition OUr  giate5 with identical or equivalent dynamics. Essentially,

use of harmonic analysis in modeling robotic systemgis means that if two states are related by a symmetry

reduces to leveraging the theoretical and numericgh,qformation, the temporal evolution of one mirrors the

ad‘,’a”tages ofa speci C_bas's, ofasymmetrlc vector space symmetry-transformed temporal evolution of the other (see

This basis, known as thisotypic basishas the property that g. 3a and animation 2).

it exposes the decomposition ¥f into orthogonallower- To formalize this property in robotics, we shall study

dimensional subspaces, along with the decompostior of symmetries from the lens of Lagrangian mechanics, a

into a direct sum of representations on each subspace: modeling framework applicable to a wide range of robot
” ” Niso types, including rigid body, continuum, soft, and modular
X=Xy "Xz C Xng = Tk K (6) robots. In this framework, the robot's state is determined
X X1 X2 Xng — Eii‘i X - by the position and velocities of itsq degrees of freedom
(DoF), dened as the independent generalized position
The number of isotypic subspaces is determined by tESordinatesq 2Q R" and velocity coordinatesy 2
Niso Unique irreducible representatioriggps) f gy of TqQ R"s.WhereQ denotes the constrained con guration
the groupG. Each isotypic subspace’s representationis  space (a smooth manifold) (Lanczos 2020, chpt 1.5), and
constructed as the direct sum of multiple copies of the SameqQ represents the con guration tangent spacegafa
type of irreducible representations, i.eq,  « «- local tangent plane). Thus, the system's state is numerically
Theseirreps are the fundamental building blocks of anytepresented as a point in tiphase spacéq;q) 2 TQ =
group representation db. Eachirrep,  :G! GL(Xk), Q T 4Q R2?"e.Furthermore, the system's dynamics (i.e.,
describes a unique symmetry pattern, characterized byth@ temporal evolution of points iff Q) are governed by
subset of symmetry transformations within the group, anfle equations of motion (EoM). These are derived from
the associated spacé is the smallest nite-dimensional the Euler-Lagrange differential equations, according to the
space that can express tireep symmetry pattern. For principle of least action (Lanczos 2020, 11.11):
instance, as our grou will be subgroups of the Euclidean delsy @Lqq
group, an examplerep is that of a re ection symmetry (), a @1_ @’ =09 ‘VIE(ZJ)? = |(?Z;q%; ©)
which require al-dimensional line to act onX; R), or i ovine

? ?

inertial moving
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d @g;q) @UKa;q) _ ,_ d@Ug.a;g.q) @Kg.gig. )

a @ @ d @.a . @g.q) -

d@uga @uaa_,. d@Ug.aig.q @ @uKg. 9;9. @) @

a @ @ ,dt @ @g. q) e @g. a) 9)
d@uUgiq) @Uaia) _ ,_ d@Kg.gig.a) @Ug. dgig. Q) o(g) * @g.q _ @g.q9) _ o(0)

a @ @ dt @ @ @ @

g.-M@e (q;9]=0=M(g.9)g.- 4 (9.9;9.9)=0

which, in their general form, can be stated as aRroposition 1. (Symmetric robots exhibitG-equivariant
equivalence between inertial and moving forces in thmass matrix and control policies).Reframing eq(9) as
space of generalized coordinates. In this spate, Q 7!  an equality constraint of inertial and moving forces between
R"« Na represents the generalized mass matrix functiosymmetric states, we deduce that for a symmetry to exist,
and :TQ 7! R" denotes the generalized force eldboth the generalized mass matik and force eld need
function, determining the effective force result of controlo beG-equivariant, i.e.,
ac'uo_ns,. contacts, internal constramts such as joint limits, g M(q)= M(g. q); and
gravitational forces, and external disturbances. These EoM ) . . (10)
are entirely derived from the Lagrangian scalar function 9 (@@= (9.99.
T Q 7! R, , which measures the excess of kinetic endgy The equivariance oM implies that the inertial properties
T Q 7! R, over the energy associated with mechanical wo the con gurationg . g are equivalent (up to a symmetry-
functiorf U:TQ 7! R,, that is L(q;q):= T(q:Q) induced change of basis) to those of the con guratidrefer
U(q; q) (Lanczos 2020). to eq. (2)). Similarly, the equivariance ofrequires that both

In this context, a symmetrg is de ned as anenergy the system's passive dynamics and control policy Gre
preserving transformation relating equivalent states iffduivariant functions. As discussed in section 6.2, optimal
distinct regions of the phase space (Wieber 2006). THigntrol policies for symmetric robotic systems are inherently
property is formalized as th&wvariance of the system's €guivariant.

