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A Scalable, Efficient, and Accurate Solution to
Non-Rigid Structure from Motion

Antonio Agudo and Francesc Moreno-Noguer

Abstract

Most Non-Rigid Structure from Motion (NRSfM) solutions are based on factorization approaches that
allow reconstructing objects parameterized by a sparse set of 3D points. These solutions, however, are
low resolution and generally, they do not scale well to more than a few tens of points. While there have
been recent attempts at bringing NRSfM to a dense domain, using for instance variational formulations,
these are computationally demanding alternatives which require certain spatial continuity of the data,
preventing their use for articulated shapes with large deformations or situations with multiple discontinuous
objects. In this paper, we propose incorporating existing point trajectory low-rank models into a probabilistic
framework for matrix normal distributions. With this formalism, we can then simultaneously learn shape and
pose parameters using expectation maximization, and easily exploit additional priors such as known point
correlations. While similar frameworks have been used before to model distributions over shapes, here we
show that formulating the problem in terms of distributions over trajectories brings remarkable improvements,
especially in generality and efficiency. We evaluate the proposed approach in a variety of scenarios including
one or multiple objects, sparse or dense reconstructions, missing observations, mild or sharp deformations,
and in all cases, with minimal prior knowledge and low computational cost.

Index Terms

Probabilistic trajectory space, Time-varying scenes, Non-Rigid structure from motion, Low-rank representa-
tion, Factorization.

F

1 INTRODUCTION

WHile Structure-from-Motion (SfM) methods have obtained remarkable results in recon-
structing rigid scenes from motion cues and perspective cameras [1], [15], [19], the problem

of inferring 3D shape of deforming objects is still in its infancy. This task is referred to as Non-
Rigid Structure from Motion (NRSfM) and consists of estimating the shape of a time-varying 3D
scene from 2D point trajectories acquired with a single color camera. It represents a fundamental
problem in computer vision with a number of applications in other fields, including robotics,
pattern recognition, computer graphics, mechanical engineering or medical imaging.

The main difficulty to resolve when addressing the NRSfM problem is due to the fact that
many different 3D shapes can produce similar image observations, and uniquely considering
reprojection constraints is not sufficient to obtain a single solution for the shape. Consequently,
additional a priori knowledge about the deformation of the structure and the camera motion is
required. In addition, the problem can be simplified by assuming an orthographic camera model,
which represents a good approximation when the object depth is much smaller than the distance
from the camera. Most existing approaches apply the well-known factorization algorithm for
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Fig. 1. Scalable and e�cient nrsfm solution. We propose a versatile approach
that can handle a wide range of scenarios. Left: Simultaneous reconstruction of two
articulated bodies. Person #2 sits down, and Person #1 walks and approaches until
meeting. Right: Dense reconstruction of a gesturing face. For both cases, each temporal
frame is represented by a di↵erent color. Best viewed in color.

smoothness and continuity constraints on the shape to reconstruct, preventing
its use on sparse or articulated configurations, and on scenes composed of multi-
ple objects. Still, these solutions are likely to be computationally expensive, and
require dedicated GPU-implementations [9].

This paper proposes a probabilistic framework that overcomes most of the
aforementioned limitations. For this purpose, we draw inspiration on previous
approaches that span the trajectory of every object point –or image pixel in
the dense case– using a low-rank trajectory space [11, 12], and on those that
define Gaussian distributions over shapes [4]. Combining both these ideas, we
introduce a new Probabilistic Point Trajectory Approach (PPTA), which allows
retrieving object shape and camera pose by just decomposing a matrix whose
size is proportional to the dimension of the low-rank space, and it is independent
on the number of object points. For doing this we leverage on the Expectation-
Maximization (EM) algorithm, like in [4], although focusing on a point trajectory
model, instead of a shape one. This requires reformulating EM in terms of ma-
trix distributions, and a substantially more elaborate optimization process. Our
solution compares favorably to its predecessors in terms of scalability (can han-
dle sparse or dense point configurations), generality (it is applicable to single
or multiple objects) and e�ciency. Additionally, in contrast to dense variational
approaches, PPTA can naturally incorporate a scheme to handle missing data.

Figure 1 shows two sample reconstructions obtained with our approach. The
left row depicts the estimated 3D shape for two persons interacting but moving
independently. The right row corresponds to a dense reconstruction of a deform-
ing face, from a sequence with 99 frames, and 28,887 points per frame. We are
able to batch process all 2D point tracks and precisely estimate shape and pose
for all frames in 8.7 seconds, using unoptimized Matlab code and a CPU-based
commodity laptop. We are not aware of any other approach bringing together
similar characteristics of versatility, accuracy and e�ciency.

Fig. 1: Scalable, generic and efficient solution to NRSfM. We propose a versatile approach that
can handle a wide range of scenarios. Left: Simultaneous reconstruction of two articulated bodies.
Person #2 sits down, and Person #1 walks and approaches until they meet. Middle: Semi-dense
reconstruction (1,453 points) of deforming pants. Right: Dense reconstruction (28,887 points) of a
gesturing face. For all cases, the colors encode different temporal configurations of the scenario.

rigid reconstruction [42], and use prior information in form of low-rank shape basis [6], [12], [16],
[20], [43], [49]. Similarly, low-rank models have also been proposed to constrain the motion of
each point on the object through predefined trajectory bases [24], [25] or dynamic priors on the
forces that induce the deformation [5]. However, since these methods need to factorize a matrix of
size proportional to the number of input points, they can only be applied to shapes of relatively
low resolution.

Recently, NRSfM has been extended to dense reconstruction by formulating the problem
as a variational optimization [21] or applying a nuclear minimization algorithm [18]. While
these alternatives provide dense 3D estimates at every pixel in the image, they require certain
smoothness and continuity constraints on the shape to reconstruct, preventing its use on sparse
or articulated configurations, and on scenes composed of multiple objects. Still, these solutions
are prone to be computationally expensive and require dedicated GPU-implementations [21].

