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Abstract

This paper describes a real-time sequential method to simultaneously recover the
camera motion and the 3D shape of deformable objects from a calibrated monoc-
ular video. For this purpose, we consider the Navier-Cauchy equations used in 3D
linear elasticity and solved by finite elements, to model the time-varying shape per
frame. These equations are embedded in an extended Kalman filter, resulting in
sequential Bayesian estimation approach. We represent the shape, with unknown
material properties, as a combination of elastic elements whose nodal points cor-
respond to salient points in the image. The global rigidity of the shape is encoded
by a stiffness matrix, computed after assembling each of these elements. With this
piecewise model, we can linearly relate the 3D displacements with the 3D act-
ing forces that cause the object deformation, assumed to be normally distributed.
While standard finite-element-method techniques require imposing boundary condi-
tions to solve the resulting linear system, in this work we eliminate this requirement
by modeling the compliance matrix with a generalized pseudoinverse that enforces
a pre-fixed rank. Our framework also ensures surface continuity without the need
for a post-processing step to stitch all the piecewise reconstructions into a global
smooth shape. We present experimental results using both synthetic and real videos
for different scenarios ranging from isometric to elastic deformations. We also show
the consistency of the estimation with respect to 3D ground truth data, include
several experiments assessing robustness against artifacts and finally, provide an
experimental validation of our performance in real time at frame rate for small
maps.
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1 Introduction

Recovering live motion and the 3D reconstruction of a scene structure from
a single moving video camera has potential applications in very different do-
mains such as robotics, medical imaging, augmented reality, wearable com-
puting and the automotive sector. This problem is known as Structure from
Motion (sfm), and is one of the most active research areas in computer vision.
In the last decade, significant progress has been made to sequentially solve
this problem in real time for a sparse set of salient points by means of filtering
techniques [12,16] based on the Extended Kalman Filter (EKF) or optimiza-
tion techniques [26,28,37] based on Bundle Adjustment (BA). More recently,
these approaches have been extended to produce per-pixel dense reconstruc-
tion in [38] for hand-held devices, or even for aerial vehicles [52]. While sfm
is now considered to be a mature field, these methods depend heavily on a
rigidity assumption of the structure and they can not be applied to scenes un-
dergoing non-rigid deformations. In these cases, recovering the 3D shape of a
non-rigid object is an inherently ill-posed problem since many different shapes
can produce very similar image measurements. Additional a priori knowledge
of the camera motion and shape deformation has to be considered to limit the
possible range of solutions.

To overcome the limitations of rigid methods, Non-Rigid Structure from Mo-
tion (nrsfm) methods have been proposed. Most of them encode deformations
by means of low-rank models, using the shape space [6,15,17,41,49] or the tra-
jectory space [5,19,20] in addition to orthonormality constraints on camera
motion. However, although these methods are now capable of obtaining accu-
rate 3D reconstructions of deformable objects and camera motion, in contrast
to their rigid counterparts, they remain behind when it comes to real-time per-
formance. This is because they can only process the image sequence in a batch
manner, after the complete acquisition, limiting their applicability in real-time
and on-line applications. Only recently a few sequential approaches have been
proposed [4,40,47]. Although this is a promising direction, these methods re-
main slow [40,47] or assume rigid priors that are not always available [4].
Furthermore, these methods use the 2D tracking data as input, i.e., they do
not normally compute the tracking and data association on-the-fly [40,47].
While non-rigid shapes have been previously registered in real time [39,42],
these methods do not estimate the camera pose, assumed to be known in
advance.

In contrast to all these previous approaches, in this work we propose a method

∗ Corresponding author. Present address: Institut de Robòtica i Informàtica Indus-
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Fig. 1. Marginalizing the non-rigid motion. (a): A moving camera with rigid
motion xv observes a rigid structure. (b): A moving camera observes a structure
with rigid and non-rigid points. The rigid points (boundary conditions) prevent
rigid motions of the structure, which deforms non-rigidly anr. (c): Removing rigid
points allows rigid motions for both camera xv and shape ar, while the shape also
deforms non-rigidly anr. (d): The two types of rigid motions are combined in a
unique camera motion xr, allowing the non-rigid deformation anr to be recovered.

to sequentially estimate the camera pose and the 3D reconstruction of de-
formable objects directly from monocular video. Although our method uses a
physically-inspired model, we do not assume any prior over rigid points like
those typically required when exploiting finite-element approximations [4,23,29].
Our method uses a full perspective calibrated camera, automatically estab-
lishes correspondences between consecutive frames, and can run sequentially
in real time at frame rate.

In order to relax the rigidity prior, let us consider a camera undergoing an
unknown motion while observing an unknown rigid shape (see Fig. 1(a)).
Both camera trajectory xv and 3D structure can be estimated, up to scale
factor, merely from the sole input of the image sequence gathered by the cam-
era. Simultaneous-Localization-And-Mapping (SLAM) methods [16,26] have
been proposed in robotics and augmented reality to address this problem in a
sequential fashion. EKF-based approaches [12,16] were the first able to exper-
imentally prove that visual SLAM in real-time is possible. More recently, the
rigidity assumption was weakened in [1,4], allowing non-rigid deformations in
the scene. To do this, the EKF estimator was combined with the Finite Ele-
ment Method (FEM) to code the non-rigidity of the scene, resulting in a sfm
system –denoted as EKF-FEM– able to deal with scenes containing both rigid
and non-rigid map points. In the EKF-FEM formalism, the deformable object
to be reconstructed is modeled as a finite set of patches –denoted as finite
elements– whose displacement is ruled by the mechanics of deformable solids.
In order to apply EKF-FEM, it is necessary to identify several points undergo-
ing a rigid motion to establish the boundary conditions of the FEM problem.
This method has the advantage of permitting to combine rigid and non-rigid
points in the same framework, allowing the absolute camera trajectory to be
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recovered while estimating the displacement a of the scene due to the non-
rigid motion anr (Fig. 1(b)). Unfortunately, a prior knowledge of which scene
points undergo rigid motions may not be available in practice, preventing the
applicability of these methods in purely non-rigid scenes. Our main contribu-
tion is therefore to propose a novel EKF-FEM formulation without the need
for such rigid priors, that we will denote as EKF-FEM-FRP (from “Free Rigid
Priors”).

However, if rigid priors are not considered, both camera and scene can undergo
an interchangeable rigid motion (Fig. 1(c)). Additionally, as the scene can
suffer a non-rigid deformation, its motion a will be the combination of rigid
ar and non-rigid anr motions. In this work, since recovering both rigid motions
without rigid priors is unconstrained, we propose to concentrate the total rigid
motion in a single pose vector xr ≡ xv + ar, and the non-rigid displacements
as a ≡ anr (Fig. 1(d)). For this purpose, we propose encoding both camera
pose and shape relative to the last camera location, following a robo-centric
formulation [10], that we will denominate camera-centric. In this context, the
solution of the linear FEM system has to be approximated by means of a
generalization of the inverse FEM stiffness matrix. With these ingredients, we
present the first approach –to the best of our knowledge– for simultaneously
estimating camera pose and the 3D reconstruction of deformable objects from
monocular images in real time without requiring any learning step.

This paper combines and extends two previous conference papers [2,3]. Here,
we integrate these preliminary publications into a comprehensive presentation
of our real-time sequential approach to recover non-rigid shapes. We analyze
the rank deficiency of our stiffness matrices and present a linear estimation of
the compliance matrix. In addition, we provide new experiments to show the
performance of our approach studying the influence with respect to several
parameters, such as the amount of noise or missing data, and the physical
parameters of the model. We also provide a comparison with state-of-the-art
algorithms and show an experimental validation of our performance in real
time at frame rate.