Lagrangian under the symmetry transformation, formally To build an intuitive understanding, consider the .Atlas
expressed as: robot shown in g. 3a. Here, the symmetey, representing

a re ection of space, relates two symmetric system states
De nition 1. (Symmetric robotic system). Consider a (qq:qg) and(gs . qo;0s . do). As per eq. (8), this symmetry
robot with generalized position coordinates2 Q  R",  arises from their shared kinetic and potential energies, as
velocity coordinates) 2 TqQ R"¢, and LagrangianL : well as the equal work done by instantaneous contact forces.
TQ 7! Rs. The system is deemed to possess a symmetdhsequently, by eq. (9), the instantaneous dynamics of
groupG if its Lagrangian isG-invariant. That is if: both states are linked by the symmetry transformation. This
N . . L ) means that the system's motion trajectory originating from
L@@= L@ ag.a 892G (Ga2TQ: @ (9o; do) will mirror the motion trajectory starting frorfgs .
The symmetric statgg. q;g. q) is derived through a %o;Gs - o), after applying the transformatiag. Moreover,
linear transformation given by o(g)d; o(g)q). Here, by_eq. (1_0), _the symmetric relationship between the motion
o(g) is the group representation in the con guratiodraectories is _mamt:_’:uned as long as the force_s acting on
space, ando(g) = 1,0(0), giventhay. g := +o(g)q = both systems, including contacts and.control actions, remain
dg. M= = o(g)q. Stategq;q) and(g. q;g. q), related related by the symmetry transformation. A similar analysis

by a symmetnyg, as in eq. (8), will henceforth be denoted af0!ds when considering the translation symmetry gréup
symmetric states Tx for the Atlas robot ( g. 3b), where eaah2 T, represents

a horizontal translation of the robot and the environment.
G-equivariant equations of motion From a practical

perspective, the importance of studying symmetry sterﬁgas'ble and unfeasible symmetries In our analysis,

from the fact that these transformations relate the dynam?ﬁ’g distinguish betweerfea_sib_lesymmetriesz which yield
of a state(q; g) with that of the symmetric stat@ . q: g another reachable state within the constrained phase space
q). This suggests that modeling and controlling our robot(tg' 9:9. A 2TQ, for any given statgq;q) (e.9.,92

system in the vicinity of a single state suf ces to model angx in-g. 3@’ and infeasible s_ymmetnes, which lead to :
control the robot in the vicinitpf all symmetric states. states outside of the constrained phase space. Infeasible

This geometric property is characterized analytically b mmetries can occur wheginvolves are ectl_on of bod_les
the G-equivariance of the system's EoM, obtained fro see g. 3a), or when the resultant symmetric state violates

deriving the EoM in the original and symmetry transformeg®me state constraint, such as joints position/velocity limits.

coordinates, for any 2 G, as depicted in eq. (9) and inFloating base robotic systems In our analysis of locomot-
Wheeler (2014). ing and xed-base robotic systems, we assume, without loss
The G-invariant Lagrangian and th&-equivariant EoM of generality, that our robot is a oating-base dynamical
are equivalent statements that de ne the conditions undgystem evolving irB-dimensions. This allows us to decom-
which a symmetry exists. Specically, eq. (9) de nes gose the state intg = (rg; &;0;s) andg = (rgs;Wg;qjs ),
symmetry as a transformation that relates the instantaneeusererg 2 R® and 2 R3 correspond to the base's position
inertial and moving forces impacting symmetric statesnd orientation, respectively, ang, 2 R® and wg 2 R3

This property provides a pathway for characterizing aneépresent the base's linear and angular velocities, respec-
identifying properties of symmetric systems. tively. Similarly, gis 2 M R" describe the joint space
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Figure 4. (a) Atlas robot undergoing an unfeasible horizontal spatial re ection gs, leading to an unreachable symmetric state