In this work, we present a probabilistic framework that overcomes most of the aforementioned
limitations. For this purpose, we draw inspiration on previous methods that span the trajectory
of every object point –or image pixel in the dense case– using a low-rank trajectory model [9],
[44], and on those that define Gaussian distributions over shapes [43] or forces [5]. Combining
both these ideas, we introduce a new Probabilistic Point Trajectory Approach (PPTA), which
allows retrieving object shape and camera pose by just decomposing a matrix whose size is
proportional to the dimension of the low-rank space and is independent on the number of object
points, all of them in an unsupervised manner. Accordingly, we leverage on the Expectation-
Maximization (EM) algorithm, like in [5], [43], although focusing on a point trajectory model
instead of a shape or force one. It requires reformulating EM in terms of matrix distributions,
and a substantially more elaborate optimization process. In addition, our formulation can in-
corporate spatial correlation priors that define the similarities between object points, providing
better solutions when these relations appear on the data. This new variant of our algorithm is
supervised and is denoted as Probabilistic Correlation Point Trajectory Approach (PCPTA). Our
result compares favorably to its predecessors in terms of scalability (can handle sparse or dense
point configurations), generality (it is applicable to single or multiple objects, and for articulated
and continuous deformations) and computational efficiency. Furthermore, in contrast to other
factorization-based approaches [9], [16], [21], our approach can naturally incorporate a scheme to
handle missing entries, and it is robust against noisy observations.
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Figure 1 shows three sample 3D reconstructions obtained with our approach. The left column
depicts the estimated 3D shape for two persons interacting but moving independently. The
middle column shows several instances of deforming and moving pants, from a sequence of
291 frames and 1,453 points per frame. And finally, the right column corresponds to a dense
reconstruction of a deforming face, from a sequence with 99 frames, and 28,887 points per frame.
For this last example, we are able to batch process all 2D point tracks and precisely estimate shape
and pose for all frames in 8.7 seconds, using unoptimized Matlab code and a CPU-based laptop.
We are not aware of any other approach bringing together similar characteristics of versatility,
accuracy, and efficiency.

The remainder of this paper is organized as follows. Section 2 discusses the related work in
this field and emphasizes on our contribution. In Section 3 we introduce the NRSfM problem,
focusing our study on the low-rank trajectory model we use. This is followed in Section 4 by a
description of our probabilistic method that can exploit jointly both temporal and spatial priors to
simultaneously learn the camera motion and the time-varying 3D shape from 2D trajectories. In
Section 5 we present an extensive experimental evaluation on challenging sequences and provide
a comparison with respect to state-of-the-art techniques in terms of accuracy and efficiency.
Conclusions are described in Section 6.

2 RELATED WORK

Simultaneously reconstructing time-varying 3D shapes along with camera motion from only 2D
point tracks is a poorly constrained problem, as different 3D object configurations and camera
poses yield very similar 2D image observations. This inherent ambiguity has been tackled by
introducing several constraints on the camera motion or type of shape deformation. Most NRSfM
methods assume the 3D shape to be spanned by a single low dimensional shape subspace [16],
[33], [34], [43], by a dual low-rank shape model [6], or by means of a union of temporal sub-
spaces [49]. Very recently, the concept of compressibility was introduced in NRSfM to enforce
a union of subspaces, where a different set of shape bases were employed for each shape
instance [29]. As a result of applying the previous models, the NRSfM becomes a trilinear
problem that can be solved using factorization techniques [12], [47] or optimization strategies,
enforcing spatial [43] or temporal shape smoothness [7], [8], [10], [17], [31], isometry [14], [35],
[45], or by imposing the 3D shapes to be closely aligned [30]. The shape deformations were
also considered as spatial variations in a shape space, where spatial smoothness, rather than
temporal, is enforced [28]. This problem can be reduced by computing the shape basis using
training data [33], [39], or by applying modal [3] and spectral [4] analysis in the initial frames for
sequential estimation.

Alternatively, a number of approaches have introduced restrictions on the trajectory of every
object point using predefined bases which turned the trilinear problem to a bilinear one [9]. This
was even further simplified in [36], where additional static points were used to independently
solve for the camera motion, resulting finally in a linear problem. In [44], priors on trajectories
were introduced in terms of 3D point differentials. Subsequent works have combined shape and
trajectory spaces, where the non-rigid shape enforces a smooth time-trajectory of a single point
in a linear shape space [24], [25]. In [40], a statistical model of 3D motion based on a Kronecker
structure of the spatio-temporal covariance was expressed as a matrix normal distribution. While
this approach can independently separate correlations across time and across shape, our formula-
tion can compactly incorporate shape correlations priors if available, in combination to temporal
smoothness that is imposed by the trajectory basis.

In any event, the underlying methodologies used by these approaches are not scalable and
limit their application domain to low-resolution surfaces or sparse set of points, always for one
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single object. Recent approaches, though, have been able to provide dense reconstructions by
using variational optimization [21], applying a nuclear minimization algorithm that introduces
smoothness priors on the shape [18] or by means of the rediscovered metric projections algo-
rithm [23]. In [38], dense reconstructions have been obtained through piecewise rigid models,
but it suffers from the relative low expressiveness of the piecewise models, which limits the
applicability to structures with mild deformations. Finally, another category of algorithms have
been proposed to retrieve the dense reconstruction in a sequential fashion [2], [3], exploiting
physics-based models. However, while these methods represent a step forward on the field, they
can only be applied to smooth shapes presenting spatial continuity, and cannot be applied to
sparse representations. Additionally, these techniques normally are computationally demanding,
and require dedicated GPU-implementations [21].

In this paper, we overcome most of the limitations of previous methods. To this end, we
model the well-known trajectory space [9], [44] by means of matrix normal distributions, that
enforce spatial smoothness together with the inherent temporal smoothness of the subspace. This
results in a novel probabilistic framework which, by construction, does not have a limitation of
rank as the previous trajectory-based methods and allow the use of higher frequencies, providing
more accurate factorizations in an unsupervised manner. Moreover, our formulation can naturally
exploit more sophisticated priors which can not be incorporated in previous formulations, such
as similarities between object points, that can be coded by means of a covariance matrix in a
supervised manner. We would also like to point out that while the optimization tool we use
to learn the trajectory model and the camera pose is the EM algorithm, like other methods [5],
[43] in the literature, the underlying model is substantially different. We probabilistically model
trajectory distributions instead of shape [43] or force ones [5], which requires having to devise a
novel matrix version of the EM algorithm (instead of the standard vectorial one). The experiments
section will clearly demonstrate the advantages of this approach with respect to competing
techniques, showing its accuracy, versatility, and efficiency.

3 LOW-RANK MODELS ON NRSFM
We next review the general description of the NRSfM problem and the standard matrix factoriza-
tion approach to tackle it.

Consider a T frames video sequence of a time-varying 3D shape and N input 2D point tracks.
Let xt

i = [xti, y
t
i , z

t
i ]
>, with 1 ≤ i ≤ N and 1 ≤ t ≤ T , be the 3D coordinates of the i-th point at time

t and ut
i = [uti, v

t
i ]
> its 2D image projection. If we assume an orthographic camera model we can

jointly represent the projection equation of all points for all frames as the following linear system:ũ1
1 . . . ũ1

N
... . . . ...