The remainder of this paper is organized as follows. Related work is presented
in Section 2. In Section 3 we define our new physics-based deformation model.
In Section 4 we show how to solve the resulting linear system without knowing
rigid points. This is followed in Section 5 by a description of our sequential
algorithm to estimate camera motion and deformable shape from monocular
video. In Section 6 we describe our experimental evaluation and present a
comparison with respect to other approaches. Our conclusions are summarized
in Section 7. Finally, to keep the paper self-contained, we provide an appendix
with details of the FEM formulation.
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2 Related Work

In the past two decades, physics-based models have been used for animation
and simulation purposes in computer graphics [7,53]. At the same time, similar
models have been proposed in computer vision to restrict the set of possible
deformations of an object. For instance, in the medical imaging domain, early
approaches proposed deformable superquadrics [33], balloons forces [13] or
spring models [25]. In [31,32] were proposed more closely a FEM, modeling
the surface as a thin-plate with acting forces. However, these approaches were
only valid for capturing relatively small deformations, or to handle volumet-
ric images such as in tomography. Similarly, the boundary element method
was proposed to track non-rigid objects in 2D [21] and 3D [22]. Later, more
accurate representations were achieved using non-linear FEM for large de-
formations of beam [24] and for 3D solid structures [23,50]. However, their
applicability was limited to very specific geometries for which the material
properties were known. While non-linear FEM models can be very accurate
when the knowledge is rich, they are normally very complex and can only be
adapted to very specific applications.

More recently, linear FEM models have been proposed to recover non-linear
deformations [4]. The key insight was to approximate the non-linear problem
by means of a linear problem per frame with strong feedback coming from the
measurements at frame rate. Although the linear FEM formulation is only
valid for small deformations [7,53], it is only used to predict the deformation
between frames that it can be linearly approximated. For this purpose, a linear
FEM problem is solved per image frame, recomputing a new stiffness matrix
with the previous state, i.e. using a new shape at rest, and hence allowing
sequences with large scene deformations. Simply by the adoption of the FEM
formalism, the surface deformation continuity is naturally enforced without
needing to resort to any additional post processing. In addition, most of the
material properties can be factorized out and do not have to be known in ad-
vance. Another method using linear elasticity has recently been proposed in
the related problem of shape-from-template [29]. In this case, the elastic model
is used to code an extensible deformation optimizing a stretching energy ex-
pressed with Poisson’s ratio. While [4] can produce very accurate solutions at
low computational cost, it relies on several points in the shape having to un-
dergo a rigid motion to establish the boundary conditions of the FEM system,
a limitation shared with [29], that also needs this knowledge in advance.

As an alternative to physics-based models, statistical learning methods have
been proposed to discover the laws governing the dynamics of a deformable
object from training data. Active appearance shape models [14,30] and 3D
morphable models [8] rely on a linear subspace of deformation modes to model
the time-varying shape. The alternative strand of methods known as template-
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based methods [35,36,45] compute correspondences between the current image
and a reference image in which the 3D shape is known. Similar to previous
methods, the shape is coded as a linear combination of known deformation
modes learnt in advance from a relatively large set of training data. These
methods obtain accurate results if appropriate training data is available. How-
ever, this is not often the case in practical scenarios.

On the other hand, nrsfm methods have emerged to simultaneously recover
deformable shape and relative camera motion from a sequence of monocular
images. Most nrsfm methods typically model the non-rigid shape as a linear
combination of unknown shape basis [6,9,15,17,41,49] under orthography, in
addition to orthonormality constraints on camera motion. Although this prior
has proven to be a powerful constraint, it is not sufficient to solve all inherent
ambiguities in nrsfm. A dual formulation in the trajectory space was pro-
posed in [5], where a pre-defined Discrete Cosine Transform (DCT) basis was
used to express the 3D trajectory of each point. Later, a smoothness for the
time-trajectory of each point was incorporated in [19]. In [27], a normal dis-
tribution over shapes in a Procrustes aligned space was proposed. Yet, despite
these low-rank based methods can effectively encode global deformations, they
cannot generally handle non-linear motion patterns and strong local deforma-
tions. An alternative to overcome this limitation is based on piecewise formu-
lations [4,44,48,51]. Piecewise planar [51], locally rigid [48] or quadratic [44]
models rely on common features shared between patches to enforce spatial
consistency and create a continuous global surface. While [48] needs too many
points to enforce the rigid local constraint, the quadratic model [44] can be
considered as an extension of a low-rank model and its power to code non-
linear motions might be limited. More recently, [4] encoded the piecewise
model by means of elastic triangles, without requiring a post-processing step,
in order to stitch all local reconstructions into a single smooth surface [44].

In this paper, we propose two piecewise physically-based models to approxi-
mate the non-rigid shape. First, we use the 3D Navier-Cauchy equations solved
by FEM to model its behavior, and represent the shape by means of a mixture
of 3D wedge elements (triangular prisms). Second, we also consider a simplified
version of the FEM formulation based on 2D thin-plate using triangular pla-
nar elements, slightly modified to improve the computational efficiency. The
classical FEM formulation needs to identify several points undergoing a rigid
motion to establish the boundary conditions in displacements. Our main con-
tribution is to remove the rigid prior for the FEM formulation. To do this, we
propose to approximate the compliance matrix by means of a generalization
of the inverse stiffness matrix, enforcing a 6 rank deficiency that corresponds
to the 6 rigid body motions of an object in the 3D space. We embed this
formulation along with a motion model for smooth camera motion within a
Bayesian EKF estimator. The proposed method does not require fine tuning
of the material properties since these are explicitly incorporated in an uncer-
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tainty component. This generality makes our approach adequate to handle
inextensible or potentially extensible deformations. Both new linear FEM for-
mulations have a lower computational cost as they provide matrices of smaller
dimensions compared to [4], reducing the time cycle for the non-rigid predic-
tion stage. This is a key factor for achieving real-time performance at frame
rate, as we show in the experimental section. Similar to the EKF-FEM formu-
lation, our approach uses a full perspective camera, does not need continuous
tracks of feature points over the sequence and does not require any training
data.

3 Continuum Mechanics Deformation Model

Let us consider the linearly elastic object Ω depicted in Fig. 2, with y be-
ing its rest geometry referred to a 3D rectangular Cartesian coordinate sys-
tem C ≡ {x, y, z}. The solid object deforms by volumetric forces fc and be-
comes internally stressed due to prescribed loading conditions. This behav-
ior is modeled using the governing equations of elastostatics [53], known as
Navier-Cauchy equations, and can be expressed in vector notation in terms of
displacements as:

E

2(1 + ν)(1− 2ν)
∇(∇ · u) +

E

2 (1 + ν)
∇2u + fc = 0 in Ω, (1)

where u ≡ [ux,uy,uz]
> is the unknown 3D displacement field. This expres-

sion includes the gradient operator ∇ = [δ/δx, δ/δy, δ/δz]>, the divergence
operator ∇·u = δux/δx+ δuy/δy+ δuz/δz, and the Laplacian operator ∇2(·)
that represents the divergence of the gradient. Material properties for this
isotropic elastic solid are introduced by means of the Young’s modulus E and
the Poisson’s ratio ν. These equations require boundary conditions that can
be expressed as a displacement vector (Dirichlet conditions) u = ū on Γu, or
a stress vector (Neumann conditions) t = t̄ on Γt, the boundary being defined
as Γ = Γu + Γt, with ū and t̄ a prescribed displacement and traction field,
respectively.

