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Figure 1: A depiction of our layered system. In the perception layer, the robot receives footage of the scene from the camera (i),
estimates the pose of each individual in the scene (ii), and uses the pose to calculate 3D position, velocity and orientation (iii).
These lower-level features are used to calculate higher-level features such as pairwise engagement, motion activity and group
membership (iv). In the decision-making layer, the robot uses these features to decide which action to take and on whom to
target the action (v). Finally, at a later point, a user can query the decision system (vi) and receive an explanation based on
counterfactual search (vii).

ABSTRACT
For social robots to be able to operate in unstructured public spaces,

they need to be able to gauge complex factors such as human-robot

engagement and inter-person social groups, and be able to decide

how and with whom to interact. Additionally, such robots should

be able to explain their decisions after the fact, to improve account-

ability and confidence in their behavior. To address this, we present

a two-layered proactive system that extracts high-level social fea-

tures from low-level perceptions and uses these features to make

high-level decisions regarding the initiation and maintenance of

human-robot interactions. With this system outlined, the primary

focus of this work is then a novel method to generate counterfactual
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explanations in response to a variety of contrastive queries. We pro-

vide an early proof of concept to illustrate how these explanations

can be generated by leveraging the two-layer system.
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1 INTRODUCTION
With social robots increasingly being integrated into everyday en-

vironments, such as homes [10], hospitals [4], and public spaces

[3, 6], it is necessary for such a robot to interact with people in a

way that is natural and accommodates social rules. For example,

a service robot positioned in a public space, such as a mall or the

lobby of a public building, must be able to (1) determine whether or

not prospective interaction partners are amenable to engagement

with the robot and (2) select an appropriate action to proactively

initiate or maintain such an engagement. There have been many

approaches that tackle aspects of this combined problem. For ex-

ample, models such as SVMs [8, 19] and LSTMs [1] have been used

to predict the intention to engage, using features such as face and

body orientation, distance to the camera, velocity, etc. Kato et al. [8]

and Abbate et al. [1] also go on to implement decision-making be-

haviours on physical robots in response to engagement predictions.

However, these approaches employ so-called “black box” models

which can be difficult to explain [16].

Indeed, there has recently been a large push for decision-making

systems, including robots, to be explainable - meaning a user is able

to find out why the system made a particular decision [15, 16]. En-

dowing a Human-Robot Interaction (HRI) system with the ability to

explain its decisions can improve trust in the robot [17, 20] and aid

in understanding and debugging its behaviour [18]. Among current

approaches to detect engagement, Bi et al. [5] do use a more trans-

parentmodel (gradient boosting) and perform an explainability anal-

ysis based on feature importance but do not consider multi-person

environments (which would complicate the explanation process, as

a dynamic number of people requires a dynamic number withwhich

an explanation can be made) or the decision-making of a robot.

In this article, we present a two-layered proactive system that

relies on perception (layer 1) and decision-making (layer 2) to allow

a robot to autonomously initiate interactions in an unstructured

multi-person environment, as depicted in Fig. 1 and described in Sec.

2. The primary contribution of this work is then a counterfactual

explanation generation method tailored to this use case to allow

for decisions to be contrastively explained post hoc in response to a

variety of queries, detailed in Sec. 3.

2 PERCEPTION AND DECISION-MAKING
In this section, we describe the components of our two-layered sys-

tem, namely (1) perception and feature-extraction, and (2) decision-

making. While this section details our implementation, we note that

the explanation generation method described in Sec. 3 is agnostic

to the perception and decision-making components, only requiring

a causal model of the features used by the decision-maker.

2.1 Perception
The role of the perception module (labelled 1 in Fig. 1) is to detect

each of the people in the scene and calculate a number of high-

level features including their engagement with the robot, motion

and group membership. In our implementation, RGB and depth

video streams are captured by an Intel
®
RealSense

™
Depth Camera

D435i and the pose of each person is estimated in real-time using

OpenDR’s lightweight implementation of OpenPose [13]. From the

pose, a person’s orientation and velocity can be calculated.