ũT
1 . . . ũT

N


︸ ︷︷ ︸

P∈R2T×N

=

R1

. . .
RT


︸ ︷︷ ︸

R∈R2T×3T

x1
1 . . . x1

N
... . . . ...

xT
1 . . . xT

N


︸ ︷︷ ︸

S∈R3T×N

where ũt
i are the zero-mean point coordinates, obtained by subtracting the mean translation vector

from the original coordinates, i.e., ũt
i = ut

i−tt, with tt =
∑

i u
t
i/N . The matrix R is a block diagonal

and is made of the T orthographic camera rotations Rt ∈ R2×3.
In short, the NRSfM problem can be stated as that of simultaneously recovering the pose

parameters R and a deforming shape S, given the 2D trajectories matrix P. Since this is a highly
ambiguous problem, one needs to resort to additional constraints, typically in the form of low-
rank models. Among these, there exist models spanning the object shape [3], [21], [43], individual
point trajectories [9], [36], [44], a combination of shape and trajectory [26], [40], and very recently,
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Deterministic Probabilistic
Shape P = R(B⊗ I3)Φ

∑
t pt =

∑
t GtDγt + nt, γt ∼ N (0; IK), nt ∼ N (0;σ2I2N )

[12], [17], [47] [43]
Trajectory P = RWΦ P = RWΦ + N, vec(Φ) ∼ N

(
vec(0); I3K ⊗C−1

)
, vec(N) ∼ N

(
vec(0);σ2I2T ⊗C−1

)
[9], [48] Ours

Shape-Trajectory P = R(EH⊗ I3)Φ P = R(ΘΓΨ + N)#, vec(Γ) ∼ N
(
vec(0);σ2IT ⊗ I3N

)
, vec(N) ∼ N

(
vec(0);σ2IT ⊗ I3N

)
[24], [26] [40]

Force n/a
∑

t pt =
∑

t GtKFγt + nt, γt ∼ N (0; IK), nt ∼ N (0;σ2I2N )
[5]

TABLE 1: Low-rank representations to encode NRSfM. Qualitative comparison of the four
subspaces that have been typically proposed on the NRSfM literature: shape, trajectory, shape-
trajectory and force models. Both deterministic and probabilistic solutions have been proposed.
For easy comparison, we use a unified formulation. Additionally, we define pt = [(ũt

1)
> . . . (ũt

N)>]>

and Gt = (IN⊗Rt). Shape models: In this case, the low-rank coefficients are included in the matrix
B ∈ RT×K or in the vector γt ∈ RK×1 with t = {1, . . . , T} for the deterministic and probabilistic
versions, respectively. Due to the shape-trajectory duality theorem [9], the matrix Φ also contains
the shape basis vectors, the same as D ∈ R3N×K that rearranges the elements of Φ. Trajectory
models: The matrices W and Φ contain the trajectory bases and coefficients, respectively. When
spatial correlation priors are not used, the matrix C can be set to IN . Shape-trajectory models: The
matrices E ∈ RT×D and H ∈ RD×K include the DCT basis and the corresponding coefficients. For
the probabilistic version [40], the matrices Θ ∈ RT×T and Ψ ∈ R3N×3N account for the trajectory
and shape basis; and Γ ∈ RT×3N is a matrix of mixing coefficients. The operator (·)# rearranges
the elements of a T × 3N matrix into a 3T × N matrix. Force models: These models also learn
the compliance matrix K ∈ R3N×3N and the force basis F ∈ R3N×K . The probabilistic version of
the trajectory model we propose is the only one that works with and without training data, and
incorporates temporal, spatial and probabilistic priors. It is suitable for reconstructing scenarios
made of sparse or dense point configurations, and for single or multiple objects.

the forces that induce the deformation [5]. A qualitative comparison between the four low-
rank variants is shown in Table 1. For each model, we show what we denote as deterministic
and probabilistic versions. The former does not explicitly model the uncertainty and builds
upon factorization-based approaches, while the latter introduces a probabilistic component in
the model, and employs EM-like techniques to resolve each of the components. It is worth
pointing out that matrix normal distributions were also used in [40], enforcing a shape-trajectory
constraint by means of separable shape and time correlations. In contrast, in our case we present
a probabilistic trajectory formulation that, in addition to the temporal constraint, can naturally
exploit shape correlations when are available. Moreover, our formulation is more compact since
it codes the shape correlations though N -matrices instead of 3N -matrices as was done in [40]. In
this paper, we introduce the probabilistic version of the trajectory-based model, which has not
been considered before.

3.1 Low-Rank Trajectory Model
In this paper, we have focused on the trajectory-based low-rank models, because independently
modeling point trajectories allows representing larger deformations and a much wider set of
scenarios than shape-based models. Conversely, this might have the opposite effect of introducing
spatial noise in the reconstructions. However, as we will show in the experimental section, this
issue is controlled by the probabilistic point trajectory approach we propose, which in addition
to the temporal smoothness due to the trajectory basis, naturally incorporates Gaussian spatial
smoothness between object points.
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Trajectory-based models [9], [26], [48], approximate the position of every point over time by
a linear combination of K low-frequency basis vectors. Although we could model the trajectory
basis from different ways (e.g., through the discrete wavelet or Fourier transforms), we use the
discrete cosine transform as previously done in [9], [26], [48]. More specifically, for t = {1, . . . , T}
we define a K-dimensional vector wt = [wt

1, . . . , w
t
K ]>, with:

wt
k =

ρk√
T

cos

(
π(2t− 1)(k − 1)

2T

)
,

where ρk = 1 for k = 1, and ρk =
√

2, otherwise. The time-varying 3D shape for all T image frames
can then be written as S = WΦ, where W ∈ R3T×3K is a known matrix with the predefined
trajectory basis, that can compactly approximate most real trajectories. Φ ∈ R3K×N is a matrix of
unknown coefficient vectors φi ∈ R3K×1, for each of the points i = {1, . . . , N}:

W =

I3 ⊗ (w1)>

...
I3 ⊗ (wT )>

 , Φ =
[
φ1, . . . ,φN

]
, (1)

and ⊗ denotes the Kronecker product. The linear system of projection equations can then be
rewritten as:

P = RWΦ = AΦ where A ∈ R2T×3K . (2)

In matrix factorization, retrieving the factors A and Φ entails performing the Singular Value
Decomposition (SVD) P = UPΣPV>P = (UPΣ

1
2
P)(Σ

1
2
PV>P) and setting to zero all but the largest

3K singular values in ΣP . This solution is non-unique and still requires performing an Euclidean
upgrade. We will briefly describe this step for our particular case in Section 5.2.

While matrix factorization approaches are very simple to apply, they have a limitation in the
maximum dimension Kmax ≥ K of the low-rank space [9], [12]. Concretely, this rank is limited,
by construction, to the size of the matrix P, which is 2T × N , yielding that Kmax = min(2T

3
, N

3
).