(gs . 9;0s . q). (b) The same robot experiencing a feasible horizontal spatial re ection gs through a morphological symmetry,
resulting in a reachable equivalent state (gs . q;ds . Q). (c) Mini Cheetah robot subjected to a feasible 180 rotation g, , yielding the
equivalent state (gr . q;0r . Q). (d) The same robot undergoing a feasible 180 rotation g through a morphological symmetry,
leading to the reachable equivalent state (gr . q;0r . Q).

con guration and velocity coordinates of the robotls = the robot experiences a feasible state transformation. This
ng 6internal DoF (Ostrowski and Burdick 1996). transformation adjusts the robot's state(t@ . 4;9s . @), a

The 6-dimensional (minimal coordinate) representatioreachable and dynamically equivalent statgde. d;gs .
of (rg; g) and (rz;wg) is advantageous for statedq). These distinct symmetry transformations of the robot's
interpretability and the derivation of the EoM (eq. (9))state represent two inequivalent representations (refer to
However, for computational ef ciency, algebraic simplicity,section 6.2) of the action of the re ectional symmetyy,
singularities and the non-commutative nature of rotatiorie ned as: -

in 3-dimensions, rigid body con gurations in space (G . 90 . Q)= €"xgsx5_."xgs>LB_S and
are represented in practice in homogenous matrix form= = ¥ = Gis g )
(maximal coordinates). Specically, the base's position (0 qigs Q)= Yo BX gy . XosXBXg o .

con guration is represented byXg:= Re's 2 SEy, s m(g)ds T Tom (9s)Ts
where Rg 2 SOy is the rotation matrix representingThe former state transformation, resultinddg . q;gs . Q),

the base's orientation. Similarly, the_base's velocitgescribes the standard action of a re ection isometry, which
con guration is given byXg := el & 2 se;, where involves re ecting the robot's rigid bodies while maintaining
[we] 2 sqyis the skew symmetric matrix representation ofhe joint space con guration unchanged (or invariant). In
the angular velocityv g (Sola et al. 2021). With a mild abuse contrast, the action of a morphological symmetry, denoted
of notation, we will hereafter represent the system's statg the operator, describes a feasible state transformation
asq=(rs; s:0s)' (Xs:0s),andg=(rs;Ws;Qs)"' that results in the reachable statgs . g;gs. Q). This
(X=s:0qs). This step is required to de ne the action oftransformation includes a reorientation of the base's lpdy
euclidean isometries ofrg; g) and (rs;wg) in matrix Xpg:= X g XX éﬁ 2 SEy (refer to eq. (2)), coupled with

form (see eq. (3)). a non-trivial transformation of the joint space (or internal)
con gurationg. Qjs := w (0s)0js -

) . A similar analysis applies to the Mini Cheetah quadruped

4 Morphological Symmetries robot, which exhibits a morphological symmetry group

Morphological symmetries are fundamentally associat&@i order jGj =8. Focusing on the subgroupe;gg <
with the capability of speci ¢ robotic systems to emulaté®> 9- 4c illustrates the standard action of the isometry
Euclidean isometries—such as spatial rotations, re ectior, depicting a feasiblel80 rotation of both the robot
or translations—through feasible state transformations. TI}§d its environment. This feasible transformation leads to
implies that the robot can reach distinct state con gurationg]e reaphable symmetric statg S Q). In contrast,
all dynamically equivalent to the state result of applying- 4d illustrates the morphological symmetry action of
Euclidean isometries to the robot. A de ning feature of thesd - This alternative transformation results in a distinct
symmetries is that they are inherent properties of the robS¥Mmetric state(gr . q;g- . q) that preserves dynamic
unaffected by time, speci ¢ motion tasks, or the operatingduivalence tdg: . a; g . Q). . _
environment. They stem from morphological or structural !N Poth examples, the standard action of a Euclidean
similarities resulting from replicated kinematic chains antfometry g2 Ge alters the robotand its environment,
body parts with symmetric mass distributions. resuling in a system stat¢g. q;g. q) that may or
Before introducing a formal de nition, let us consider™@ Mot be reachable. In contrast, the action of a
the Atlas humanoid robot, which possesses the simpl&dpPhological symmetry de nes deasible robots state

morphological symmetry group, the re ection gro@= transformation, resulting in a reachable stdte. q;9g .