3.1 Finite Element Method Solution

The partial differential equations in Eq. (1) do not usually have an analytical
solution, and numerical methods such as FEM have to be applied. The FEM
provides continuous surface approximations of the unknown vector u in terms
of combinations of local basis. To apply FEM to Eq. (1), the continuum object
Ω with boundary Γ is discretized into a finite set of patches, denominated
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(a)

(b)

Fig. 2. Linearly elastic solid formulation. Left: An object Ω with body forces
fc and prescribed boundary conditions (ū, t̄) on the boundary Γ. This problem can
be solved using numerical methods such as FEM. Right: Discretization into finite
elements Ωe. The 3D deformation can be parameterized by (a) 3D wedge elements
(6 nodes per element with 3 d.o.f. per node), or (b) using 2D thin-plate elements [4]
(3 nodes per element with 5 d.o.f. per node) as a 2D function on the mid-surface
plane. In both cases, element nodes are represented as black dots (•).

elements Ωe, that are defined by its nodal points (Fig. 2). The displacement
vector u at any point (x, y, z) is approximated as a weighted sum of piecewise
shape basis functions Ni as:

u (x, y, z) =
∑
i

Ni (x, y, z) ai (2)

where ai is the nodal displacement vector for every node i in the discretization
(see Fig. 2). Applying FEM to Eq. (1), we can obtain the classical global FEM
linear system as:

Ka = f (3)

where a and f are the 3D nodal displacement and force vector, respectively.
The sparse and symmetric matrix K is the global stiffness matrix of the object.
This matrix may be assembled from its associated element stiffness matrices

as K = Ae
Ke, where Ae

represents the assembly operator. The element
stiffness matrix Ke in global coordinates can be defined as:

Ke =
∫

Ωe

B>DB dΩe , (4)

where D (E, ν) is the behavior matrix for isotropic linear materials and B is the
strain-displacement matrix that depends on the type of discretization [7,53].
This matrix relates the strain and the nodal displacements.

In this work, we propose a 3D FEM formulation based on 3D wedge elements
to model the non-rigid shape. Additionally, we also propose a simplified version
of the 2D thin-plate model proposed in [4]. In the following section, we describe
each one of these formulations in more detail.
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Fig. 3. Generating a 3D wedge element. Left: Normal unit vector estimation di
per nodal point i as weighted average of normals on yi neighborhood (red circles).
Right: Extruded wedge element Ωe.

3.2 3D FEM Formulation: Wedge Elements

In this case, we propose to employ wedge elements to model the scene object
as a single layer of these elements. Without loss of generality, we employ just
one layer to simplify the element definition, although more elements could be
used. Nodal displacement and force vectors at the i-th point can be expressed
as ai = [ui, vi, wi]

> and fi = [fxi , fyi , fzi ]
> for these elements (see Fig. 2). As

the observed objects we will consider are opaque, the camera can only detect
one surface side –denoted as the visible side– with n nodal points. We represent
this surface y as a triangulated mesh computed by Delaunay triangulation.
However, the 3D elements need both sides to compute the stiffness matrix of
the solid object in Eq. (4). In this work, we generate the 3D mesh of wedge
elements from visible side. For this purpose, we extrude each visible point
yi = [xi, yi, zi]

> on the visible side along its normal unit vector di, up to a
fixed thickness h (see Fig. 3(left)) that corresponds to the surface thickness. To
obtain the normals for each nodal point i, we use a weighted average of normals
on the yi neighborhood (see Fig. 3(right)) to provide continuity C1 within the
object. Each normal vector is weighted according to the corresponding triangle
area computed by means of the cross product:

di =

∑k
j=1(mij − yi)× (mij+1 − yi)∥∥∥∑k
j=1(mij − yi)× (mij+1 − yi)

∥∥∥ , (5)

where mij ∈ {mi1,mi2, . . . ,mik} are the neighbor nodes defining the k De-
launay triangles to which the node yi belongs.

With the solid geometry obtained, the 18-dimensional (3 d.o.f. per point)
elemental stiffness matrix Eq. (4) for wedge elements can be expressed as:

Ke =
∫ 1

−1

∫ 1

0

∫ 1−ξ

0
B>DB |J| dη dξ dζ , (6)
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where ξ = [η, ξ, ζ]> are the natural coordinates which are used to express the
piecewise shape functions [53]. The transformation from natural to global co-
ordinates is expressed by means of the Jacobian |J|, i.e., J = δy/δξ. The inte-
grals in Eq. (6) can be numerically approximated using integration points [46].
We select five points to approximate the elemental stiffness matrix. See the
Appendix for the exact expressions of these matrices and shape functions.

Our focus is only to determine the geometry on the visible side of the sur-
face since the hidden side is never observed. To do this, we can reorder the
displacements and forces for each side of the object in order to marginalize
out the hidden nodes. Let us denote as av and fv the vectors for the visible
side, and ah and fh the vectors for the hidden side. We can rewrite the linear
system in Eq. (3) as:  Kvv Kvh(

Kvh
)>

Khh


av

ah

 =

fv

fh

 , (7)

where the resulting K stiffness matrix is 6n × 6n since the n feature points
have to be projected on the hidden side.

Although acting forces could be applied on both sides of the object, without
loss of generality, we can reduce an acting force on the hidden side to an
equivalent one on the visible side to produce similar deformations. Hence,
assuming no acting forces on the hidden side fh = 0, Schur complement of
Khh in K can be applied to relate displacements av and forces fv on the visible
side as: [

Kvv −Kvh
(
Khh

)−1 (
Kvh

)>]
av = fv . (8)

Note that the Schur complement is denoted as static condensation from the
FEM analysis [53]. Finally, we obtain our 3n× 3n stiffness matrix from static

condensation of a wedge element as K = Kvv −Kvh
(
Khh

)−1 (
Kvh

)>
. There-

fore, we are able to model the rigidity of just one visible side.

3.3 2D FEM Formulation: Triangular Elements

We also propose to employ the 2D thin-plate formulation to approximate
Eq. (1) as a 2D function on the mid-surface plane. We follow the combination
proposed in [4] except for the fact that rotations are removed from the formu-
lation to reduce the computational overhead. Regarding this model, in-plane
displacements are coded using a 2D plane stress model and out-of-plane dis-
placements are coded with the Kirchhoff-Love plate model. Hence, the nodal
displacement and force vectors are 5-dimensional for each node and can be
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expressed as ai =
[
ui, vi, wi, θxi, θyi

]>
and fi =

[
fxi, fyi, fzi,Θxi,Θyi

]>
, re-

spectively (see Fig. 2). Since we only model the middle-plane in the solid, in
this work we propose a novel additional simplification eliminating the rota-
tion

[
θxi, θyi

]
and moment

[
Θxi,Θyi

]
components, i.e., we only consider the

translational displacements. To do this, we only have to eliminate the rows
and columns of these degrees of freedom when the elemental stiffness matrix is
computed. Note that only translational displacements can be detected by the
camera, since the rotation effects are eventually also detected as translations.
This allows us to obtain a 3n×3n stiffness matrix, i.e., a model matrix to code
only the 3D displacements of n map points. In addition, we also reduce the
computational cost since the resulting linear system has a lower dimension.

