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Abstract: In this paper we present a real-time active motion strategy for a mobile
robot navigating in a non-flat terrain and its 3D constrained motion model.
The aim is to control the robot with measurements from only one camera that
autonomously builds a visual feature map while at the same time optimises
its localisation within this map. The technique chooses the most appropriate
commands maximising the expected information gain between prior states and
measurements, while performing 6DOF bearing-only SLAM at real-time. The
constrained 3D motion model presented here is used to infer the position of the
vehicle in order to evaluate the mutual information for all possible actions at the
same time. To validate the approach, not only simulations over uneven terrain have
been performed, but also experimental results are shown for the technique being
tested with a synchro-drive mobile robot platform with a wide-angle camera.
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1. INTRODUCTION

Actively controlling while mapping had recently
acquired more attention, contrary to the purely
estimation mapping techniques that had received
much attention during the past 20 years. Note-
worthy, and given the probabilistic nature of the
Bayesian approach to the solution of the SLAM
problem, entropy reduction has gained popular-
ity as a map building strategy for driving a
robot during a SLAM session in order to min-
imise uncertainty (Feder et al., 1999; Bourgault
et al., 2002; Sim et al., 2004).

In this paper, results are presented for ac-
tively controlling a mobile robot while performing
SLAM with only one camera, with the novelty of
doing so with feedback control in uneven terrains.
To that, we developed a motion model constrained
by the terrain and the planar vehicle caracter-
istics. Given the real-time particularities of the
visual SLAM system we use, fast and efficient
action evaluation is of utmost importance. For-

tunately enough, the elements needed to validate
the quality of actions with respect to entropy
reduction are readily available from the SLAM
priors (Davison, 2005), and, by making enough
implementation adaptations, we are able to eval-
uate in real time the value of a limited number of
actions. The technique has already been tested for
an unconstrained moving camera (Vidal-Calleja et

al., 2006), and this paper presents the natural step
forward, evaluating the technique during real-time
constrained motion in 3D environments.

Action evaluation with respect to information
gain has already been implemented for other
SLAM systems, but little to no effort has been
expended on the real-time constraint. One such
approach makes use of Rao-Blackwellized particle
filters (Stachniss et al., 2005). When using particle
filters for exploration, only a very limited number
of actions can be evaluated due to the complexity
in computing the expected information gain. The
main bottleneck is the generation of the expected
measurements each action sequence would pro-



duce, which is generated by a ray-casting oper-
ation in the map of each particle. In contrast,
measurement predictions in a feature-based EKF
implementation can be computed much faster,
having only one map posterior per action to evalu-
ate, instead of the many a particle filter requires.
Moreover, in (Stachniss et al., 2005) the cost of
choosing a given action is substracted from the
expected information gain with a user selected
weighting factor. In this work, we show the cost of
performing a given action is inherently taken into
account when evaluating the entropy for a set of
possible priors.

Sim has also addressed decision making for the
robot exploration problem, as an optimisation
problem for a restricted hand-crafted set of
exploratory policies (Sim et al., 2004). Other
approaches include, for example, a multirobot
stereo-vision occupancy grid-based SLAM system
(Rocha et al., 2005), with best single-step look
ahead chosen on the basis of overall map entropy
reduction. In such a discrete representation of the
map posterior, overall map entropy is computed as
the sum of individual entropies for each grid cell.
Bryson et al. on the other hand, present simulated
results of the effect different vehicle actions have
with respect to the entropic mutual information
gain (Bryson and Sukkarieh, 2005). The analysis
is performed for a 6DOF aerial vehicle equipped
with one camera and an inertial sensor, for which
landmark range, azimuth, and elevation readings
are simulated, and data association is known.

We have opted for a strategy that chooses those
actions that maximise the mutual information
between states and measurements. The expected
information gain is evaluated propagating a par-
ticular action using the constrained motion model
proposed here, with the advantage this model con-
siders the non-holonomic constraints of the vehicle
and the slope of the terrain. Notice that max-
imising an information criterion might result in
uncertain actions being chosen, since their reduc-
tion of uncertainty once a measurement has taken
place would be larger. Other reported approaches
maximise present to future posterior entropy dif-
ferences instead. With our chosen strategy over-
all entropy decay may happen at a lower pace,
at the expense of actually choosing exploratory
actions instead of homeostatic ones. Actions are
compared at the same instant but evaluated at
different time, that is the reason of using mutual
information, instead of entropy, together with the
nonlinearity of the constrained motion model.