C,. In g. 4a, the robot and its surrounding environmenf) that is Qynam|cg||y equwglent tdg . q;‘g_ q). This

are subjected to an unfeasible re ection transformatioHf’meormat'on en_talls reorienting the robot's ba_se and non-
which involves the physically unattainable re ection Oitrlwal tr_ansformatlon of |Fs joint space con_guratlon. These
rigid bodies, leading to the unreachable symmetric stafgoperties can be formalized for any robotic as follows:

(0s. Q;0s . Q). In contrast, g. 4b illustrates a scenarioDe nition 2. (Morphological Symmetry). Consider a
where the environment undergoes a similar re ection, yebbot with generalized position coordinates2 Q R"«
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and velocity coordinateg| 2 TqQ R"¢. LetL : TQ 7! Atlas robot can mimic a spatial re ection due to its sagittal
R denote the system's Lagrangian. An Euclidean isometsymmetry and duplicated limbs, while the Mini Cheetah,
g2 Gg is deemed a system's morphological symmetry if thveith its replicated legs and symmetric cuboid torso, can
action has two inequivalent representations yielding distinetmulate three spatial re ections.

symmetric state§y . ;9. @) and(g . g;9. 4), being(g . To understand these morphological constraints, we are
g;0. Q) areachable state. That is if: required to delve into a speci c type of a robot architecture.
In the following section we focus on rigid body dynamics,

L@@=1L(g. a9.- 0= L(g.g;i9.a however, note that the analysis presented can be easily

i8(q;a);(9. 0;9. W2TQ; (12) adapted to continuum, soft, and modular robots.
(9-9;0. 9 6(9.a;9. Q:

Hereafter, we denote the morphological symmetry group 8f Morphological symmetries in rigid body
a robotic system a&. This group comprises all Euclidean  Systems

isometries that satisfy denition 2, that &6 Ge. Ina |, g section, our objective is to characterize the

nutshell, the action of a morphological symmetry signi €gy,yjications of morphological symmetries in rigid body
an alternative pathway for applying specic rotationsg qtems. These systems consist iof interconnected

re ections, and translations to the robots state. rigid bodies evolving inEq. Given that symmetries are

Modeling the dynamics of symmetric systems A morpho- transformations that preserve energy (de nition 1), we aim

logical symmetryg2 G can be viewed as a point transi0 discern the symmetry constraints on the kinematic and
formation in the robot's con guration space, linking anydynamics parameters. Concretely, we analyze the conditions
reachable statéq; q) to its set of symmetric states, featurof G-invariance of the system's kinetic enerdy(q; q) =

ing equivalent dynamicsienoted a&(q;q) = f(g. q;g. T1(9.9:9. Q.

d) j g2 Gg. This relationship is a crucial geometric prior

when modeling the system's dynamics, as it requires afyl Rigid body systems

optimal analytical or data-driven model to Beequivariant The kinetic energy in rigid body dynamics is calculated
(Ordaiiez-Apraez et al. 2023, Proposition 2). by summing the energies of all constituent bodies in
In fact, analytical models of rigid body dynamics forhe systemT (r;w) = % Eb mkr_Lsz + WLl kW, where
systems with morphological symmetries are inhere@ly m, 2 R,, 1, 2 RY 9 r, 2 RY and wy 2 R® represent
equivariant due to their reliance on the analytical generalizgge mass, rotational inertia at the center of mass (CoM),
mass matrix function (eq. (10)). For symmetric robotgnear and velocity of body, respectively. Although this
without analytical or tractable dynamics models, suc§uantity can also be expressed in terms of the system's
as continuum, soft, or modular robots, morphologicgfeneralized coordinates and generalized mass matrix
symmetries provide a valuable geometric prior, which im(q;q) = %Cﬂ M (q)q, we exploit the decomposition of the
practice could improve the generalization of data—drivegtate into its oating-base and joint space con guratimﬂs
models and mitigate the challenges posed by the curse(gf,; g ). This is done to study the invariance of the kinetic
dimensionality (ngglns et al. 2022; Bietti et al. 2021) FOénergy of the Oating_base bOdK/B independenﬂy from that
more details, refer to section 6. of the joint space kinetic energfy . These quantities are