For large deformations or short but dense sequences this maximum allowed rank may not be
sufficient to guarantee accurate 3D reconstructions. A second limitation of the matrix factorization
is that when either the number of frames T or points N considered is very large, the computation
of the SVD of P will become very computationally demanding.

The probabilistic trajectory-based formulation we propose in the following section overcomes
these limitations since we can use any value of K. This results in a novel method that yields a
remarkable speed-up with respect to state-of-the-art techniques while allowing for more accurate
3D reconstructions. In addition, our approach can naturally exploit spatial similarities between
feature points, providing better solutions when the deformations include point correlations.

4 PROBABILISTIC NRSFM MODEL WITH SPATIO-TEMPORAL PRIORS

In order to give a probabilistic interpretation to the NRSfM problem, let us consider the observed
2D point tracks to be corrupted by a Gaussian noise, which we represent by a matrix N ∈ R2T×N .
Equation (2) then becomes:

P = AΦ + N . (3)

Our problem consists in simultaneously estimating the camera motion R and the trajectory
coefficients Φ (or equivalently, the time-varying 3D shape S ≡WΦ) given 2D point tracks P on a
monocular video corrupted by Gaussian noise N. It is worth noting that since we are considering
an orthographic camera model the translation at each frame can be estimated as the mean position
of all observed 2D points (equivalent to the maximum-likelihood estimator), as we do in section 3.
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Fig. 2: Graphical representation of the probabilistic NRSfM problem with point trajectory
model. The observation matrix is represented by P, which assumes centered 2D coordinates. Φ
corresponds to the latent variable matrix and the model parameters are the observation noise
variance σ2 and A = RW, where R are the rotation parameters and W the predefined trajectory
basis. The matrix C encodes correlation between observations. In the most general case, this
correlation is not known, and observations are assumed to be independent and identically
distributed. In this case, C is set to the identity matrix IN . At the center we represent a toy
example of a correlation matrix corresponding to a person stretching in which we use a priori
knowledge to link the motion of several joints (e.g., hands, arms, and hips). These links are the
non-diagonal entries of C.

Probabilistic strategies have been used before to estimate vector-based normal distributions
over shape [43] or force [5] low-rank coefficients, and matrix-based normal distributions over
shape-trajectory coefficients (see Table 1). Here, we show that writing the problem in matrix form
yields a straightforward manner to describe distribution over trajectories. Maximum Likelihood
Estimation (MLE) is then applied to these distributions in order to estimate, using EM, the
corresponding pose and noise parameters. Retrieving shape involves a final metric update stage.

In this paper, we present two probabilistic algorithms to solve the NRSfM problem by exploit-
ing spatio-temporal priors. First, we propose a Probabilistic Point Trajectory Approach (PPTA),
modeling the unknown coefficients by means of variable normal distributions. In this case,
temporal smoothness priors are imposed by the trajectory basis we include in A by means
of the matrix W, and the model parameters are learned in an unsupervised manner. Second,
we reformulate our model in terms of a Probabilistic Correlation Point Trajectory Approach
(PCPTA), to present a supervised method where the spatial affinities between object points are
also exploited.

4.1 Probabilistic Point Trajectory Model (PPTA)
We first consider our data and noise process to be independent and identically distributed. This
means the covariance matrix between the instances can be modeled by IN . As it is standard in
PPCA [37], [41], we assume a zero-mean Gaussian prior distribution on the latent variables Φ, i.e.,
the trajectory coefficients, and a zero-mean Gaussian distribution with variance σ2 on the noise
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term, such that:

p(vec(Φ)) ∼ N (vec(0); I3K ⊗ IN) , (4)
p(vec(N)) ∼ N

(
vec(0);σ2I2T ⊗ IN

)
, (5)

where vec(·) indicates the matrix vectorization operator.
Since the linear combination of independent Gaussian random variables is still Gaussian,

P (which linearly combines Φ and N) will be normally distributed. Concretely, using simple
manipulations on matrix variable normal distributions [27], it can be shown that:

p(vec(P)) ∼ N (vec(0); (AA> + σ2I2T )⊗ IN), (6)
p(vec(P|Φ)) ∼ N (vec(AΦ);σ2I2T ⊗ IN). (7)

These distributions will be used in section 5 within a MLE framework to estimate pose, shape,
and noise parameters.

4.2 Probabilistic Correlation Point Trajectory Model (PCPTA)
In the previous model, we have considered the data samples and noise to be independent and
identically distributed. However, many real-world deformations, such as the motion of the human
face or full body is made of subsets of points that follow similar deformation patterns.

In order to exploit the similarities between object points under non-rigid motion, we now show
how to integrate these priors into our formulation. To this end, let us consider a symmetric matrix
C ∈ RN×N , that encodes the correlations between the N instances. Note that this correlation is
action-specific, since a similar deformation between points is exploited. If we consider the same
spatial correlation matrix for both data and noise, we can inject this information via a covariance
matrix as:

p(vec(Φ)) ∼ N
(
vec(0); I3K ⊗C−1

)
, (8)

p(vec(N)) ∼ N
(
vec(0);σ2I2T ⊗C−1

)
, (9)

where the only difference compared to the previous model is just in the matrix C. Following the
analysis for PPTA, in PCPTA we have:

p(vec(P)) ∼ N (vec(0); (AA> + σ2I2T )⊗C−1), (10)
p(vec(P|Φ)) ∼ N (vec(AΦ);σ2I2T ⊗C−1). (11)

The correlation matrix C could be learned from deformable training data, or considering
physical relations between points. In this work, we present a strategy to recover it using time-
varying 3D shapes. In Fig. 2, we show the graphical models of our methods. It is worth noting
that PCPTA becomes PPTA when C = IN , i.e., when the data does not render similarities between
object points.

4.3 Spatial Correlation Priors
In this paper, we learn the correlation matrix C between object points from training data. In order
to cope with noisy data, we follow [32] and formulate the problem as:

arg min
C,E

‖C‖∗ + λ‖E‖1

subject to X = XC + E
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where X contains the time-varying 3D positions of N points obtained from training data and E
represents a residual noise. λ is a positive weight. ‖ · ‖∗ indicates the nuclear norm and ‖ · ‖1 the
convex approximation to sparse error. This problem can be efficiently solved by the augmented
Lagrange multiplier method [11]. Note that we do not use the measurement matrix W to compute
the correlation priors, since this matrix includes a combination of rigid and non-rigid motions,
and spatial deformation priors only encode the non-rigid component.

Once C is learned, we normalize it and enforce unit entries at the diagonal by:

C = C� (1N1>N − IN) + IN , (12)

where � represents the Hadamard product and 1N is a vector of ones. Even though the estimated
matrix can be directly used to encode the spatial correlations, weak dependencies due to ghost
relations could still introduce artifacts. With the purpose of increasing robustness, we set to zero
the positions of the corresponding point indexes that are smaller than a threshold (0.6 in our
experiments). In Fig. 2 we show an example of this matrix.