Moving on to higher-level features, we calculate the pairwise

engagement between each person (and the robot) using a modifica-

tion of the visual social engagement metric of Webb et al. [22]. The

engagement value between two individuals 𝑃𝐴 and 𝑃𝐵 is defined as

𝑆𝐴𝐵 =𝑚𝑖𝑛(1, 𝑀𝐴𝐵

𝑑𝐴𝐵
), where𝑀𝐴𝐵 is the mutual gaze score between

𝑃𝐴 and 𝑃𝐵 and 𝑑𝐴𝐵 is the distance between them. The mutual gaze

score is defined as the product of the gazes 𝐺𝐴𝐵 and 𝐺𝐵𝐴 , which

we define as 𝐺𝐴𝐵 = 𝑚𝑎𝑥 (0, 1 − 𝜃𝐴𝐵

180
◦ ), where 𝜃𝐴𝐵 is the angular

distance between 𝑃𝐴’s orientation vector and the vector going from

𝑃𝐴 to 𝑃𝐵 . Thus, 𝑀𝐴𝐵 = 1 when 𝑃𝐴 is looking directly at 𝑃𝐵 and

𝑀𝐴𝐵 = 0 when 𝑃𝐴 has their back on 𝑃𝐵 . Following the ROS4HRI

standard [12], we use 𝑆𝐴𝐵 , averaged over a window of time, to

determine a categorical engagement. A person’s velocity vector is

used to determine their motion activity, such as walking away from

or towards the robot. Finally, social groups (which may consist

of two or more individuals, potentially including the robot) are

constructed by linking any pair of individuals whose engagement

value 𝑆𝐴𝐵 is above a given threshold.

Confidence measures for the engagement level, motion and

group membership can be calculated from the variance within

a sliding window, and confidence in the pose estimation can be

retrieved from the pose estimator.

2.2 Decision-Making
The role of the decision-making module (labelled 2 in Fig. 1) is to

determine what action the robot should take for a given observa-

tion. In this scenario, the robot’s decision is a tuple ⟨𝐴,𝑇 ⟩, where
𝐴 is the action the robot takes and𝑇 is the target of the action. The

possible values of𝐴 are NOTHING,WAIT (which is used exclusively

while the robot is waiting for another action to finish executing),

ELICIT_TARGET (which is used to get the attention of a specific in-

dividual), ELICIT_GENERAL (which is used to attract attention with

no specific target), MAINTAIN (which maintains an existing inter-

action) and RECAPTURE (which attempts to recapture the attention

of someone who is starting to disengage from the robot). 𝑇 can be

any person which the robot has detected, or can be nobody if the

actions NOTHING, WAIT or ELICIT_GENERAL have been selected.

In the interest of having a lightweight, fully transparent decision-

making system, our implementation uses a simple set of rules.

Firstly, if the robot is currently executing an action, the decision

should be to WAIT. Otherwise, the robot’s decision depends on the

people it observes. If nobody is observed, the robot does NOTHING.

Otherwise, if the robot is in a group with one or more people, the

robot must either MAINTAIN the interaction if everyone is engaged

or RECAPTURE the attention of disengaging group members. If

the robot is not in a group, it must try and elicit engagement. To

do so, it calculates a score for each person it detects, based on their

motion, distance, mutual gaze, group membership, and the confi-

dence measures of these variables (see Fig. 2 for the list of variables

affecting the score). If nobody has a score above a threshold pa-

rameter, then the robot will ELICIT_GENERAL, otherwise it will

ELICIT_TARGET on the person with the highest score.

3 EXPLANATIONS
In this section we describe out approach to generating explanations

for decisions made by the robot in response to post hoc queries
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posed by a user. There are a number of ways to approach the prob-

lem of generating explanations. In machine learning, LIME [14] and

SHAP [9] are among the most popular, both operating by determin-

ing the importance of features in making a classification. However,

through their review of literature on explainability in the social

sciences, Miller [11] argues that explanations should be contextual.

In particular, they identify that explanations are contrastive - re-
sponding to the query “Why X and not Y?” - and selected - only a

relevant subset of causes is included in an explanation.