4 FEM Linear System Solution

The linear system in Eq. (3) is under-constrained since K is rank deficient,
and additional constraints are necessary to solve it. The classical FEM anal-
ysis uses boundary conditions to provide these additional constraints and is
able to obtain a unique solution. These constraints are normally imposed as
displacements, fixing nodal points in the space, i.e., with a null displacement
ai = 0.

While these constraints provide additional information about the type of de-
formation, they are not frequently available. In this work, it is our goal to
remove the necessity of knowing several rigid points in order to solve Eq. (3).
In this case, the full affine space solution can be computed as [18]:


ăp + ăh = a

K ăh = 0

K† f = ăp

where the displacement vector a is a linear combination of the homogeneous
solution ăh and the particular solution ăp. The first represents the set of dis-
placement vectors compatible with no acting forces and corresponds to rigid
transformations with dimensions equal to the K rank deficiency. For the 3D
case, this rank deficiency should be 6, corresponding to 6 possible 3D rigid
body motions. The particular solution, ăp is computed by means of a general-
ization of the Moore–Penrose pseudoinverse K†. However, in practice the rank
deficiency of K could not be 6, as we will see below. A rank deficiency lower
than 6 will produce phantom deformations for a given set of forces. It is our
aim to model the deformation by a = ăp, i.e., we have to subtract the rigid
transformations. In these cases, the stiffness matrix rank has to be enforced to
r = 3n− 6 by means of a Singular Value Decomposition (SVD), with n being
the number of points. As K is a symmetric and square matrix, its factorization
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can be expressed as K = U Σ U>, and we can then compute the generalized
pseudoinverse as:

K† = Ur Σ†Ur
>, (9)

where Ur contains the first r columns of U and Σ† is a diagonal matrix
composed of the first r singular values σ inverses:

Σ† = diag
[

1

σ1

, . . . ,
1

σr

]
. (10)

We analyze the rank deficiency of the proposed stiffness matrices by means of
two synthetic examples, both with n=81 nodal points. In the first example the
shape at rest is planar while in the second it is curved (see Fig. 4). First, we an-
alyze our 3D FEM formulation using wedge elements (see section 3.2). In this
case, if we consider the full stiffness matrix for the wedge element in Eq. (7),
the K is a 486-dimensional matrix having 6 null singular values for both types
of geometry, as theoretically expected. When we consider the static condensa-
tion in Eq. (8), where the stiffness matrix K is a 243-dimensional matrix, the
resulting matrix also has 6 null singular values. However, in real cases the sur-
face normally contains noise and we will not obtain a rank deficiency of 6 up to
numerical accuracy. This deviation from the theoretical value is also produced
by the matrix inversion in the Schur complement in Eq. (8), which introduces
numerical round-off errors. We can conclude that the wedge formulation is
able to code the 6 rank deficiency even in the case of the Schur complement
which halves the stiffness matrix size with the corresponding computational
overhead reduction.

Regarding the 2D FEM formulation using triangular elements (see section 3.3),
this deviation is clearer. When we use the finite element proposed in [4], the
stiffness matrix is 405-dimensional. In this case, the rank deficiency is only 5
up to numerical accuracy. This excess of rank is attributed to the thin-plate
approximation used to model the 3D object on the mid-surface plane, and it
is also included in our simplified version of the thin-plate model where the
dimension of the stiffness matrix is also 243. Note that the rank deficiency
is different depending on the type of geometry, e.g. planar or non-planar,
showing that the rank deficiency depends on data quality. We can conclude
this formulation provides an inferior coding of the 6 rank deficiency.

Figure 4 illustrates the singular value decomposition for each case, showing the
rank deficiency obtained for these synthetic examples. We conclude that the
3D FEM formulation provides better conditioned matrices than the 2D thin-
plate formulation. In any event, the 6 rank deficiency has to be enforced in
both formulations to correctly subtract the rigid transformations, avoiding the
artifacts such as noise when a standard pseudoinverse is computed. This rank
deficiency enforcement has proven to be a key factor for proper experimental
performance.
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Fig. 4. Rank deficiency analysis. Singular values for a synthetic case: non-planar
shape (above) and planar shape (below) in logarithmic scale. We show the shape at
rest in black and a deformed shape in red for both discretizations. In all cases, the
rank deficiency is displayed in blue. Top: 3D wedge elements using a full formulation
(left) and static condensation (right). Bottom: 2D triangular elements using the
2D thin-plate model (left) and removing the rotations components (right). We code
the deformation by means of the 3n-dimensional stiffness matrices (represented on
the right). In both cases, a 6 rank deficiency has to be enforced to avoid artifacts.
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5 Camera-centric Non-Rigid EKF

This section is devoted to the embedding of our piecewise physics-based models
within the sequential EKF estimator. Our EKF-FEM-FRP algorithm allows
us to estimate simultaneously both camera motion and deformable shape for
each frame from a monocular video. Like in other nrsfm approaches [5,41,49],
as we do not assume any point to be rigid, only the relative pose of the non-
rigid scene with respect to the camera can be estimated, instead of the full 3D
camera trajectory when several rigid points are used [1,4]. For this purpose,
we propose a camera-centric EKF-based formulation coding shape relative to
the last camera location [10].

5.1 Problem Formulation

Let us consider a calibrated camera with unknown motion observing a non-
rigid scene. Since no rigid points are assumed, we define the camera pose as a
combination of the motion of the camera xv and the six possible rigid motions
of the structure ar (see Fig. 1(d)). In this case, the state of the camera xCkr at
frame k can be represented as:

xCkr =
[
rCk
>
,qCk

>
,vCk

>
,ωCk

>]>
, (11)

where rCk is the translation, qCk is the quaternion to code the orientation
enforcing the orthonormality constraints, and vCk and ωCk are the linear and
angular velocity, respectively. As we propose a camera-centric formulation,
every component is related to a coordinate frame Ck fixed to the camera.

To code the non-rigid structure, we define it as a triangulated mesh with n 3D
map points yi –every feature point corresponds to a nodal FEM point– which
can be concatenated in the state vector of the shape as:

yCk =
[
yCk1

>
, . . . ,yCkn

>
]>
. (12)

Our problem is to simultaneously estimate camera pose xCkr and deformable 3D
shape yCk in every frame k from a sequence of monocular images as the data
arrives. For this purpose, we propose a camera-centric EKF-based formulation
in which the state vector is represented as:

xCk =
[
xCkr
>
,yCk

>]>
, (13)

which has to be iteratively estimated with its corresponding covariance matrix
PCk .
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5.2 Shape and Camera Dynamic Models

First, we assume that the camera motion follows a constant velocity model,
similar to SLAM systems [4,16], and impulses of linear ∆vC = v̇C∆t and
angular ∆ωC = ω̇C∆t velocities are introduced at every frame –with time
step ∆t–. Both velocities are coded with a zero-mean Gaussian distribution
and covariance matrix Qxr . The state equation for the camera pose is:

xCk+1
r =



rCk+1

qCk+1

vCk+1

ωCk+1


=



rCk + (vCk + ∆vC)∆t

qCk × q ((ωCk + ∆ωC)∆t)

vCk + ∆vC

ωCk + ∆ωC


, (14)

where q ((ωCk + ∆ωC)∆t) is the quaternion defined by the rotation vector
(ωCk + ∆ωC)∆t.