Control policy constraints By proposition 1, a robotic expressed as:

system with a symmetry grou@ is required to possess

I |
a G-equivariant control policy, as non-equivariant control To(Xs)= SMelsls + Wglswe and

forces break theG-equivariance of the system's EoM T (Gie : Qs ) = 1 M (e ) s - (13)
(eqg. (9)). This property is of special value in the case M (G2 Gis )= 5 G M Qs ) Qs -

of morphological symmetries, considering that, under mildhere

assumptions, optimal control policies of symmetric systems oy 1

are inherenthG-equivariant functions (Zinkevich and Balch g )= " 3;,(qjs )! micde,(js )+ Ir, (ajs ) Tedr (as)  (14)
2001), as detailed in section 6.2. k

In essence, this implies that for a bipedal system such gs tes the ioint lized i fructed
the Atlas robot ( g. 4b), the optimal control policy is an enotes the joint space generalized mass matrix, constructe
from the mass, inertia, and the position and orientation

ambidextrousolicy. That is, the optimal action for a state .
POICY P JacobiansJ;, 1 Q! RY " and Jg, :Q! RY M of

e e STMIeeach.body. These Jacohans e the siatedependen
systems with larger symmetry groups, such as the Mimapp_mgsfrom generallzedveIOC|tlistotffé kody's linear
Cheetah robot depicted in g. 1 (see animation 1). (i = Ji, (gjs)qs) and angular ("wi = Jr, (Gjs )Gs)
velocity in Euclidean space, relative to the oating-base
Morphological constraints The presence of morphologicalbody's frame (Wieber 2006).
symmetries in robotic systems, such as the Atlas robot ( g. 4) The computation of these Jacobians relies on the system's
and the Mini Cheetah robot (g. 1), is closely linked tokinematic parameters, which detail the relative positions and
the G-equivariance of the robot's generalized mass matrorientations of links and joints, as well as the system's
(eq. (10)). This property arises from symmetries in maskynamic parameters, which include the mass and inertia
distribution and the duplication of bodies and kinematiof all bodies. Since the kinetic energy is dependent on
chains, consequence of proposition 1. For example, thtiese parameters, the presence of a morphological symmetry
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is an inherent characteristic of bodies with symmetrical
mass distributions. This property introduces redundancy in
the selection of orientation and handedness of a reference
frame attached to the body's CoM and aligned with the
body's principal axes of inertia. Consequently, this implies
the existence of a group of symmetry transformatiGas

Ge that can alter the body's con guration while preserving
the re ected inertia tensor:

Gs = fg2 Ge j RslsRL = Re(g? 18)RL; 8Rs 2 SO,q;

17)
in which the symmetng 2 Gg represents a transformation
relative to the body's principal axes of inertia, i.RgRy.
Fig. 5a depicts an example of the re ection along one of the
bodies principal axes of inertia relating the con gurations.

5.2.1 Identifying candidate morphological symmetries

The group of symmetries in the mass distribution of the
Figure 5. () Re ectional morphological symmetry is observed  rohot's baseGg represents the set of in-place rotations
in a body with a symmetric mass distribution. For such a body, and re ections under which the dynamics of this body
the unfeasible action of a re ection of the body, g. Rg, results remain invariant. These are interpreted as the subgroup

in a body con guration that mirrors the inertia and kinetic . . .
energy of the rotated body atg Rg. (b) However, if the of symmetries of Newtonian physics preserved by the

symmetry in mass distribution is disrupted, the states g. Rg oating-base's body mass distribution. Therefore, this group
andg R will exhibit different re ected inertias and kinetic represents a set of potential morphological symmetries of the
energies when subjected to the equal angular velocities. This robot, as depicted in g. 6a.

results in the body's inability to mimic a re ection of space. It is important to observe that both resulting body orien-

_ _ _ _ _ tations,g. Re = RgRgs 2 Oy andg Re = RgRgRY 2
inherently imposes constraints on the kinematic and dynan®@),, share the same re ected inertias. Consequently, when

parameter space. subjected to identical velocities and forces, these two
base con gurations have equivalent dynamics, as expressed
5.2 Constraints on the oating-base's body in eq. (15). Furthermoreg R represents a feasible body
mass distribution con guration even wheng corresponds to an unfeasible

Consider the conditions under which a morphologicAfOMelY, such as are ection (see g. 5). _
symmetry exists for the oating-base body only. In this To unde_rstand this fact, I_et's con5|d_er_ the two bod_les
case, the necessary Lagrang@rinvariance from eq. (12) |Ilustratgd in g. 5.1n g 5a, this bod)_/ exhl_b|t§ asym.metnc
reduces to the equality of kinetic energy between the bd@@sS distribution with respect to it principal axis of
body transformed by a Euclidean isometry, denotegj as 'N€tia, leading s = fe;gg’ Co. In contrast, in g. 5b,