To address the contrastive criterion, an explainer can employ

counterfactual reasoning to contrast the queried decision with a

counterfactual, hypothetical decision. Some popular approaches

in this regard include those of Wachter et al. [21] and Dhurandhar

et al. [7], both of which construct loss functions in order to find a

counterfactual which is close to the original state but which results

in a different decision. In order to select the most relevant variables

for an explanation, Albini et al. [2] use a graph-based search to find

“critical influences” - variables for which any change would result

in a different outcome.

In our implementation, to allow for more expressive counter-

factual queries to be made, we allow a user to pose both why and

why-not queries. Given a real decision 𝐷𝑅 = ⟨𝐴𝑅,𝑇𝑅⟩, a user can
pose the query “Why 𝐷𝑅 and not 𝐷𝐻 ”, where the hypothetical

𝐷𝐻 = ⟨𝐴𝐻 ,𝑇𝐻 ⟩. For a counterfactual 𝐹 with a resulting decision

𝐷𝐹 = ⟨𝐴𝐹 ,𝑇𝐹 ⟩ to be valid for a given query, it should satisfy the

condition in Eq. 1.

𝐷𝐹 ≠ 𝐷𝑅 if neither 𝐴𝐻 nor 𝑇𝐻 are specified

𝐷𝐹 = ⟨𝐴𝐹 = 𝐴𝐻 ,𝑇𝐹 ⟩ if only 𝐴𝐻 is specified

𝐷𝐹 = ⟨𝐴𝐹 ,𝑇𝐹 = 𝑇𝐻 ⟩ if only 𝑇𝐻 is specified

𝐷𝐹 = ⟨𝐴𝐻 ,𝑇𝐻 ⟩ if both 𝐴𝐻 and 𝑇𝐻 are specified

(1)

In order to find counterfactual explanations that contain a small

number of relevant differences, we adapt the notion of critical influ-

ences fromAlbini et al. [2] to respond to the aforementioned queries,

to allow for both categorical and continuous (albeit discretised)

variables to be included in an explanation, and to allow for causal

relationships between variables to be respected. For categorical vari-

ables, we adapt the definition of a critical influence in Definition 1.

Definition 1. Let the observation 𝑉𝑅 be an assignment of vari-
ables 𝑣 ∈ 𝑉 , for which the robot made a decision 𝐷𝑅 . Suppose a given
categorical variable 𝑥 ∈ 𝑉 took the value 𝑥𝑅 ∈ 𝑋 for 𝑉𝑅 , where 𝑋 is
the set of possible values for 𝑥 . Given a contrastive query𝐷𝐻 , we say 𝑥
is a critical influence on𝐷𝑅 if, ∀𝑥 ′ ∈ 𝑋 \{𝑥𝑅}, an intervention setting
𝑥 = 𝑥 ′, without intervening on any other variables in 𝑉 , results in a
decision that satisfies Eq. 1.

In other words, if 𝑥 is a critical influence, then any intervention

on 𝑥 , with no other interventions being made, will result in a deci-

sion that satisfies the user’s query, and thus its true value must be

an important factor in the decision made by the robot. Definition

2 allows for continuous variables to be included in explanations.

Definition 2. Let𝑉𝑅 ,𝑉 , 𝐷𝑅 , 𝑥 , 𝑥𝑅 , and 𝑋 retain their definitions
from Definition 1, except that 𝑥 is now a continuous variable with
range𝑋 . Given a contrastive query𝐷𝐻 , we say 𝑥 is a critical influence
on𝐷𝑅 if ∃𝑡 ∈ 𝑋 which splits𝑋 into two sets {𝑥 ′ |𝑥 ′ ≤ 𝑡} and {𝑥 ′ |𝑥 ′ >

Figure 2: The causal model used by the explanation module.
For each person 𝑃𝑋 , the model considers their motion𝑀𝑜𝑋
(confidence:𝑀𝑜𝐶𝑋 ), distance to the robot 𝐷𝑋𝑅 , mutual gaze
with the robot𝑀𝑋𝑅 , engagement score 𝑆𝑋𝑅 , engagement level
𝐸𝐿𝑋𝑅 (confidence: 𝐸𝐿𝐶𝑋𝑅), whether or not 𝑃𝑋 is in a group
with the robot (𝐺𝑊𝑅𝑋 ), whether or not 𝑃𝑋 is in a group with
anyone (𝐺𝑋 ; confidence: 𝐺𝐶𝑋 ), and a confidence measure
for the pose estimate (𝑃𝐸𝐶𝑋 ) - which all contribute to a score
used by the decision-makingmodule. Additionally, themodel
considers whether or not the robot is executing an action
and whether or not the robot is in a group with anyone (𝐺𝑅).