The rest of the paper is distributed as follows.
Section 2 presents a brief overview of the vision-
based bearing only SLAM system we use. Section
3 is devoted to a discussion from first principles on
the value of expected measurements in reducing

overall state entropy. This gives rise to the actual
action selection policy used, which is described in
detail in Section 4. Section 5 presents an evalua-
tion of our exploration strategy for a 3D simulated
environment; and Section 6 contains actual exper-
imental results. Finally, some concluding remarks
are given in Section 7.

2. EKF 6DOF BEARING-ONLY SLAM

2.1 Unconstrained Camera Motion

Considering initially that our sensor is a camera,
and that it is free to move in any direction in
IR3 × SO(3), we adopt the same smooth uncon-
strained constant velocity motion model as in
(Vidal-Calleja et al., 2006),
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Suffice to say that p = [x, y, z]⊤ and q =
[q0, q1, q2, q3]

⊤ denote the camera pose (three
states for position and four for orientation us-
ing a unit norm quaternion representation), and
v = [vx, vy, vz]

⊤ and ω = [ωx, ωy, ωz]
⊤ denote

the linear and angular velocities, respectively, cor-
rupted by zero mean normally distributed linear
and angular accelerations a = [ax, ay, az]

⊤, and
α = [αx, αy, αz]

⊤. The quaternion transition ma-
trix is
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(2)
with Ω = [0, ωx, ωy, ωz]

⊤ the angular velocity
vector expressed in quaternion form, and Ω× its
skew-symmetric matrix representation.

2.2 Constrained Camera Motion

It is assumed, however, that such camera is at-
tached to a mobile robot navigating in a 3D
terrain. The mobile robot is controlled by linear
and angular velocities u = [vr, ωr]

⊤ which are
tangent to the terrain surface. In simulating the
robot motion taking into account surface contact
at all times, we can substitute the previous motion
prediction model with a constrained model for the
continuous transition of the optic centre of the
camera
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θ = [ψ, θ, φ]⊤ is a yaw, pitch, roll representation
of q, and l is the distance between the axle centre
of the mobile robot and the camera optic centre.

2.3 Measurement Model

Our 6DOF Single Camera SLAM system extracts
salient point features from images, building a map
of their 3D coordinates. Image projection priors
are estimated with a full perspective wide angle
camera

[

u
v

]

=

[

u0 − uc/
√
d

v0 − vc/
√
d

]

(4)

where the position of a 3D map point is first
transformed into the camera frame yc

i = R(yi −
p), with R the rotation matrix equivalent of
q, and uc = fkux

c/zc, vc = fkvy
c/zc. The

radial distortion term is d = 1 + Kd(u
2
c + v2

c ),
and the intrinsic calibration of the camera is
known — focal distance f , principal point (u0, v0),
pixel densities ku and kv, and radial distortion
parameter Kd.

These priors are then compared against actual
measurements using a nearest neighbour test
within a 3σ elliptical search region inside the
innovation covariance Si for each image estimate
(Vidal-Calleja et al., 2006). New features are ini-
tialised using the approach presented in (Davison
et al., 2003).

3. INFORMATION GAIN

The exploration strategy proposed in this paper
is aimed specifically at maximising the mutual
information between the state and consequent
measurement priors, both resulting from an action
in the form of a motion command. Different com-
mands give rise to better or worse priors (in an en-
tropic sense), and we want to select, from a limited
test set, the one that produces the most expected
reduction in entropy for the entire state, once the
consequent measurement has taken place.

The mutual information for these two continuous
probability density functions is

I(X;Z) = E

[

log
p(x|z)
p(x)

]

. (5)

For our Gaussian Multivariate case, the prior
distribution is simply p(x) = N(xk+1|k,Pk+1|k),
whereas, the conditional is given by the Kalman
posterior p(x|z) = N(xk+1|k+1,Pk+1|k+1) with
the updates

xk+1|k+1 = xk+1|k +Pk+1|kH
⊤S−1(zk+1−zk+1|k)

(6)
Pk+1|k+1 = Pk+1|k−Pk+1|kH

⊤S−1HP⊤
k+1|k (7)

Taking the expectation in Eq. 5, the Mutual
Information between our state and measurement

priors evaluates to the difference between prior
and posterior state entropies

I(X;Z) =
1

2
(log |Pk+1|k| − log |Pk+1|k+1|) . (8)

In other words, maximising the mutual informa-
tion between the state and measurement priors we
end up choosing the motion command that most
reduces the uncertainty in the state due to the
knowledge of the consequent measurement as a
result of a particular action.