X &, and the body transformed by morphological symmetr{liS Pody 'aCkf any symmetry in its mass distribution,
represented a3 X 5. This can be expressed as: result!ng inGg = feg. 'I_'he symmetric mass d|§tr|but|on Qf
body in g. 5a enables it to emulate an otherwise unfeasible

Te(g. Xs)= Ta(g Xs): (15) Spatialre ectiong. Rg, through a feasible rotatiap Rg.

i ) , It is crucial to note that perturbing the mass distribution
where the action of the Euclidean isometry representsd%rupts this re ectional symmetry, as evidenced by the
potential rotation or rotore ection of the bod¥gR g 2 Oy, differing kinetic energy of theg-transformed body ang-
and a morphological symmetry is restricted to a rotatiof,nsformed body differ (refer to g. 5b).

RgReR} 2 SOy, due to the feasibility requirement. A practical example can be observed in the Mini
_Since the congurationg. Xg andg Xg generally cpeetah robot's base body depicted in g. 1. Its cuboid
differ, they are constrained to have the same mass dIS'[I’IbUtE)(l;Hy showcases three orthogonal re ectional symmetries
to ensure an equivalent dynamics. In other words, this iﬁ the Mini Cheetah's mass distribution, denotedGis =
required to react identic_ally to Fhe appli_cation of a movinge; @00 92 = g2 = ¢ = eg. These symmetries result
force (refer to g. 5). This requirement is translated t0 thg, 5 arpitrary selection of the reference frame attached
equality of the re ected inertia tensors: to its body, leading to the arbitrary determination of the
(9. Rs)ls(g. Flzs)l.l (g RB)IlB(g RB)-Il | ) (I;/illrglct(iiohnit?tahs forward/backward, up/down, and left/right
(RoRe)le(RsRg) = (RgReRg)Ie(RoR5Rg): In both instances, the groups  Gg, which describes
where |1z = Rl BR'B 2RY 9 is the reected body the symmetries in the robot's base mass distribution,
inertia at the con guratioiR 3, andl 3 is the body's diagonal suggests potential Euclidean isometries that could result in
inertia tensor in a frame aligned with the body's principainorphological symmetries of the robotic system. For robotic
axes of inertia (Traversaro et al. 2016), which we shosystems with multiple unique (non-replicated) bodies (e.g.,
in g.5a. the head of the Atlas robot, see g. 3), the group of candidate
The ability of a body to adopt various con gurations, eacmorphological symmetries is limited to the subgroup of
sharing identical re ected inertias as de ned by eq. (16)uclidean isometries that describe the symmetries of mass
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Figure 6. (a) Example robotic system, evolving in R?, featuring a triangular base body which exhibits a symmetric mass
distribution characterized by the group of 3 rotations and 3 rotore ections, the Dihedral group Gg = D> 3. However, the system's
morphological symmetry is limited to the rotational subgroup, G = C3 < Gg, due to the absence of re ectional symmetry in the
limbs' bodies mass distribution, which is necessary for mimicking the re ection isometry g with a feasible joint space
transformation. (b) The base body's symmetric mass distribution results in an arbitrary labeling of the robot's limbs (I1;12 and I3),
enabling the robot to mimic a 120 spatial rotation through a joint space transformation that permutes the limbs' con gurations.

distribution of all unique bodies. Whether a candidatmorphological symmetry. Similarly, g. 1 shows how the
symmetry is indeed a morphological symmetry dependsorphological symmetries of the Mini Cheetah robot result
on (i) the other bodies in the system's kinematic structuia the arbitrary labeling of th&ont/hind andleft/right legs.

and (i) the robot's morphology admits a joint spac

transformation that complies with de nition 2. %.3.1 Structure of the joint space action transformation