𝑡}, such that ∀𝑥 ′ in whichever set does not include 𝑥𝑅 , an intervention
setting 𝑥 = 𝑥 ′, without intervening on any other variables in𝑉 , results
in a decision that satisfies Eq. 1.

To search for these critical influences, we require a means of

determining the effects of an intervention on a variable, and ameans

of calculating in which decision a counterfactual would result. To

address these requirements, we construct a graphical causal model

of the relationships between variables in the observation and the

decision made by the robot, depicted in Fig. 2. Such a model is

desirable as it can easily be extended or reduced with a dynamic

number of people in a given scenario. Given the simplicity of the

decision-making module presented in Sec. 2.2, it can be reused

directly to calculate the counterfactual decision once interventions

have been applied.

Each variable in the observation can then be tested to determine

whether or not it is a critical influence, with the possibility of re-

stricting explanations to only include variables relating to certain

people (for example, the true target 𝑇𝑅 and the queried target 𝑇𝐻 ).

If no explanations consisting of only a single critical influence are

found, longer explanations can be generated by performing an inter-

vention, determining the new observation given the intervention,

and then searching for critical influences for the new observation.

4 PROOF OF CONCEPT
We present an early proof of concept to demonstrate the generation

of explanations using the method provided in Sec. 3 and the HRI sys-

tem provided in Sec. 2. In this proof of concept we replace the robot

with a camera positioned at the end of an office hallway in which a

number of participants are positioned, with some interacting with

each other and others alone. Note that for the sake of convenience,
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we continue to refer to the system as the “robot”. For the duration

of the scenario, the perception and decision-making modules (Sec.

2.1 and 2.2, respectively) are running, taking in the raw RGB-D

stream and outputting decisions, logging observation variables,

confidences and decisions throughout. After the observations and

decisions have been gathered, they can be queried (Sec. 3). The re-

sulting explanations draw from all levels of the system presented in

Sec. 2, from low-level observations (such as distance), to high-level

features (such as group membership and engagement), to variables

related to the decision-making process (such as the flag that indi-

cates whether or not the robot is waiting for an action to execute),

and finally to beliefs about these variables (the confidence scores).

Consider the frame depicted in Fig. 1, in which persons 𝑃𝐴 , 𝑃𝐵
and 𝑃𝐶 are visible. In thismoment, the robotmade the decision𝐷𝑅 =

⟨ELICIT_TARGET, 𝑃𝐶 ⟩. In response to the simplest query “Why

𝐷𝑅?”, the explanation module returns all explanations consisting of

a single critical influence, each of which may serve as a standalone

explanation for the decision made:

Explanation 1. (i) The robot was not already executing an action,
(ii-iv) none of the people detected were in a group with the robot, (v)
𝑃𝐴 did not have a high engagement score (𝑆𝐴𝑅 < 0.75), (vi) 𝑃𝐵 did
not have a high engagement score (𝑆𝐵𝑅 < 0.75), (vii) 𝑃𝐵 was further
than 0.75𝑚 from the camera, (viii) 𝑃𝐶 had a high mutual gaze score
(𝑀𝐶𝑅 ≥ 0.75), (ix) 𝑃𝐶 had a low engagement score (𝑆𝐶𝑅 < 0.5), (x) 𝑃𝐶
was further than 1.25𝑚 from the camera, and (xi) the pose estimation
confidence for 𝑃𝐶 was not very low (𝑃𝐸𝐶𝐶 ≥ 0.25)

Each of the explanations in Explanation 1 implicitly suggests in-

terventions that would change the decision. For example, included

is the somewhat obvious explanation (i) that changing the flag sig-

nifying the robot is executing an action would change the decision

(in this case to ⟨WAIT,∅⟩). A somewhat less obvious explanation

(x) is that 𝑃𝐶 was further than 1.25𝑚 from the camera, given that

𝑃𝐶 was already the target of the robot’s decision. However, if an in-

tervention was made to bring 𝑃𝐶 within this distance, the resulting

decision would be ⟨MAINTAIN,𝑃𝐶 ⟩, keeping the target the same

but changing the action.