To code the non-rigid deformation of the scene, we use our FEM formulation
in Eq. (3) that depends on two material parameters, the Poisson’s ratio ν and
the Young’s modulus E. Without loss of generality, we can assume nearly in-
compressible materials setting ν ≈ 0.5, a reasonable approximation for a wide
variety of materials such as rubbers, papers and human tissue. We can also
factor out E so that it is not known a priori (see linear relation in Appendix).
To do this, we define a vector of forces ∆sC normalized by E, which allows to
concentrate most of the tuning parameters in the state noise vector:

∆sCi =
1

E
∆fCi =

1

E

[
∆fCxi , ∆f

C
yi
, ∆fCzi

]>
. (15)

This vector is modeled by means of a zero-mean Gaussian distribution with
covariance matrix Qy. In this vector, ∆fCi represents the incremental force
in the current frame. Note that when we use the 2D thin-plate model (see
section 3.3), this vector is normalized with the 1

Eh
factor, since h can be

partially factored out [4].

At each step, the applied force vector ∆sC will recursively cause an incremental
deformation ∆aC with respect to the current state (see linear relation between
displacements and forces in Eq. (3)). The state equation for the deformable
scene can be expressed as:

yCk+1 = yCk +∆aCk = yCk + KCk
†
∆sC, (16)

where the rigidity of the scene is coded by the compliance matrix KCk
†

de-
fined in Eq. (9), which is recomputed at each new frame using the current
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shape estimation yCk . Hence, the incremental non-rigid displacement anr (see
Fig. 1(d)) caused by the Gaussian set of normalized forces is modeled as the
particular solution of the FEM system without boundary conditions. Finally,
we have to set a thickness surface h to extrude our 3D wedge element (see
section 3.2). Note that the effect of this parameter is similar to E, since it gives
rigidity to the structure. In practice, we could set it with a priori knowledge
if this is available, or with a standard thickness of physical materials observed
in computer vision. In the latter case, possible deviations will be compensated
by the normalized force vector.

As a consequence of the generality of our approach, we can handle both inex-
tensible and extensible deformations simply by tuning. While our FEM model
favors elastic deformations with low energy, isometric deformations are a par-
ticular case of our model where assuming a thin solid and incompressibility
ν ≈ 0.5 condition, the element area has to be almost fixed. Consequently, we
do not have to use additional inextensibility constraints [11,36].

It is worth noting that both state transition equations (14) and (16) model
all state parameters as dynamic, unlike rigid EKF [16] where only the camera
parameters are dynamic or EKF-FEM [4] where, in addition, part of the map
is dynamic. In any event, in both cases the dynamic state parameters represent
a fraction of the state, while in our approach we fully exploit the estimation
qualities of the Kalman filter since all the state vector is dynamic.

5.3 Measurement Equation

Let us consider a 3D point y
Ck−1

i = [xi, yi, zi]
> expressed in the camera coor-

dinate system Ck−1. The observation of this point at frame k is defined by a
ray coded by the directional vector hCki = [hxi , hyi , hzi ]

> as:

hCki = RCk−1

[
y
Ck−1

i − rCk−1

]
, (17)

where RCk−1 represents the full rotation matrix depending on the quaternion
qCk−1 , and rCk−1 is the translation vector, and both are coded between refer-
ences Ck−1 and Ck. The perspective projection of this point y

Ck−1

i is modeled
by means of a pinhole camera, being for a normalized retina:

hi =

βx − αx hxihzi

βy − αy
hyi
hzi

 , (18)

where (βx, βy) is the camera principal point and (αx, αy) its focal length. To
deal with real camera lenses, a distortion model of two parameters has been
applied [34]. Every feature point measurement is modeled with a zero-mean
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Gaussian error to build a measurement noise covariance RCk . This is necessary
in order to carry out the data association and to finally update the state vector.

5.4 EKF Formulation

We next briefly describe how to assemble the Jacobian matrices FCk and GCk

of the state equations (14) and (16), respectively. Both matrices are required
to perform the EKF prediction stage for the non-rigid case. They are defined
as:

FCk =

∂xCk∂x
Ck
r

∂xCk

∂yCk

 =



I 0 I∆t 0 0

0 ∂qCk+1

∂qCk
0 ∂qCk+1

∂ωCk
0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I


, (19)

GCk =

∂x
Ck
r

∂nC

∂yCk
∂nC

 =



I∆t 0 0

0 ∂qCk+1

∂∆ωC
0

I 0 0

0 I 0

0 0 KCk
†


, (20)

where nC =
[
∆vC

>
∆ωC

>
∆sC

>]>
is the state noise vector with covariance

matrix Q. This block diagonal matrix is composed of Qxr and Qy. The co-
variance Qxr is set as for the rigid EKF [16].

Finally, after the standard update stage, a rigid transformation is applied to
change the reference system from the last camera Ck−1 to the current camera
Ck following a camera-centric formalism.

5.5 Initialization

Like other sequential approaches to recover non-rigid shapes [4,40,47], we as-
sume that the monocular video contains some initial frames where the observed
object is mostly rigid. We use this initial exploration to initialize our system,
estimating a geometry at rest by applying the FEM model. To do this, we use
our EKF-based method setting the covariance matrix Qy = 0, i.e., no acting
forces are applied and the model is assumed to be rigid. It is worth noting
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Fig. 5. Data association for purely non-rigid shapes. We display search regions
for some feature points in several image frames. Cyan ellipses correspond to the
search regions when only the camera motion is considered. Red ellipses represent
the total predicted search areas, adding a degree of uncertainty produced by the
deformable model (different for every nodal point). Note that as no rigid points are
considered in our formulation, all search regions always include both contributions.

that we do not assume any training data [47] and our system can also be used
for videos where this data is not available.

To estimate the geometry at rest, we use FAST interest points [43] on the
first input frame and create a map of points encoded in inverse depth [12].
In the following frames, the camera moves around the object and features
are observed with high parallax. We then switch from inverse depth to Eu-
clidean parametrization. When the initial model is estimated, acting forces are
permitted and the covariance matrix is Qy 6= 0 (see tuning in experimental
Section 6).

We carry out the data association in a similar manner to [4,16], using a guided
search. However, in this work all the feature points are non-rigid and hence
all the predicted search areas have a contribution of uncertainty caused by
the rigid camera motion and another cause by the non-rigid component of the
model (see Fig. 5). We refer the reader to these papers for further details.

5.6 Computational Cost

Like other EKF-based methods [4,12,16], our approach has a complexity of
O (n3) when all the feature points are detected and measured in the input
frame, where recall that n corresponds to the number of map points. In this
work, we include a FEM model to code the non-rigid deformation of the struc-
ture, and in Eq. (9) we have to compute a per-frame SVD-based factoriza-
tion of the stiffness matrix. Since the matrix K is symmetric, we propose to
compute a symmetric SVD reducing the complexity from f (n) = 21n3 to
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f (n) = 12n3 compared to the standard one [18]. Moreover, note that K is
very sparse and, in practice, the previous complexity can be further reduced
by exploiting the sparsity pattern.

When compared to [4], our formulations yield 3n×3n stiffness matrices instead
of 5n×5n, reducing the cost of computing the generalized compliance matrix.
Additionally to this factorization, an inverse matrix is necessary when using
3D wedge elements, hence the computational cost is slightly more expensive
compared to the thin-plate formulation where the Schur complement is not
applied. In any event, both formulations reduce the time cycle for the non-rigid
prediction stage, a key factor for achieving real-time performance. Similar to
rigid EKF-based methods [12,16], the total complexity of our EKF-FEM-FRP
algorithm remains O (n3).

Finally, it is worth noting that our sequential approach only estimates the
state vector at the current image thanks to the dynamic state estimation
capabilities of the EKF, ensuring that the computation time per frame is
bounded and does not increase with the number of images. We do not have
to explicitly represent previous time step estimations, since the current state
and its corresponding covariance have accumulated an estimation memory.
The overall O (n3) complexity, allows real-time performance at frame rate for
small maps. For instance, in the experimental section we will show how our
method can run in real time, between 30-35 Hz, for maps of 35 features.