Assume the robot hasy unique kinematic branches,
5.3 Constraints on the kinematic structure represented by the label s@=fs,; ;sn, g Each
o _ _ _ branchs; possessesiqo (Si) 2 N DoF and is replicated
Modularity in the kinematic structure, specically then, (s) 2 N times within the robot's kinematic structure.
replication of identical or re ected kinematic branches (oThe labels for the instances of each braschare denoted
substructures), provides the necessary conditions for thes = fs.,; s, w (s (see g. 6b). As an example,
existence of joint space action transformations. In theggnsider robot Atlas, featuring as unique kinematic chains
cases, we consider Euclidean isometgeés Gg as potential the leg, arm, and hea®= fsym ;Sleg; Shead 0. These
morphological symmetries of the robot. Concretely, give§ubstructures are replicatatep (Sarm ) = Nrep (Sieg) = 2
that the con guration of the oating-base body transforme@ndnrep (Shead) = 1 times.
by this isometry differs from the one transformed by The action of a morphological symmetry in the joint space
the morphological symmetry, (i.eg. Xs 6 g Xg as results in a permutation of the roles of branches with the

illustrated in gs. 4 and 6), there must exist a joint spaceame type, denoted gs Sij = Sig() 2 S, whereg(j) is
action transformation the label thaj is mapped to under the permutation induced
by g. This leads to the decomposition of the joint space
(9. 0s:9- Gs)=( w(9)0is: wm(9)dis); con guration space and its associated group representation:

which ensures that both robot con gurations exhibit equal 9. Si = S 2S: and
. N EER i:9 (j) [l
energy states and equivalent dynamics (eq. (12)). T Tsigq

Si2  _ Si; Qi . A . \1-
Modular kinematic structure Robotic systems often exhibit (@ 7 = "% 1812 [Linkkij 2 [Linep (s)l;
a balanced distribution of replicated kinematic branches ' ' (18)
within their kinematic structure. Examples include the four

identical legs of the Mini Cheetah robot and the mirroreﬁ!1e labels of the instances of branch typeFollowing our
arms and legs of the Atlas robot (referto g. 1 and g. 3).eXampIe with the Atlas robot, the action gf in g. 4b

This replication introduces symmetries in the labeling (oF . . .

. S . nduces a permutation of the left and right arm con gurations
ordering) of these branches, which in practice enable the S - and S . Given that
interchange of role and con guration of them under th%‘ arm; 1 = Sarm; 2 9. Sam; 2 = Sarm; 1.

i . o . ese permutations do not mix the distinct branch types,
action of a morphological symmetry, to mimic the Euclidean ; . :
isometry we can adopt a basis for the joint space con guration

As an example, consider the robotin g.6. The symmetri%pace Iead|_ng t9 the decomposition of its associated group
presentation, i.e.,

mass distribution of this robot's base body, combined withy
|Fs rephca}ed limbs, results in arbitrary orderlng of its three M:=Mg; =M @, R and
limbs. This symmetry allows the robot to replicatel20
spatial rotation through a joint space transformation that N
involves a permutation of its limb con gurations and ensures Each M= 9 GIMg R (SOnar ()
the equivalence of the robot's energy under the action of teacapsulates the con guration space of all instances of

where g (g) is the permutation representation acting on

(19)

M= Mgy M-
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the kinematic branch type; (see g. 6b). Conversely, ey s leees] Sy

Ms R (1) represents the con guration space of ¢ 3. |gentify unique bodies in the kinematic structure.
single instance of typs;. This suggests that the joint space . |dentify the group Gg of candidate MS, from the unique

group representation, is exclusively constructed from the bodies (eq. (16)).
ny representations of each branch type, [_q,,s‘ inzkl . 3: Identify the unique_ kinematic_ structures
Intuitively, the transformation described by, . implies S=fsi;  isng. Their congurations spaces

M s, , and group representations v, (eq. (19)).

nin ndent rotation/r ion of th rdinate fram
a dependent rotation/re ection of the coordinate fram 4: Identify the instances of the kinematic branches S =

attached to each joint within the kinematic brargh For

. . . . . fsi1; 1 Sin rep (s;)9 and their associated permuta-
instance, when the brandh is build from 1-dimensional tioln; . (e('ir.‘ (1”8;)5_)9 &
prismatic or revolute joints, its group representatiqp, 5: Build the group representation v (eq. (20)).

results in diagonal matrices lled with 1 and -1, describing 6: Test each g 2 Gg following eq. (21) and eq. (13).
required re ections on the axes of each DoF.

Equipped with the abqve'mem'oned formalism, the 10Migure 7. Pseudo-code for identifying the morphological
space group representation is de ned as: symmetry group G in rigid body dynamics.
" #

M sy

M= L ; with Mg = S M, (20)

" intuition alone may not be adequate. The pseudo-code in

[Nkl . . . . .