4. CONTROL STRATEGY

The control scheme is based on computing the
instant robot accelerations that maximise mutual
state and measurement information gain. The
chosen command is then integrated to produce the
input velocity that is sent to the robot. Given the
real-time limitations of our system, only a limited
number of actions can be evaluated at each step.
These are shown in the discrete set from Table 1.

Table 1. Action Set

Action Linear Acceleration Angular Acceleration

0 0 0

1 0 −ω̇r

2 0 ω̇r

3 −v̇r 0

4 v̇r 0

5 −v̇r −ω̇r

6 v̇r ω̇r

To compare the gain of information each of these
actions would produce, the constrained motion
model from Eq. 3 is used to predict the expected
prior mean xk+1|k for each instant acceleration
in the set, propagating the covariances by com-
puting the corresponding Jacobians. Map features
priors are also used to simulate the expected ob-
servations using the camera measurement model
and the state prior. The posterior covariance is
then computed taking into account only known
features inside the camera field of view.

At each time step we compute, in turn, the mutual
information for one action in the set, using the
prior and posterior covariance matrices. That is,
for every linear and angular instant acceleration
combination. Every 15th cycle, once all possible
actions have been evaluated for a lapse of at least
8 cycles, the action that maximises the mutual
information is chosen, and a new velocity input is
sent to the system.

It is assumed that a fixed number of expected
features will be found within a 3D unexplored
room. During the action selection process, the
unknown features are taken into account only



(a) Simulated robot trajectory
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Figure 1. Simulation of a mobile robot actively exploring a room. The mutual information maximisation strategy produces

a nearly linear motion tangent to the surface. The vehicle starts at the shown terrain depression and proceeds
backwards slightly rotating to increase map coverage. (rReal and rEst are the real and estimated vehicle trajectories,
the label newland and the green dots and dotted vertical lines represent the value of entropy at the instant when new

landmarks are initialised. Pcam, Plan, and P indicate the robot, map, and overall entropies.)
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(a) Position error
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(b) Orientation error

Figure 2. Estimation errors for camera position and orientation and their corresponding 2σ variance bounds. Position
errors are plotted as x, y, and z distances to the real camera location in meters, and orientation errors are plotted as

quaternions.

in the covariance matrix initialised with large
uncertainty.

5. SIMULATIONS

Extensive simulations have been performed using
the constrained motion model for the mobile robot
from Eq. 3, navigating in uneven 3D terrain, and
using a full perspective wide angle camera model
as sensing device.

The aim is to choose impulsive acceleration com-
mands for the mobile robot in order to explore
the whole room while trying to reduce most the
uncertainty. Accelerations are applied only every
15th step, and in between action decision, null
acceleration is set, i.e. constant velocity behaviour
is chosen until a new action is decided.

The control action is chosen from the discrete
set of instant linear and angular accelerations
shown in the Table 1. The values for v̇r and
ẇr that produced the results shown in this sec-
tion are 0.5m/s2 and 0.3rad/s2 respectively. The
simulated environment shown contains 25 un-

known features and 6 known features uniformly
distributed in the room. Our simulated wheeled
mobile robot is navigating over a 3D sinusoidal
surface.

Figure 1(a) shows the trajectory followed by the
vehicle and the initialised features with their un-
certainty plotted as 2σ level hyperellipsoids. The
expected covariance matrix is extended with the
unknown feature uncertainties with diagonal val-
ues of 5m2 each to avoid homeostasis. Entropy
reduction is computed using the extended covari-
ance. The instant at which new features are added
to the state are shown in Figure 1(b). Moreover,
state estimation errors for the camera pose are
shown in Figure 2. Notice how when the ter-
rain abruptly changes, the estimated velocities be-
come underestimated in the direction the terrain
changed.

The selected actions reduce the camera pose and
velocity uncertainty first, tracking features with
low uncertainty. After that, the variance for un-
visited features with large uncertainty is reduced



(a) Mobile robot
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Figure 3. Setup, trajectories and actions during the experiment.
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Figure 4. Snapshots of the Graphical User Interface during autonoumous exploration.

as new features are added. Interestingly enough,
the system autonomously explores by repeatedly
choosing a negative linear acceleration. The ef-
fect is to augment the camera field of view with
the consequent inclusion of new feature in the
model, but still maintaining known features in
sight, thus keeping the vehicle well localised at
all times. In contrast to our previous experiments
reported with a free-moving hand-held camera
(Vidal-Calleja et al., 2006), it is more difficult in
this constrained motion setting to actively per-
form short loop closure orthogonal to the field
of view. The reason being that the robot cannot
achieve saccadic motions in the way a free-moving
camera can.