6 Experimental Results

In this section we provide an extensive experimental validation for the pro-
posed sequential method for both synthetic and real videos. Let us denote our
methods as EKF-FEM-FRP1 and EKF-FEM-FRP2 when using 3D wedge
elements and 2D triangular elements, respectively.

6.1 Synthetic Elastic Plate

We present a quantitative evaluation of our proposed method and a compar-
ison with respect to other state-of-the-art approaches. For this purpose, we
first use a synthetic sequence of 1000 frames where an elastic plate is deformed
combining stretching and bending effects, provided by [4]. The deformation is
particularly challenging since some elements increase their area by an order
of 2×. This deformation was observed by a moving calibrated camera ob-
taining the synthetic projection on a 320 × 240 image. Figure 6 shows a few
3D reconstructions obtained with our free rigid priors algorithm using both
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Fig. 6. Synthetic sequence. Top: Synthetic mesh observed by the camera
at four selected frames. Middle: General view of our 3D reconstruction using
EKF-FEM-FRP1. Bottom: General view of our 3D reconstruction using EK-
F-FEM-FRP2. In both cases the black mesh represents the ground truth. Best
viewed in color.

FEM formulations. In both cases, the 3D reconstruction is very accurate and
close to the ground truth. We also propose two novel synthetic sequences of
a deforming elastic plate with different levels and types of deformation. In
these cases, the deformation is concentrated in 200 frames and no rigid points
are considered to constrain the solution, producing faster inter-frame changes
compared to the previous sequence. Despite this difference, we can process the
three sequences using the same physical tuning reported in Table 2. Figure 7
shows the 3D reconstruction we obtain for these experiments. Again, our 3D
reconstruction is very accurate with respect to ground truth, even when the
deformation does not include rigid points.

We compare our 3D reconstructions against state-of-the-art methods. We
consider the batch methods EM-LDS [49], DCT [5], CSF [19], KSTA [20],
SPM [15], EM-PND [27] and BBN [36]; and the sequential methods SBA [40]
and EKF-FEM [4]. For the BBN [36] approach, we use the two configurations
provided by [4], denoted as BBN1 when the training data set is small and
BBN2 when a large set of training data is available. Every method was ad-
justed in accordance with its original paper. In all cases, we compute the 3D
reconstruction error in mm as the average distance between the 3D ground
truth and the 3D reconstruction over all the frames. Table 1 summarizes the
results. For the sequence #1, our alternatives EKF-FEM-FRP1 and EKF-
FEM-FRP2 yield a reconstruction error of 5.6mm and 5.3mm, respectively.
This represents a remarkable improvement compared to most competing ap-
proaches, such as KSTA [20] (30.4mm), EM-LDS [49] (28.6mm), CSF [19]
(20.2mm), SBA [40] (17.5mm), DCT [5] (16.6mm), EM-PND [27] (7.5mm)
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Fig. 7. Synthetic sequences #2 and #3. In both cases: Top: Mesh observed
by the camera at four selected image frames. Bottom: General view of our 3D
reconstruction. We represent the solution of the algorithm that gives the best per-
formance according to Table 1 for each sequence, i.e., EKF-FEM-FRP2 for #2 and
EKF-FEM-FRP1 for #3. In both cases the black mesh represents the 3D ground
truth. Best viewed in color.

and BBN1 [36] (7.4mm). While our methods outperform most of the eval-
uated techniques, our performance is slightly below EKF-FEM [4] (4.7mm)
and BBN2 [36] (1.2mm) which, however, require rigid priors or a large set of
training data, respectively (see Table 1). In fact, our algorithms show a re-
duction in accuracy compared to EKF-FEM [4], compatible with the removal
of the rigid priors. For the sequences #2 and #3, neither training data nor
rigid points are provided and hence BBN [36] and EKF-FEM [4] are not appli-
cable. Regarding the rest of state-of-the-art techniques, we observe a similar
pattern in the results as the one obtained for the previous experiment, with
a consistent improvement of our proposed methods. It is worth to point that
SPM [15] algorithm did not converge for these experiments.

Sequence #1 is also used to evaluate the sensitivity of our results against
the tuning of the physical parameters that are required for our FEM models.
We adjust the Poisson’s ratio ν, the thickness surface h and the normalized
forces ∆s. Note that the normalized force vector depends on the type of FEM
formulation, being defined as ∆s ≡ ∆f

E
for the 3D formulation and as ∆s ≡ ∆f

Eh

for the 2D formulation. The results are summarized in Fig. 8.

First, we study the stability of our estimation as a function of the Poisson’s
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Table 1
Quantitative and qualitative evaluation. 3D reconstruction error for the syn-
thetic sequences considering both batch and sequential state-of-the-art techniques
and our two alternatives denoted as EKF-FEM-FRP1 and EKF-FEM-FRP2. The
symbol – indicates the algorithm did not converge and ¬ that the algorithm did
not manage to process the sequence. We also specify several characteristics of each
of these techniques, considering: a specific rank of a deformation model (Rank),
methods that use 3D training data (Training) to learn the deformation model, or
rigid priors (Rigid) to constrain the solution. Additionally, we show when a method
provides a strategy (Measure) to solve the data association and hence monocular
videos can be directly handled. Strengths and weaknesses are denoted as (X) and
(X ), respectively.

3D error [mm] Batch Methods Sequential Methods
PPPPPPPPPQua.

Met.
EM-LDS DCT CSF KSTA SPM EM-PND BBN1 BBN2 SBA EKF-FEM -FPR1 -FPR2

Seq. #1 28.6 16.6 20.2 30.4 − 7.5 7.4 1.2 17.5 4.7 5.6 5.3

Seq. #2 27.8 41.3 − − − 13.3 ¬ ¬ 18.5 ¬ 5.0 4.9

Seq. #3 6.3 24.8 − − − 5.3 ¬ ¬ 14.6 ¬ 3.0 3.2

Rank X X X X X X X

Training X X

Rigid X

Measure X X X X X

ratio. We use values within the range [0, 0.499], from highly compressible to
incompressible materials. It is observed that this parameter has little influence
in our algorithm, and hence we always set ν ≈ 0.499 for incompressible mate-
rials. Regarding the parameter tuning, we sweep a wide range of values for the
thickness surface h and the normalized forces ∆s. We simultaneously set both
parameters since they are related, and define the deformation of the solid ob-
ject. We observe that the degradation of the reconstruction error is also very
limited, being still more accurate than the closest competitors BBN1 [36], EM-
PND [27], and DCT [5]. While EKF-FEM-FRP1 is more sensitive to h, since it
is directly used within the FEM formulation –especially for very small values–,
we can conclude that both algorithms remain within reasonable bounds for a
wide range of tuned parameters. This means our methods do not need fine tun-
ing of the physical parameters, although they may be used if available. Note
that in both cases we obtain the smallest reconstruction error for h = 1.5mm,
which is ground truth value for the surface thickness.

