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Abstract

This paper introduces an approach to simultaneously

estimate 3D shape, camera pose, and object and type of

deformation clustering, from partial 2D annotations in a

multi-instance collection of images. Furthermore, we can

indistinctly process rigid and non-rigid categories. This ad-

vances existing work, which only addresses the problem for

one single object or, if multiple objects are considered, they

are assumed to be clustered a priori. To handle this broader

version of the problem, we model object deformation us-

ing a formulation based on multiple unions of subspaces,

able to span from small rigid motion to complex deforma-

tions. The parameters of this model are learned via Aug-

mented Lagrange Multipliers, in a completely unsupervised

manner that does not require any training data at all. Ex-

tensive validation is provided in a wide variety of synthetic

and real scenarios, including rigid and non-rigid categories

with small and large deformations. In all cases our ap-

proach outperforms state-of-the-art in terms of 3D recon-

struction accuracy, while also providing clustering results

that allow segmenting the images into object instances and

their associated type of deformation (or action the object is

performing).

1. Introduction

Simultaneously estimating 3D object shape and camera

pose from a collection of RGB images either acquired from

different viewpoints or by a single moving camera is one of

the most active research areas in computer vision. Early

works addressed this problem under the assumption of a

rigid structure [1, 29, 33]. More recently, many efforts

have focused on the non-rigid case, to retrieve deforming

3D shape and camera motion from only 2D measurements

in a monocular video [2, 23, 26, 37, 39]. This problem

is known to be inherently ambiguous and demands intro-

ducing sophisticated priors. Probably, the most standard

priors include the use of different modalities of low-rank

subspaces to constrain the solution space [3, 7, 9, 26, 35].

Moreover, these algorithms exploit the fact that input im-

ages smoothly change viewpoints. This allows introducing

temporal smoothness on the shape deformations and obtain

more accurate solutions [5, 28].

All these previous approaches, however, solve the prob-

lem for one single object instance. There exist works ad-

dressing scenarios with multiple objects within a category.

For instance, if the observed category is rigid (e.g., cars or

aeroplanes) and all objects in it have the same geometry, the

problem can be addressed as a rigid Structure from Motion

(SfM) one [31, 38]. When object instances within the cat-

egory have distinct geometry, even if they are rigid (e.g.,

different model cars), the global problem of retrieving their

shape can be formulated in a non-rigid manner [20]. This

can be extended to inherently non-rigid classes (e.g., faces,

animal poses), in which case, both inter- and intra-object

deformations shall be considered [4]. However, all these

works are only focused on the reconstruction problem, and

assume the object clustering to be known a priori.

In this paper we move a step forward and tackle the prob-

lem in which the object clusters are not known a priori. That

is, given an input collection of images of a specific category,

we aim at simultaneously clustering them into different ob-

ject instances and recovering their 3D shape regardless of

whether the objects are rigid or non-rigid. Camera pose

is also estimated. For instance, as shown in Fig. 1-Left,

given a number of images of bicycles (5 models seen from

different viewpoints) our approach clusters them into each

of the models and reconstructs their 3D shape. Note that

some observations of the bicycle instances are very similar

and difficult to distinguish from only 2D annotations. Si-

multaneously reasoning about the clustering and 3D recon-

struction helps improving both tasks. The proposed method

generalizes to non-rigid categories as well. As shown in

Fig. 1-Right, given a collection of face images of 5 humans

under different viewpoints and facial expressions, our algo-

rithm jointly splits the images into each of the individuals

and their actions, and retrieves their 3D deformable shape.

In order to simultaneously tackle clustering and recon-

struction from a collection of unordered images, we propose

a novel optimization framework that builds upon recent

Non-Rigid Structure from Motion approaches (NRSfM) [6,
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Figure 1. Simultaneous 3D reconstruction and object clustering from partial 2D annotations of rigid and non-rigid categories. In

both cases, input data consists of a collection of RGB images with –possibly incomplete– 2D semantic point detections. The number of

objects within the category is not known. Our goal is to jointly estimate the 3D object reconstruction in each image, the camera pose, and

the instance cluster (we use a different color per each object instance). Left: A rigid bicycle category, in which each instance has a single

3D configuration. Right: A non-rigid face category, where every instance may potentially have as many 3D configurations as its number of

images. This graph only shows instance clustering, but as we shall see in the results, our approach also permits segmenting every non-rigid

instance into several types of deformation (or expressions in the case of the faces).