5 LEARNING POSE AND SHAPE

In this section, we describe the general EM-based factorization approach to estimate model
parameters with the PCPTA model. Recall that to consider the PPTA model, we simply have
to set C ≡ IN . After the factorization, we perform a final metric update step.

5.1 Parameter Estimation
Assuming C to be known, we have to learn the model parameters A and σ2 by using an
EM algorithm, where the maximum likelihood of the trajectory observations P is estimated by
iterating between E- and M -steps.
E-step. In the E-step, we estimate the conditional distribution of the latent variables Φ, given the
observations P and the current model parameter estimate. Following [41], we apply the Bayes’
rule with Eqs. (8)-(11), and some properties of matrix variate normal distributions [27], it can be
shown this distribution is again Gaussian:

p(vec(Φ|P,A, σ2)) ∼ N (vec(ΥΦ); ΣΦ ⊗C−1), (13)

with:

ΥΦ = (A>A + σ2I3K)−1A>P, (14)

ΣΦ = σ2N(A>A + σ2I3K)−1. (15)

The expectations over the latent variables can then be defined as E[Φ] ≡ ΥΦ and E[ΦCΦ>] ≡
ΣΦ + ΥΦCΥ>Φ.
M-step. In the M-step, we update the model parameters A and σ2 by maximizing the following
expected log-likelihood1:

L =E
[
ln p

(
P,Φ

)]
= − 1

2σ2

[
tr
(
A>AE[ΦCΦ>]

)
−2 tr

(
PCE[Φ]>A>

)
+ tr

(
PCP>

)]
−NT lnσ2. (16)

1. The joint distribution on P and Φ is defined as p(P,Φ) = p(Φ)p(P|Φ).
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Independently solving for each of the variables yields the following update rules, at iteration
j + 1:

Aj+1 ← DAj

(
σ2I3K +

(
A>j Aj + σ2I3K

)−1
A>j DAj

)−1
σ2
j+1 ←

1

2T
tr
(
D−DAj

(
A>j Aj + σ2I3K

)−1
A>j+1

)
,

where the matrix D corresponds to the covariance matrix of the centered observations, and it is
defined as:

D = N−1PCP> . (17)

5.2 Metric Upgrade
The parameters Â = Aj+1 and Φ̂ = E[Φ] estimated using EM factorization are not unique, i.e.,
we could consider any invertible matrix Q ∈ R3K×3K such that AΦ = ÂQQ−1Φ̂, providing
also valid factorizations. In order to find the rectification matrix Q that guarantees a metric
structure on S and orthonormality on the rotation matrices that form A ≡ A(R), we resort to the
Euclidean upgrade strategy proposed in [9], [25]. For completeness, we next review this step on
our algorithm.

In practice, it is not necessary to recover the full matrix Q, since the first column triplet of the
matrix Q, which we denote as Q∗ ∈ R3K×3, provides enough constraints to retrieve the camera
parameters (this is possible because the matrix W of trajectories is predefined). Q∗ is obtained by
performing a simple constrained non-linear minimization routine. Then the rotation matrices can
be computed by applying:

ÂQ∗ =

w
1
1R

1

...
wT

1 RT

 . (18)

After estimating the rotation matrices Rt with t ∈ {1, . . . , T}, the first factor on the factorization
can be obtained as A = RW, and then the time-varying 3D shape can be computed by solving an
over-constrained linear system on Φ, such that:

S = WA†P, (19)

where (·)† represents the pseudo-inverse operator.
Note that Q could also be computed by trace-norm minimization [16], [40] assuming the rank

of the subspace a priori. However, we discarded this alternative as it is more computationally
demanding.

5.3 Initialization
In order to maximize the expected log-likelihood in Sect. 5.1, we propose a simple parameter
initialization.

The camera matrix A = RW is initialized using standard factorization on the 2D point
trajectories P = UPΣPV>P , i.e., RW = UPΣ

1
2
P and considering the 3K largest singular values

in ΣP . Again, this estimation is not unique and a rectification matrix Q is required to enforce the
orthonormality constraints of R. To estimate Q, in this case, we automatically increase the rank
value K on the factorization until no additional improvement in the average camera orthonor-
mality is achieved, i.e., we select the factorization that minimizes 1

T

∑T
t=1 ‖RtRt> − I2‖2F , where

F denotes the Frobenius norm. Once the camera matrices Rt are estimated for t = {1, . . . , T}, we
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complete the block diagonal matrix R. Since the matrix with the trajectory basis W is predefined,
we can then easily obtain the initialization of A.

Regarding the noise variance, we initially set σ2 = 10−6, and hence the latent variables Φ can
be directly initialized by considering the distribution on Eq. (13).

5.4 Missing Observations
Unlike other techniques for sparse [9], [16] and dense reconstructions [21], our approach can
handle missing tracks due to occlusion or outliers. As done in [26], we initially set the missing
observations ût

i to the 2D value predicted by the low-rank trajectory model. These initial predic-
tions are then used to compute R and Φ and are further refined after these parameters have been
estimated:

ût
i = Rt(I3 ⊗ (wt)>)φi + tt. (20)

5.5 Computational Cost
One of the main strengths of the approaches we propose is its efficiency, which allows performing
dense estimations with a minimal computational load, since the complexity only linearly depends
on the number of points. Our formulation broadly consists of two main stages: the learning of
the model parameters using EM, and the metric upgrade.

For the EM phase, we just need to invert 3K-order matrices and perform several matrix
multiplications. Since the rank K of the trajectory subspace is typically smaller than the number
of frames T of the sequence, it is the latter that bounds the O(T 2KJ) complexity, where J is the
number of EM iterations until convergence. However, our approach still depends on linearly of
the number of points N , due to that the complexity of computing D is O(TN). Additionally, this
complexity can be further reduced in practice, because matrices like R, W or σ2I3K , and even C,
are highly sparse.

Regarding the metric upgrade stage, the complexity of the non-linear procedure to obtain
the rectification matrix is dominated by O(K3). Hence the overall computational cost does not
strongly depend on the number of points N , being the reason why we can efficiently handle
dense observations.

6 EXPERIMENTAL RESULTS

We now present results for a large variety of situations that demonstrate the versatility of our
approach. We consider both articulated bodies and dense surfaces, single and multiple objects,
mild and more severe deformations. Qualitative and quantitative results will be presented.

