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Human-Robot Collaborative Plan Generation from a Natural Language Goal and Agent Conditions
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Hey robot, let's tidy up 
the kitchen and prepare 

a meal.

I have back pain 
today... 

but I love 
to cook!

Can't pick up 
small objects.
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LLMs as translators between Natural
Language (NL) information and a 
structured AI task planning problem.

Automated and flexible generation of 
Human-Robot Collaborative plans from NL
abstract goals and agent conditions.

Eliminated need for manual and 
laborious definition restricted planning
problems and agent models
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I have back pain 
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Can't pick up 
small objects.
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Objects

3) From NL to Structured Planning Language

PDDL problem
Planning Domain Definition Language

 (:objects 
      human robot – agent

      ; ... - obj ; from environment
      ; ... - loc ; from environment

 ) 
 (:init 

      (agent_not_busy robot)(agent_not_busy human)…
     (= (total-cost) 0)

preferences     ; action costs from LLM recommendations based on agent states and 
     (stored_cost robot spoon drawer 100) ; etc.
 )

(:goal (and

     (stored spoon drawer) ; etc. 
     ; goals from LLM based on environment

 )
 (:metric minimize (+ (* 1 (total-cost))(* 1 (total-time)))) )
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I want to let go of
the coke can.
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I spilled my coke on the table,
I want to throw it away
and bring something to clean.
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I want to clean the floor and
cook a salmon.

I want to �dy
up the room.

  

spoon, stored, drawer
cup, stored, cupboard

 banana, stored, fridge
etc.
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Domain grounding (stage 2) significantly increases the
subgoal correctness and plan executability.

Final LLM filtering (stage 3) ensures full plan
executability and increases correctness, with a trade-off 
in subgoal completeness.

The robot is fast at �dying up
objects.

The human loves to
cook.

cup, stored, cupboard
Robot should:

salmon, cooked, hob
Human should:

The robot can't get wet.
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The human has back pain.

cloth, used to clean, floor
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Right subgoals to favour
or disfavour are
found in 86%  of cases .

No significant difference     
between human and
robot conditions.

Better performance in
identifying that
no subgoals should be
favoured/disfavoured vs.
identifying particular
subgoals to favour/disfavour.

Subgoal and Plan Generation Subgoal Allocation Recommendation
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