41]. More specifically, we model the 3D shape by multi-

ple unions of unknown subspaces, accounting for rigid plus

small and large non-rigid deformations. These subspaces,

in conjunction with additional matrices encoding the simi-

larities among the samples and among their deformations,

are retrieved from partial 2D annotations using an efficient

Augmented Lagrange Multiplier (ALM) scheme. A subse-

quent spectral clustering on the similarity matrices yields

the results of the segmentation. The whole algorithm works

in a fully unsupervised manner, without requiring to know a

priori the number of object clusters nor any other informa-

tion about the type of deformation (if any) undergone by the

objects. We thoroughly evaluate this algorithm on synthetic

and real images for rigid and non-rigid categories, and pro-

vide improved 3D reconstructions compared to state-of-the-

art approaches for which ground truth clustering is given.

2. Related Work

Inferring the 3D shape while retrieving camera pose

from only 2D point measurements in a collection of RGB

images, is a mature problem when the observed object is

rigid. In this case, the rigidity constraint is sufficient to

make the problem well-posed, yielding impressively accu-

rate solutions [1, 29, 38]. In contrast, handling non-rigid

scenarios becomes an ill-posed problem that requires to ex-

ploit the denominated art of priors to constrain the solution

space. The most standard prior used in NRSfM consists in

constraining the deforming shape to lie in a low-rank sub-

space. To learn such a low-rank model, early approaches

rely on factorization [10, 34, 40], or optimization-based

strategies [9, 26, 39]. More recently, the low-rank constraint

has been imposed by means of PCA-like formulations in

which the rank of the shape matrix is optimized. These type

of methods either assume the data lies in a single low di-

mensional shape space [16, 19, 21], or in a union of tempo-

ral [41] or spatio-temporal subspaces [6]. Low-rank mod-

els were also extended to the temporal domain, by exploit-

ing pre-defined trajectory basis [7, 35], the combination of

shape-trajectory domains [22, 23], and the force space that

induces the deformations [3]. As most of the methods pro-

cess video sequences, additional temporal smoothness pri-

ors have allowed to obtain more consistent solutions for

rigid [33] and non-rigid domains [9, 21, 22, 27].

In any event, while achieving remarkable results, all pre-

vious approaches aim at modeling one single object in a

category, typically observed from smoothly changing view-

points. This means they are not directly applicable to the

multi-object scenario we contemplate in this paper. How-

ever, there have been some attempts along this line. Re-

cent solutions to reconstruct rigid categories from single

images [24], resort to large amounts of training data to con-

strain the solution space. Our approach, instead, aims at

learning the solution space on the fly from a collection of

images, without requiring any training data at all. There ex-

ist very recent works implementing this idea on rigid object

categories, either exploiting the concept of symmetry [20],

or imposing a sparse shape-space model [25]. In [4], this

was extended to non-rigid categories through a dual low-

rank shape model which allowed handling small deforma-

tions. Nevertheless, these works are still limited by the fact

that they assume the clustering of the image collection into

objects needs to be known a priori.

Our Contributions. We overcome most of the limitations
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Meth.

Feat.
Automatic Occlusion Object / Type of Rigid/Non-Rigid

rank handing deformation clustering categories

[3, 9, 39] − X −/− −/−
[22, 23] − X −/− −/−
[16, 21] X − −/− −/−
[19, 26, 27] X X −/− −/−
[41] X − −/X −/−
[4] − X −/− −/X
[20, 25] X X −/− X/−
Ours X X X/X X/X

Table 1. Comparison of our approach with state-of-the-art

NRSfM methods. Our approach is the only one that simultane-

ously provides 3D reconstruction of both rigid and non-rigid cat-

egories, and estimates clustering per object instance and type of

deformation. Additionally, it can also handle incomplete 2D an-

notations, and does not need to adjust the rank of the basis.

of previous methods with an approach that jointly retrieves

3D shape, camera pose, object and deformation clustering,

and the incomplete 2D annotations, for both rigid and non-

rigid categories of objects. To this end, we encode ob-

ject deformation by means of multiple unions of subspaces,

without requiring any prior knowledge about the dimen-

sionality of the subspaces nor which data points belong to

which subspace. As a result, we obtain a unified and unsu-

pervised framework which does not need training data. We

are not aware of any other work jointly offering all these

characteristics. Table 1 provides a qualitative comparison

of the main features offered by our solution and the most

relevant state of the art.