For quantitative evaluation, we will follow the metrics already used in [16], [24], and will
report the mean rotation error eR and normalized mean 3D error eS , defined as:

eR =
1

T

T∑
t=1

‖R̄t −Rt‖F ,

where Rt is the estimated rotation matrix at frame t and R̄t is the corresponding ground truth
rotation. eS is computed as:

eS =
1

σTN

T∑
t=1

N∑
n=1

etn, σ =
1

3T

T∑
t=1

(σt
x + σt

y + σt
z),

where etn is the 3D reconstruction error for the n-th point at frame t. σt
x, σt

y and σt
z indicate the

standard deviations at frame t of the x-, y- and z-coordinates of the original shape. We provide eS
and eR whenever ground truth 3D data or rotation is available, respectively. Please, see videos in
the supplemental material.
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PPPPPPPData

Met. EM-PPCA [43] MP [34] PTA [9] CSF [24] KSTA [25] BMM [16] PPTA (Ours)

eR eS(K) eR eS(K) eR eS(K) eR eS(K) eR eS(K) eR eS(K) eR eS(K)

Noise-free observations
Drink 0.186 0.261(7) 0.330 0.357(12) 0.006 0.025(13) 0.006 0.022(6) 0.006 0.020(12) 0.007 0.027(12) 0.006 0.011(30)
Stretch 0.749 0.458(7) 0.832 0.900(8) 0.055 0.109(12) 0.049 0.071(8) 0.049 0.064(11) 0.068 0.103(11) 0.058 0.084(11)
Yoga 0.688 0.445(8) 0.854 0.786(2) 0.106 0.163(11) 0.102 0.147(7) 0.102 0.148(7) 0.088 0.115(10) 0.106 0.158(11)
Pick-up 0.417 0.423(14) 0.249 0.429(5) 0.155 0.237(12) 0.155 0.230(6) 0.155 0.233(6) 0.121 0.173(12) 0.154 0.235(12)
Dance – 0.339(4) – 0.271(5) – 0.296(5) – 0.271(2) – 0.249(4) – 0.188(10) – 0.229(4)
Average error: 0.385 0.549 0.166 0.148 0.143 0.121 0.143

Noisy observations
Drink 0.231 0.250(7) 0.329 0.517(12) 0.043 0.045(13) 0.043 0.044(6) 0.043 0.042(12) 0.044 0.056(12) 0.042 0.038(30)
Stretch 0.819 0.886(7) 0.872 0.975(8) 0.091 0.144(12) 0.091 0.121(8) 0.091 0.166(11) 0.098 0.183(11) 0.091 0.123(11)
Yoga 0.700 0.507(8) 0.858 0.791(2) 0.124 0.174(11) 0.125 0.168(7) 0.125 0.172(7) 0.136 0.195(10) 0.124 0.174(11)
Pick-up 0.499 0.807(14) 0.250 0.407(5) 0.148 0.228(12) 0.148 0.224(6) 0.148 0.222(6) 0.141 0.212(12) 0.148 0.228(12)
Dance – 0.336(4) – 0.282(5) – 0.299(5) – 0.266(2) – 0.248(4) – 0.236(10) – 0.222(4)
Average error: 0.557 0.594 0.178 0.165 0.170 0.176 0.157

TABLE 2: Quantitative comparison on single full-body motion capture sequences from [9].
Rotation eR and reconstruction eS errors for competing techniques: EM-PPCA [43], MP [34],
PTA [9], CSF [24], KSTA [25] and BMM [16]; and our PPTA approach without assuming spatial
priors. For every method, we also include in parentheses the rank of the linear subspace that gave
the lowest e3D error. The symbol “−" indicates that ground truth data is not available.

PPPPPPPData
Met. EM-PPCA [43] MP [34] PTA [9] CSF [24] KSTA [25] BMM [16] PPTA (Ours)

eR eS(K) eR eS(K) eR eS(K) eR eS(K) eR eS(K) eR eS(K) eR eS(K)

Noise-free observations
Jump 0.801 1.169(6) 0.378 0.430(2) 0.119 0.319(5) 0.039 0.079(10) 0.039 0.113(4) 0.045 0.160(11) 0.051 0.126(13)
Greet 0.274 0.325(6) 0.127 0.242(4) 0.094 0.166(3) 0.060 0.119(5) 0.060 0.115(5) 0.063 0.182(11) 0.059 0.134(7)
Chicken 0.062 0.101(3) 0.082 0.208(4) 0.043 0.151(6) 0.117 0.210(6) 0.117 0.202(9) 0.032 0.083(12) 0.041 0.143(8)
Meet 0.432 0.786(2) 0.281 0.392(14) 0.052 0.166(10) 0.403 1.049(4) 0.044 0.176(4) 0.042 0.249(12) 0.046 0.145(12)
Pull 0.623 0.459(11) 0.521 0.632(5) 0.271 0.358(8) 0.226 0.302(12) 0.226 0.297(6) 0.211 0.287(9) 0.191 0.247(13)
Average error: 0.568 0.381 0.232 0.352 0.181 0.192 0.159

Noisy observations
Jump 0.814 1.159(6) 0.789 1.068(2) 0.123 0.286(5) 0.061 0.813(10) 0.061 0.345(4) 0.077 0.246(11) 0.059 0.105(13)
Greet 0.277 0.359(6) 0.119 0.247(4) 0.107 0.182(3) 0.074 0.149(5) 0.074 0.128(5) 0.086 0.199(11) 0.072 0.136(7)
Chicken 0.068 0.135(3) 0.096 0.228(4) 0.043 0.157(6) 0.119 0.211(6) 0.119 0.205(9) 0.045 0.147(12) 0.042 0.143(8)
Meet 0.433 0.826(2) 0.263 0.386(14) 0.054 0.187(10) 0.409 1.056(4) 0.065 0.196(4) 0.063 0.275(12) 0.065 0.162(12)
Pull 0.617 0.467(11) 0.588 0.674(5) 0.271 0.397(8) 0.234 0.312(12) 0.234 0.304(6) 0.242 0.312(9) 0.219 0.283(13)
Average error: 0.589 0.519 0.242 0.510 0.236 0.236 0.166

TABLE 3: Quantitative comparison on multiple deforming and interacting full-body mocap
sequences. See caption on Table 2.

6.1 Sparse Human Body Reconstruction
Our approach and other NRSfM algorithms will be first evaluated on sparse data acquired with
motion capture systems. We next list the datasets and for each of them, we indicate by (T/N) the
number of frames and point tracks, respectively. Regarding full-body motion with a single object,
we considered the following sequences: Drink (1,102/41), Stretch (370/41), Yoga (307/41), Pick-
up (357/41) and Dance (264/75), all of them taken from [9]. For full-body motion with multiple
objects, we use the following five sequences from the CMU motion-capture database with two
persons interacting and performing different actions: Jump (432/82), people alternating jumping
jacks; Greet (200/82), people walking and shaking hands; Chicken (1,536/82), persons performing
the chicken dance; Meet (1,253/82), two persons meeting and sitting side by side, and finally,
the Pull (430/82) sequence where one person pulls the other’s elbow. For these experiments,
we follow the same evaluation procedure as in state-of-the-art techniques [9], [24], [25], i.e., we
synthesized a slow moving orthographic camera and projected 3D data using these rotations to
get the image observations. The amount of camera rotation was 5 degrees per frame with the
y-axis of the camera pointing towards the center of the scenario.