Where  denotes the Kronecker product. This matrixJ: ! prov!des a step-by-step guide for 'de*_‘“fy'”g t_he

product, in conjunction with the permutation of themorphologlcal symmetry group. In the following section

branch'é con gurations is responsible for ensuring we motivate our theoretical analysis by demonstrating the
S

that the group representation,  applies the appropriate practical bene ts of identifying the morphological symmetry
[si

: . . ) .
rotation/re ection of the joints coordinate frames across agroup in the context of dynamic motion analysis.

branches of typs;, as depicted in g. 6.

5.5 Dynamics' harmonic analysis
5.3.2 Algebraic constraints in kinematic parameters thi i loit th tati tries in th
The approach delineated above provides insights into t IS section, we exploit the permutation Symmetries in the

internal structure of the joint space group representatiorr?, ot's joint space con guratioM using abstract harmonic

emphasizing the importance of the unique constituent gro ac;yls'ls. g)ur Otbje?t,'[\r/le. ISt to' eIg;mQate tk;te nu;pengal 'and
representationsy , necessary to de ne the group actio odeling bene Is of thasolypic basisan afternative basis

in Q. Algebraically, the validity of the action of eachS®! fqrM ' Essen_tially,_ this basis pr_ovides an alternative
candidateg 2 Gg can be veri ed by checking whether thecoordmate frame in which thg_dynamms of pointsMn are
transformation yields a kinematic structural symmetry— ecomposed as a ;uperposmon of mdt_ependent and '°V.Ver‘
prerequisite for the existence of a morphological symmet mensional dynamics. Such decorrllposm'on leads to a nite
This requirement manifests as an equality between the lin ber of subspaces, refer to as isotypic subspa(_:es. Each
velocity of each body, transformed by the group actio?IUbSpace_ represents a space of symmetry-constrained robot
g. Is; :n,» and the velocity of its permutation counterpar?on 9““”‘“0”5 (seg _g. 8). . .
[s, ,,n (€€ g. 6b). Herers  n denotes the linear This decqmposn_lon enables the descrlpt_lc_m of any joint
velocity of bodyn in the kinematic brancls;g ;). This space motion lrajectory as a superposition of onver-
constraint is articulated, for any2 [1; ngo (S1)], as: dimensional symmgtnc and_ synergistic modes _of mot|0n§,
each governed by its own independent dynamics. We will
s n=0. s n: reefer to these directions of motion as the robot's NCMs
) v of motion (inspired by the analog term “normal vibrational
Yt 00y (9 Us)9- Qs = 9. It 0 (Gs)i (21) modes” in molecular dynamics (Dresselhaus et al. 2007,
g gyn ( m(@s) wm(9) = Ry, (0is): chapter 8_)). The quali er_”no_rmal” undgrscores _the
orthogonality between the directions of motion associated
It is worth emphasizing that eq. (21) describes theith each NCM. Furthermore, when the dynamics of each
constraints in the kinematic parameters of the robotSCM is independent of the other modes, the resultant
kinematic branches. An analog constraint is applied whelecomposition of the dynamics is refereed as DHA

considering the angular velocities of the bodies. (Ordaiez-Apraez et al. 2023).
To comprehend the decomposition of the dynamics, we
5.4 Algorithmic identi cation of a system's begin by characterizing the block-diagonal structure of
morphological symmetry group the joint space generalized mass matrix in the isotypic

) . ) .. basis. This structure is responsible for the independence of
In previous sub-sections, we outline the necessary Cond't'%amics between the NCMs.

for the existence of morphological symmetry in rigid body

dynamics. These include speci ¢ constraints on the robot&lock-diagonal structure of the joint space generalized
kinematic structure and on the mass distribution within rigichass matrix Recall that the group representatign : G 7!
bodies. While this analysis may seem extensive for simpl&L (R"i ) implies that the joint space con guration spade
systems or symmetry groups of low order, it provides ia a symmetric space. Such spaces can be decomposed into
fundamental framework for studying more complex systenasdirect sum of isotypic subspacés, := M §° 7 ?
typically encountered in robotics. Such systems may halé 'nS° , invariant under the action @& (eq. (6)). That is, for

a larger number of DoF or symmetries, where geometrigs 2 M S0 theng . Os 2 M IS0 for all g 2 G. To achieve
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