Given the large number of explanations produced for a simple

“Why 𝐷𝑅?” query, which goes against the maxim that explanations

should consist of only a few, selected relevant causes [11], a user

may wish to make a more directed query by explicitly contrasting

the decision with a hypothetical one. For example, the user may

ask “Why 𝐷𝑅 and not 𝐷𝐻 = ⟨∅, 𝑃𝐴⟩?” (i.e. “Why not pick 𝑃𝐴?”).

Following Eq. 1, to satisfy this query, an explanation must imply

interventions that result in the robot choosing any action with 𝑃𝐴
as the target. The explanations provided in response to this query

are shown in Explanation 2.

Explanation 2. (i) 𝑃𝐴 was not in a group with the robot, and (ii)
𝑃𝐴 did not have a high engagement score (𝑆𝐴𝑅 < 0.75)

With a restriction on the counterfactual decision, the list of ex-

planations in Explanation 1 is reduced to two. Both of these explana-

tions imply interventions that would place 𝑃𝐴 in a groupwith the ro-

bot, resulting in decisions ⟨RECAPTURE,𝑃𝐴⟩ and ⟨MAINTAIN,𝑃𝐴⟩
for (i) and (ii) respectively. Depending on the user’s interest and

understanding, this answer may not be useful, as the user may re-

ally be interested in why 𝑃𝐶 was the target of the ELICIT_TARGET

action in particular, and why the same action was not applied to

𝑃𝐴 . In this case, a more specific query, “Why 𝐷𝑅 and not 𝐷𝐻 =

⟨ELICIT_TARGET,𝑃𝐴⟩?”, can be posed. In this case, no explanations
consisting of only one variable are found, but a large number with

two variables are identified. Restricting the explanations to only

those variables relating to 𝑃𝐴 , we arrive at the list in Explanation 3.

Explanation 3. (i) 𝑃𝐴was not walking towards the camera and...
(i-a) ...they were not ENGAGED or ENGAGING, (i-b) ...they had a low
mutual gaze score (𝑀𝐴𝑅 < 0.75), (i-c) ...they had a low engagement
value (𝑆𝐴𝑅 < 0.5). (ii) 𝑃𝐴 had a low mutual gaze score (𝑀𝐴𝑅 < 0.75)
and their pose estimation confidence was very low (𝑃𝐸𝐶𝐴 < 0.25).

These explanations point to interventions that would need to be

made on 𝑃𝐴 to change the decision to ⟨ELICIT_TARGET,𝑃𝐴⟩, where
a single intervention does not suffice. For example, explanation (ii)

implies that 𝑃𝐴 would have to be looking at the camera, but also

that the confidence in their pose estimate would need to be higher.

5 CONCLUSION
In this article we have presented a two-layered system for an

autonomous robot initiating interactions in unstructured, multi-

person environments and an approach for explaining such decisions

post hoc using a counterfactual search in response to a variety of

contrastive queries. We have provided a proof of concept which

outlines how such a system would operate in practice.

Given the early stage of this research, there are a number of

limitations present, which point to directions of future research.

One obvious limitation in the proof of concept is that it was per-

formed without a robot actually executing the decisions chosen by

the decision-making module. In the future, we plan to implement

our system, along with each action, on the PAL Robotics ARI robot,

and to conduct experiments in an “in the wild” unstructured setting.

Another limitation is the simplicity of our causal model (see Fig.

2), which does not capture the full dynamics of the real scenario. For

example, the effect of factors such as distance and orientation on

inter-person group membership has not been considered. Likewise,

the relationships the confidence scores maintained by the decision-

maker and the other variables have not been modelled. Future

work would involve expanding the causal model or incorporating

simulation to better capture these causal relationships.

Finally, further future work may involve expanding on the expla-

nation module, including better search algorithms to find critical

influences, refining the presentation of explanations to identify

which of the options is more relevant, or incorporating a back-and-

forth social explanation process as argued for by Miller [11].
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