Finally, we have also evaluated the robustness of our algorithms against noise
and missing data in the image measurements. We use the physical parameters
that yielded the lowest 3D reconstruction error in the previous analysis, and
show these results in Fig. 9. Regarding image noise, it can be observed that the
accuracy for both methods gradually degrades for increasing levels of noise.
We observe that EKF-FEM-FRP2 is more sensitive than EKF-FEM-FRP1,
which even with a noise of 2 pixels std provides 3D errors below 7mm. Addi-
tionally, we add several random patterns of missing data per image frame. The
accuracy with respect to the number of image correspondences for both meth-
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BBN1-BBN2 [36] and EKF-FEM [4] in absence of artifacts. Left: Reconstruction
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the percentage of missing data.

ods slightly decreases when the percentage of missing data increases, without
any significant degrading until a breaking point at around 80%.

6.2 Real Videos

In this section, we evaluate our algorithms with real videos ranging from ex-
tensible materials –such as the silicone and laparoscopy sequence– to quasi-
isometric deformations –such as the paper sequences–. Both types of defor-
mations can be handled for our algorithms by simply tuning the parameters
shown in Table 2. Since none of the competing methods considered in the
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Table 2
Parameter selection. We tune the surface thickness h, the Poisson’s ratio ν and
the standard deviation of the normalized forces ∆s. The latter is different for each
FEM formulation we propose. For 3D wedge elements it is ∆s ≡ ∆f

E , while it is

∆s ≡ ∆f
Eh for the 2D thin-plate formulation [4].

Synthetic Sequences Silicone Sequence Paper Sequences Face Sequence Laparoscopy Sequence

Parameter 3D FEM 2D FEM 3D FEM 2D FEM 3D FEM 2D FEM 3D FEM 2D FEM 3D FEM 2D FEM

h [mm] 1.5 1.5 1.5 1.5 0.1 0.1 1.5 1.5 3.5 3.5

ν 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499

∆f
E [mm2] 6 · 10−6 − 2.25 · 10−5 − 4 · 10−8 − 1.5 · 10−6 − 7 · 10−6 −

∆f
Eh [mm] − 1 · 10−3 − 1.5 · 10−2 − 2 · 10−6 − 1 · 10−3 − 2 · 10−3

previous subsection [5,15,19,20,27,40,49] provide a methodology to compute
correspondences between frames –2D point tracks are used as input–, they are
not directly applicable in these experiments (see Table 1). In addition, the real
videos do not provide 3D training data, which would be necessary to apply
BBN1-BBN2 [36]. We therefore just provide a comparison of our proposed
alternatives, showing also that they can run in real-time.

6.2.1 Silicone Sequence

Firstly, we quantitatively evaluate our EKF-FEM-FRP algorithms with real
extensible data. For this sequence, a moving hand-held camera observes a sili-
cone cloth fixed to a stretcher while a person presses with the hand the back of
the silicone surface. This results is an extensible deformation over time. Since
the silicone surface is textureless, artificial markers were painted onto the visi-
ble surface to facilitate the feature detection. However, the coded markers are
not used to compute the data association which is automatically solved using
a guided search by our algorithm. It is worth noting that some of the points
become missing, specially for skewed camera viewpoints. In this case, non-
matched points will indirectly be updated from other point observations via
the covariance matrix correlation terms. As shown in Fig. 10(top), the percent-
age of points annotated as non-matched can be relatively high –highlighted
with blue circles–.

We process this sequence with the parameter setting detailed in Table 2. As no
boundary conditions are known in advance, the normalized forces are smaller
than those obtained using EKF-FEM [4] where rigid points are needed, in
order to keep the size of the search regions within the image plane. For the
EKF-FEM-FRP1, the normalized force does not depend on h, since the thick-
ness effect is included in the wedge element extrusion. To perform a fair com-
parison, we set this force with an equivalent value just removing the h factor.
Figure 10 shows our 3D reconstruction for a few selected frames with ground
truth. Our estimation yields both the 3D location per point and its corre-
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Fig. 10. Silicone sequence. Top: Images acquired by the camera at three se-
lected frames with the estimated 3D mesh overlaid on it. The elliptical matching
acceptance regions are also shown: red circles correspond to predicted and matched
features; blue circles correspond to predicted but unmatched features. Middle:
General view of the 3D reconstructed deformed scene. Bottom: A cross section
of the reconstructed surface. We show for every point the 3D ground truth (black
crosses), the 95% acceptance regions according to the estimated covariances (red el-
lipses) and the 3D estimated location using green circles for EKF-FEM-FRP1 and
blue circles for EKF-FEM-FRP2. Note that both estimations are mostly consistent
because the ground truth is within the acceptance region. Best viewed in color.

sponding covariance. We can observe after a qualitative comparison that our
estimation is consistent with the ground truth since this is included in the
estimated 95% acceptance region.

We also provide a quantitative comparison using a few frames with ground
truth computed from stereo-vision. We obtain a mean 3D reconstruction error
of 4.16mm for our EKF-FEM-FRP1 and 3.27mm for our EKF-FEM-FRP2.
These are slightly greater than the 2.5mm reconstruction error reported by
the EKF-FEM [4]. Again, these results are compatible with the removal of the
rigid priors. Although both solutions are very similar in accuracy, we observe
that EKF-FEM-FRP1 exhibits a larger bending rigidity. This effect can be
detected by means of the size of the ellipses in 3D, which is smaller in the

25



Fig. 11. Paper bending sequence. Top: Images acquired by the camera at four
selected frames with the estimated 3D mesh overlaid. Middle: General view of our
3D reconstruction using EKF-FEM-FRP1. The 3D displacement field is encoded
by a color pattern, where red indicates larger displacement. Bottom: Comparison
of our FEM formulations: 3D FEM and 2D thin-plate reconstructions in green and
blue points, respectively. Best viewed in color.

depth direction while remaining similar in the search areas within the image
plane. Note that this effect is consistent with the FEM theory [53], since a
single layer of 3D FEM elements magnifies the bending rigidity.

6.2.2 Paper Bending Sequences

We next evaluate our approaches on real videos acquired with a hand-held
camera where a textured sheet of paper is being deformed. Although these se-
quences have static points, we never use this information to process the video.
We consider two sequences with different levels of deformation. In these exper-
iments, we use natural landmarks and the corresponding mesh is assembled by
a soup of irregular triangles –with different stiffness–. To detect feature points,
we use FAST interest points [43] in the first image of the sequence to build a
triangular mesh structure. Note that our framework automatically computes
the tracking and the data association throughout the sequence. Furthermore,
it allows to handle this quasi-isometric deformation by simple parameter tun-
ing, without using restrictive constraints to enforce inextensibility.

In the first experiment, a fixed camera observes a bending piece of paper. The
reconstructed 3D shapes are plotted in Fig. 11, showing similar accuracies
with both FEM formulations. We observe that the 3D FEM model exhibits
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Fig. 12. Flag paper sequence. Top: Images acquired by the camera at four se-
lected frames with the estimated 3D mesh overlaid. Middle: General view of the 3D
shape reconstructed using EKF-FEM-FRP1. The 3D displacement field is encoded
by a color pattern, where red indicates larger displacement. Bottom: Comparison
of the two proposed FEM formulations: 3D FEM and 2D thin-plate reconstructions
in green and blue points, respectively. Best viewed in color.

the expected magnification in bending rigidity compared to the 2D thin-plate
model, especially because the thickness of this object surface is very small. In
fact, as is shown in Table 2, to achieve a comparable performance we have
to magnify the normalized force. Similar performances are obtained in a sec-
ond experiment in which a paper is bended in a different manner. The 3D
reconstructions of this experiment are plotted in Fig. 12.