At this point we can argue how the same tracking
(unconstrained constant velocity 6DOF motion
model) and action selection strategies (maximis-
ing the mutual information between states and
measurements) is capable of choosing different
exploratory manouvers depending on the charac-
teristics of the platform: short loop closing for a
6DOF free-moving camera, and backwards linear
motion increasing the field of view for a mobile
robot.

6. EXPERIMENTS

Our main concern was to test the strategy dur-
ing real-time vision-based SLAM execution. This
Section is devoted to a discussion on such results.
The experiments were conducted on a Pioneer
2AT mobile platform with a wide-angle camera
rigidly attached to the robot body, and for which
an updated version of the single camera SLAM
system reported in (Davison et al., 2004) was
setup.

Within a room, the robot starts approximately at
rest with some known object in view to act as
a starting point and provide a metric scale. The
robot moves, translating and rotating constrained
by the 3D terrain, such that various parts of the
unknown environment come into view. The aim
is to estimate and control the 6DOF camera pose
continuously, promptly and reliably during arbi-
trarily long periods of movement. This will involve
accurately mapping (estimating the locations of)
a sparse set of features in the environment.

The whole process is running at 15fps. Since our
mutual information measure requires evaluating
the determinant of the full covariance matrix (en-
larged with the unvisited features) at each itera-
tion, single motion predictions are evaluated one



frame at a time. It is only every 15th frame in the
sequence that all mutual information measures
are compared, and the best action is sent to the
mobile robot. For the experiments, the accelera-
tion magnitudes were set to v̇r = 0.1m/s2 and
ω̇r = 5deg/s2. When computing posteriors, these
are all predicted for the duration that would take
them to the end of the 15th frame, each action in
turn being evaluated for a slightly shorter period
of time. The motivation is that we want to be
able to test actions in the basis of their effect at
the very same point in time (at the end of the
15th frame). In order to evade any bias related to
the time spent in evaluating the effect of actions,
these are randomly ordered at each iteration. A
feedback control is set to guarantee the desired
action is accomplished until the new action is
received.

As with the simulated setting, the robot navi-
gates in uneven terrain as shown in Figures 3(a)
and 3(b). In the plot, the estimated path (blue
continuous line) is shown in 3D, as opposed to
the vehicle odometry which is restricted to the
Z − X plane. The orientation angle from Figure
3(c) indicates the vehicle orientation with respect
to the world axis Y (orthogonal to the white sheet
of paper placed in front of the robot, which serves
as global reference consistent to the world Z −X
plane). Estimation in this case is similar to the
measure provided by the encoders.

As in the simulated case, our mutual information-
based action selection strategy for this con-
strained motion case autonomously explores the
room driving the vehicle back and forth, but
mostly backwards, enlarging the field of view by
pulling away from the initial view.

Figure 3(c) gives account of the actions sent to
the robot, and shows as most frequent actions
iterations between positive and negative linear
acceleration. The feature map and camera pose
are updated and displayed in real-time in the
graphical user interface. Figure 4 shows a sequence
of frames from the same experiment, that show
the robot driving away from the start known
features.

7. CONCLUSION

This paper has presented an autonomous ex-
ploration strategy for a wheeled mobile robot
equipped with a single wide angle camera and
navigating in uneven terrains. The approach is
based in choosing the action that maximises the
information gain between state and measurement
priors evaluated in the 3D constrainted motion
model presented here. Simulation and experimen-
tal results consistently show a behaviour in which
the robot pulls back from an initial configuration,

by having the camera search for more features
whilst reducing its own pose uncertainty.

The reported camera trajectories are simple be-
cause firstly the robot is commanded by accelera-
tion impulses that tend to drive the robot through
smooth velocity changes, and secondly the real-
time constraints of the implementation allow only
for the evaluation of a very limited set of possible
actions at each step. The computational complex-
ity in computing entropy does not permit large
maps, in that case submapping will be a good
solution.

With only one camera it is possible to localise the
mobile robot in a 3D environment, in addition our
approach produces the velocity control command
necessary to reduce more the uncertainty of the
camera pose and features position taking into
account the constraints of the vehicle and the
ground floor.
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