To make a fair comparison, we employ our PPTA approach without considering correlation
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Fig. 3: Motion capture sequences with multiple and interacting objects. Sample reconstruction
results on the Jump, Meet and Pull sequences. The red dots represent the 3D reconstruction
obtained using the proposed approach. Note that they are very close to the ground truth, shown
as purple circles. Best viewed in color.

priors, and compare it against the following state-of-the-art methods2: EM-PPCA [43], Metric Pro-
jections (MP) [34], the Point Trajectory Approach (PTA) [9], the Column Space Fitting (CSF) [24],
the Kernel Shape Trajectory Approach (KSTA) [25] and the Block Matrix Method (BMM) proposed
in [16]. For every method, we set the parameters according to the values reported in the original
papers. As in all other low-rank techniques, our approach requires setting the rank K of the
subspace. No other parameter or regularization weight needs to be tuned. Since the solution
depends on the rank of the linear subspace, we have chosen, for every experiment and method,
the basis rank that gave the lowest e3D error. For our approaches, overall, we have observed that
our solution is more accurate as long as the basis rank is increased, but without achieving large
values of rank. On the other hand, when no improvement is achieved, we note that the solution
is stable, and our 3D reconstructions do not deviate too much.

We then compared all methods in two situations: for noise-free observations, and when the
2D point tracks were artificially corrupted by zero-mean Gaussian noise with standard deviation
σnoise = 0.01ρ, with ρ being the maximum distance of an image point to the centroid of all the
points. Tables 2 and 3 summarize the rotation and reconstruction errors for single and multi-
ple full-body sequences, respectively. When reconstructing single objects, our approach obtains
comparable results to the most accurate state-of-the-art methods, KSTA [25] and BMM [16], and
consistently outperforms them under noisy observations. Our solutions are also comparable to
those reported in [40] for noise-free observations. Unfortunately, the source code of this approach
is not publicly available, and we cannot complete the comparison for noise observations. In any
event, our approach is substantially more efficient, as it only requires estimating a 3K×N matrix
of trajectory coefficients. In contrast, [40] needs to recover a T × 3N matrix of mixed coefficients
plus the shape basis matrix of size 3N × 3N (to make a fair comparison, we discard the trajectory
basis matrix of size T × T , that could be pre-defined as in our case).

When dealing with several objects, our approach obtains, on average, more accurate solutions
than competing techniques for both noise-free and noisy observations. In addition, this accuracy
is obtained at a remarkable speed-up. See in Table 4 that our results are obtained between 3× and

2. We also tried to compare against [14], but did not manage to feed the algorithm with all input data it requires.
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Data KSTA [25] BMM [16] PPTA Speed-up
Drink 290 1,128 129 2.24/8.74
Stretch 75 398 9 8.33/44.22
Yoga 90 247 8 11.25/30.87
Pick-up 39 647 12 3.25/53.91
Dance 103 502 3 34.33/167.33
Jump 167 982 14 11.93/70.14
Greet 143 601 4 35.75/150.25
Chicken 1,145 5,363 387 2.95/13.85
Meet 854 11,894 226 3.78/52.63
Pull 282 825 17 16.59/48.53

TABLE 4: Computation Times. We compare the execution time (in seconds) of our approach
with respect to KSTA [25] and BMM [16], the two most accurate state-of-the-art approaches. All
methods were executed in plain Matlab. The right-most column shows the speed-up we obtain
with respect to these methods.

PPPPPPPData
Met. PPTA PC2PTA PCPTA

eR eS eR eS eR eS

Drink 0.006 0.011 0.006 0.011 0.005 0.010
Stretch 0.058 0.084 0.079 0.108 0.047 0.068
Yoga 0.106 0.158 0.122 0.202 0.099 0.155
Pick-up 0.154 0.235 0.164 0.250 0.154 0.237
Dance – 0.229 – 0.244 – 0.212
Jump 0.051 0.126 0.094 0.212 0.047 0.119
Greet 0.059 0.134 0.068 0.139 0.029 0.131
Chicken 0.041 0.143 0.058 0.158 0.040 0.142
Meet 0.046 0.145 0.053 0.165 0.042 0.143
Pull 0.191 0.247 0.204 0.263 0.184 0.238

TABLE 5: Introducing spatial correlation priors. 3D reconstruction and rotation errors of our
PPTA formulation and the same results when deformation similarities are exploited (denoted as
PC2PTA and PCPTA, respectively). We report results on the sequences of Tables 2 and 3, using the
same rank. Note that the errors are reduced for those sequences that exhibit a certain degree of
spatial motion similarity, especially when the correlation matrix codes these similarities properly.
Again, the symbol “−" indicates that the ground truth is not available.

167× faster than previous approaches. Figure 3 shows the 3D reconstruction results we obtain on
several frames for sequences with multiple objects. Recall that no a priori object segmentation is
required for tackling these scenarios.

We have also used the motion-capture sequences to evaluate the effect of introducing a
correlation matrix linking the motion of similar points (see Section 4.3), and employ then our
PCPTA formulation. As a proof of concept, these correlation matrices have been estimated from a
noisy version of the 3D ground truth. In practice they could be readily learned from training data
if available. The 2D measurement matrices could also be used for this purpose, marginalizing the
non-rigid component. With the purpose of validating our PCPTA formulation, we also include
another baseline where a PCA-based generic correlation model is used in combination with our
PCPTA approach, that we will denote as PC2PTA. In this case, we independently compute a
correlation matrix for every sequence. This means that the only difference between the PCPTA and
PC2PTA algorithms is how the correlation matrix is computed. The results when this information
is incorporated are summarized in Table 5. Note that the reconstruction results are more accurate
when the amount of deformation similarities is larger, such as in the stretch sequence, that exhibits
repetitive motions. Furthermore, it can be observed that the way in which spatial similarities
are encoded is also relevant, since a generic correlation model does not provide more accurate
solutions than not exploiting similarities, as happens with our PCPTA-based solutions.
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Fig. 4: Pant sequence. Sample frames of the Pant sequence. For each of them, we show the 3D
ground truth shape (top) and color-coded 3D reconstruction (bottom), where reddish areas denote
larger errors. Best viewed in color.