6.2.3 Face Sequence

In order to demonstrate the generality of our approach, we also process a
Franck’s sequence, consisting of 248 frames and 56 feature tracks showing a
man that simultaneously talks and moves his head. Figure 13 depicts four
frames of the original images and several views of the resulting 3D reconstruc-
tion. Since ground truth is not available we can only qualitatively evaluate
the results, which in seem to correlate with the actual deformation. Since
both algorithms give similar results, we just represent the solution obtained
by EKF-FEM-FRP2.
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Fig. 13. Franck’s sequence. Top: Images acquired by the camera at four selected
frames on which the 3D estimated mesh has been reprojected. Bottom: Frontal
and side viewpoints of the 3D shape estimated using EKF-FEM-FRP2.

6.2.4 Laparoscopy Sequence

We also consider a challenging real video made of 500 frames and 48 feature
points acquired with a hand-held monocular laparoscope, in which a surgeon
performs an external tactile exam on a rabbit abdominal cavity, producing
different type of deformations. As a result of the camera motion and the
shape deformation, several points are automatically annotated as occluded
along sequence. Our methods can easily identify these points and still provide
a 3D reconstruction of the whole surface. In Fig. 14 we present a few samples
image frames and the corresponding 3D reconstruction.

6.2.5 Real-Time Performance

Finally, we experimentally demonstrate the efficiency of the proposed ap-
proach, permitting real-time performances for small maps. We implemented
our monocular EKF-FEM-FRP method for both FEM formulations in C++.
We exploit the fact that the stiffness matrix is symmetric in order to speed up
the required SVD decomposition. To test our implementation, we use the pa-
per bending sequence (see Fig. 11). Given that the computational complexity
of the proposed formulations is O (n3), real-time performance can be achieved
for maps of up to 35 feature points, yielding 3D reconstructions at 30 Hz on an
Intel Core i7 processor with a 2GHz based laptop. Figure 15 shows how the
proposed approach produces accurate estimates even with small size maps,
making it possible to handle low textured objects. Note that other piecewise
methods in the literature [44,48] require overlapping features in neighboring
patches, being only applicable to highly textured surfaces with hundreds of
feature points.
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Fig. 14. Laparoscopy sequence. Top: Images gathered by the camera at four
selected frames where 3D mesh and elliptical matching regions have been repro-
jected. Bottom: General view of our 3D reconstruction using EKF-FEM-FRP1.
Color code represents the deformation field, where red areas are further from the
rest shape and blue areas are closer. Best viewed in color.

Figure 16 shows a detail of the total cycle time budget, distinguishing two
stages: rigid initialization and non-rigid estimation. For each stage, we iden-
tify three principal areas: 1) map management and matching, 2) EKF up-
date and 3) EKF prediction. At the initialization stage, feature points are
assumed to be rigid and thus the EKF prediction cost is negligible while the
cubic dominant cost is related to the EKF update operation. Note that in
this initialization stage, the computational cost for the update stage is larger
than in the normal operation, since the feature points are coded in inverse
depth [12] (6 parameters per point). When estimating the non-rigid shape,
the map points are coded in Euclidean XYZ (3 parameters per point) with
the corresponding computational load reduction in the EKF update stage.
However, because of the FEM computation, the EKF prediction stage be-
comes more dominant. During the non-rigid shape estimation we also observe
an increase in the matching cost, since the search regions –prediction ellipses–
become larger.

We also display the state size per frame, that corresponds to 6n+ 13 d.o.f. for
the rigid initialization and 3n + 13 d.o.f. for the non-rigid estimation stage.
In both cases, the camera state is represented by 13 parameters. If we com-
pare both FEM formulations (Fig. 16), we observe that the EKF-FEM-FRP1
complexity is slightly large than that of the EKF-FEM-FRP2, specially in the
prediction stage. This is due to the Schur complement computation. In any
event, we can conclude that for small maps, both EKF-FEM-FRP formula-
tions achieve real-time performance. In Fig. 16-right, we also display the cost
per frame histogram for all frames in the video, showing that computation
–for maps of up to 35 features– does not exceed 33.33 ms in any of the frames.
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Fig. 15. Recovering non-rigid shapes in real time. Top: Input images with
the elliptical search regions: predicted and matched features are represented in red,
predicted and unmatched features in blue. Bottom: 3D reconstruction of a time–
varying paper and estimated camera pose.

7 Conclusion

We have proposed a sequential algorithm for simultaneously estimating camera
motion and time-varying shape from the sole input of the image sequence.
Our system is able to handle different types of deformations, ranging from
isometric to elastic, can cope with significant missing data and does not require
training data. Additionally, the proposed approach performs data association
over the whole sequence and can run in real time at frame rate for small
maps. Regarding the mechanical model, we have proposed two piecewise FEM
formulations to model the deformable shape. In both cases, we have eliminated
the need to constrain several points to be rigid, a standard practice when
physics-based models are used. This is achieved by modeling the compliance
matrix through a generalization of the inverse stiffness matrix, and enforcing a
six rank deficiency that allows us to marginalize out the six rigid body motions
of the object. Although the 3D FEM formulation provides better conditioned
matrices, it is slightly more expensive than the 2D FEM formulation. The
accuracy of both is very similar.

Our claims have been experimentally validated both in synthetic and real
videos, showing the results of our performance in real time at frame rate. We
consider that our approach is particularly relevant for medical imaging, where
rich priors and accurate models are often available, which could be readily in-
corporated into our EKF-FEM-FRP formulation. Additionally, our approach
is also appropriate for robotics tasks involving the manipulation of non-rigid
objects where an estimation in real time is mandatory. Our future work in-
cludes exploring medical data where rich biomechanical priors are available.
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Fig. 16. Real-time performance. Real-time computation budget comparison for
the paper bending sequence. The rigid initialization is performed during the first 60
frames, and then the non-rigid estimation begins. On the left, we show two scale
plots: left-y axis time, right y-axis state size. The histogram on the right shows
the distribution of execution times per frame, for all frames of the sequence. Top:
EKF-FEM-FRP1. Bottom: EKF-FEM-FRP2.
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A Appendix

In this appendix, we show the bilinear (b) shape functions of the 3D wedge
element used in section 3.2, and how to compute the strain-displacement B
matrix in Eq. (6). These functions can be expressed in natural coordinates
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(ξ, η, ζ) within the interval [−1, 1] as:



N b
1 = 1

2
(1− ξ − η) (1− ζ)

N b
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N b
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To compute the B matrix, it is necessary to have the derivatives of these shape
functions with respect to the global coordinates (x, y, z). To achieve this, let

us define the vector Ne =
[
N b

1 , N
b
2 , N

b
3 , N

b
4 , N

b
5 , N

b
6

]>
. These derivatives can be

computed using derivatives with respect to the natural coordinates (ξ, η, ζ)
as:


N>e,x

N>e,y

N>e,z

 = J−1


N>e,ξ

N>e,η

N>e,ζ

 , (A.1)

where J represents the Jacobian matrix of the transformation. Using the pre-
vious derivatives, we can finally express the strain-displacement B matrix as:

B =



N>e,x ⊗ 0>1

N>e,y ⊗ 0>2

N>e,z ⊗ 0>3

N>e,x ⊗ 0>2 + N>e,y ⊗ 0>1

N>e,y ⊗ 0>3 + N>e,z ⊗ 0>2

N>e,x ⊗ 0>3 + N>e,z ⊗ 0>1


(A.2)

where 0i is a 3× 1 vector of zeros except the i-th position that is equal to 1.
⊗ denotes the Kronecker product.

Finally, the behavior D matrix for 3D linear elasticity [7,53] can be expressed
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as:

D =
E

(1 + ν) (1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2


. (A.3)
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