6.2 Dense Reconstruction
To highlight the computational efficiency of our approach while still being comparable and even
more accurate than competing methods, we performed a series of experiments on four sequences
with increasing levels of point density. We next describe each sequence and point to the qualitative
results obtained by our approach:

- We first analyze the Pant sequence that was originally proposed in [46] and renders a
deforming pants while jumping and rotating. It contains 291 frames, and 1,453 point tracks.
A qualitative evaluation with respect to 3D ground truth is shown in Fig. 4.

- We next process the Cloth sequence taken also from [46], of a cloth being deformed when
several coins fall on top of it. This sequence is made of 31 frames and 2,145 point tracks,
and it is particularly challenging because the rapidly varying deformations produce strong
warps. Our 3D reconstruction for a few sample frames is depicted in Fig. 5.

- In order to demonstrate our approach is also suited to encode highly complex shapes, we
process the synthetic Ogre sequence from [13]. It shows the face of an Ogre while changing
between five facial expressions. The difficulty of this sequence stems on the complex and
local details of the shape. It contains 81 frames, and the density grows up to 19,985 point
tracks. Our results are shown in Fig. 6.

- Finally, we process a very dense sequence of a human face, that we denote as the Face
sequence, changing expression from a smile to anger. It has 99 frames, and 28,887 point
tracks. In this case, a qualitative visualization of the results we obtain is shown in Fig. 7.

We next discuss the quantitative results. For the first three experiments (Pant, Cloth, and Ogre),
we compare against the methods with better performance in the sparse sequences of the previous
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Fig. 5: Cloth sequence. Top: Sample frames of the sequence. Middle: 3D ground truth. Bottom:
A color-coded 3D reconstruction where reddish areas denote larger errors. Best viewed in color.

Fig. 6: Ogre sequence. Sample frames of the Ogre sequence. For each of them, we show the 3D
ground truth shape (top) and color-coded 3D reconstruction (bottom), where reddish areas denote
larger errors.

section, i.e., KSTA [25] and BMM [16]. In Table 6 we report the accuracy results in terms of rotation
and 3D error, together with the computation times. Note that our approach yields similar results
as the two competing algorithms (when they obtain a solution), but with a tremendous speed-up,
that reaches several orders of magnitude when compared against BMM [16]. These results show
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Fig. 7: Face sequence. Sample frames of the Face sequence. For each of them, we show the 3D
ground truth shape (top) and color-coded 3D reconstruction (bottom), where reddish areas denote
larger errors.

Data KSTA [25] BMM [16] PPTA
eR eS(K) ct eR eS(K) ct eR eS(K) ct

Pant – 0.220(3) 1,258.7 – 0.188(2) 19,571.9 – 0.203(2) 4.2
Cloth 0.054 0.092(3) 20.1 0.042 0.053(3) 25,445.1 0.032 0.057(2) 1.8
Ogre 0.005 0.011(4) 597.3 ¬ ¬ ¬ 0.006 0.013(8) 2.1

TABLE 6: Dense Sequences. Rotation error eR, reconstruction error eS , and computation time
ct (in seconds) of our PPTA approach, KSTA [25] and BMM [16]. The symbol “¬" indicates the
algorithm did not manage to process the sequence, and “−", that the ground truth is not available.

that our method exhibits the best trade-off between accuracy and computational budget, while it
can be indistinctly used for sparse or dense data.

For a direct comparison against the dense variational approach of [21], we consider the Face
sequence used in this paper and compute the mean 3D reconstruction error. Our PPTA yields
an error of 3.07% (for K = 15), and we can process the whole sequence in 8.7 seconds, using
non-optimized Matlab code on a standard laptop. The accuracy we obtain is considerably better
than the rest of methods evaluated in [21]: MP [34] (5.13%)(6) and PTA [9] (4.50%)(4); than the
sequential dense methods BA-FEM [3] (4.64%)(4) and EM-FEM [2] (4.53%)(4), and it is very close
to the variational approach VNR [21] (2.60%)(9). Nevertheless, while the computational time of
VNR [21] is not provided in this paper, the fact that this approach optimizes a shape matrix whose
dimension is proportional to the number of points makes us believe that it is quite demanding.
Indeed, this approach uses GPU-based computations. For this particular experiment, we were
not able to provide results for KSTA [25] and BMM [16], as they could not handle the large
dimensionality of the problem.
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Fig. 8: ASL video sequences. In both cases, Top: Images with 2D tracking data in green circles, and
reprojected 3D structure in red dots (visible points) and blue crosses (occluded points). Bottom:
Camera and side-views of the reconstructed 3D face structure.

6.3 Real Videos
We have also evaluated our approach on real sequences, which despite not having ground truth,
allow for a qualitative evaluation in different real-world conditions such as the presence of
structured occlusions or noisy point tracks.

First, we have processed two ASL sequences of an American Sign Language (ASL), originally
used in [24], and consisting of a person moving the head while talking and hand gesturing. The
challenge of this sequence is to handle the partial occlusions of the face produced by the hands
or by a lack of visibility due to face motion. The first sequence, of 115 frames and 77 landmarks,
has 17.4% of missing observations. The second one, of 114 frames and also with 77 landmarks,
has 11.5% of missing observations. Figure 8 shows our 3D reconstruction on a few sample frames
for both sequences, when we set K=4. Note that our approach provides a correct estimation of all
points, even under structured occlusions.

As a final experiment, we processed a real sequence of a beating Heart, consisting of 79 frames
and 68,295 points. In this case, we obtain dense 2D trajectories from optical flow computed
by [22] and used as input to our approach. In Fig. 9, we show some frames and our dense
3D reconstruction using K = 2. Note that even though the estimated 2D flow is quite noisy,
the reconstructed 3D shape seems to be physically correct. This result, in conjunction with the
efficiency of our approach (the whole sequence is processed in 3.84 seconds) opens new directions
in which the flow and the 3D shape can be simultaneously estimated.

7 CONCLUSION

In this paper, we have addressed the NRSfM problem using an approach that incorporates low-
rank point trajectory models into a probabilistic framework on matrix distributions, and that
can also exploit correlation priors. This results in a technique that combines the advantages
of local and global representations, allowing to reconstruct both articulated/sparse shapes and
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Fig. 9: Heart sequence. Top: Input images. Middle: Color coded optical flow. Bottom: Textured
3D reconstruction from a general view. Best viewed in color.

dense surface, works with and without training data and dealing with observations corrupted
by noise and occlusions. Most importantly, all this is achieved using very low computational
resources, handling sequences with per-pixel observations in a matter of a few seconds. All
our claims have been extensively validated on both mocap and real videos showing improved
performance to state-of-the-art techniques at much less cost. Our future work is oriented to
integrate this approach into an optical flow framework, taking NRSfM a step forward and solving
it for unknown point tracks.
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