3. Revisiting Structure from Motion

We next review the SfM formulation that will be later

used to describe our approach on rigid and non-rigid cat-

egory reconstruction and clustering. Let us consider a set

of P points detected on I images. Let xi
p = [xi

p, y
i
p, z

i
p]

⊤

be the 3D coordinates of the p-th point in image i, and

wi
p = [ui

p, v
i
p]

⊤ its 2D position according to an ortho-

graphic projection. We can jointly write the 3D-to-2D map-

ping of all points as the following linear system:
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where W is a 2I × P matrix with the 2D measurements

arranged in columns, G is a 2I × 3I block diagonal ma-

trix made of I truncated 2 × 3 camera rotations Ri, X̂ is

a 3I × P matrix with the 3D locations of the points for all

the collection, also arranged in columns, and T is a 2I × P
matrix that stacks P copies of the I bi-dimensional transla-

tion vectors ti. The SfM problem consists in recovering the

3D shape X̂, along with the camera motion {Ri, ti} with

i = {1, . . . , I}, from 2D point detections W.

When a rigid object is observed, i.e., x1

p = x2

p =

. . . = xI
p, the shape matrix can be simplified. In this case,

the shape can be estimated by applying SVD-based fac-

torization strategies, and enforcing a 3-rank constraint on

W [31, 38] together with orthonormality constraints on G.

If, by contrast, the observed object were non-rigid, the I
locations of every point can be potentially different. Then,

shape and motion can be retrieved by enforcing a 3K-rank

decomposition over the measurement matrix W [10, 40],

where K represents the rank of the linear subspace.

For later computations, we will also re-arrange the el-

ements of X̂ into a new 3P × I matrix X encoding the

x, y and z coordinates in different rows. Both matri-

ces can be related through a function q(·) such that X̂ =
q(X) [6, 16, 19, 21]. This new interpretation has the advan-

tage of allowing for a K-rank decomposition, rather than

3K, avoiding the use of unnecessary degrees of freedom.

4. Shape as Multiple Unions of Subspaces

This section describes the deformation model we pro-

pose to represent the 3D shape of an unknown number of

objects belonging to a specific family and their relation with

the 2D measurements in a collection of images. In the

following we shall consider three scenarios depending on

the nature of the deformation: rigid objects, and non-rigid

shapes with small and large deformations.

4.1. Case 1: Rigid Objects

Let us consider a collection of I images of a number of

rigid objects that belong to the same category (e.g., bus in

Fig. 2-Left). Each object is characterized by P semantic

3D points, which, for the moment, we will assume to be all

visible in all images. The number of objects and images per

object is not known a priori. Our goal is, given the 2D anno-

tations, to reconstruct the 3D position of the P points in all

images, and identify and group the images belonging to the

same object. When only considering one single object in-

stance, the problem becomes a standard rigid SfM [31, 38],

which we will not tackle in this paper. When more than one

type of object is considered, we can consider their P seman-

tic points to be related by a geometric transformation that

includes both a rigid and a non-rigid deformation. Recon-

structing the P points can then be addressed in a NRSfM

context, although without enforcing temporal consistency

between consecutive images.

Assuming a single low-rank constraint could be suffi-

cient to span the solution space of the 3D shape in this

case, as was shown in [20]. However, this formulation is

very sensitive to the chosen rank of the subspace, and its

optimal value may be very difficult to discover when the

number of object instances is unknown. Additionally, the

maximum rank, and hence the expressiveness of the sub-

space, is limited by construction by the number of semantic
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Figure 2. Unified formulation to recover the 3D shape of rigid and non-rigid categories from a collection of RGB images. Our

deformation model considers several types of transformations. In all cases, between every pair of images, we define a rigid motion

consisting of a rotation matrix R
i and a translation vector ti. Left: The geometric relation between pairs of objects in a rigid category

(e.g., bus) can be defined in the context of a NRSfM problem using a global deformation X
i. Middle: In some categories (e.g., face)

each of the objects deform by themselves. In this case, besides the global deformation between objects, we define a linear deformation

Y
i to encode the non-rigid motion that each object may undergo. Right: Other categories (e.g., dog), following more complex patterns.

In this case we consider a non-linear deformation Z
i. Our deformation model, simultaneously considers all types of deformations and

automatically learns the contribution of each term to describe the geometry of the objects in a specific category. Images in this figure are

taken from the PASCAL VOC [18], MUCT [32], and TigDog [17] datasets, respectively.

points P , which in most of our scenarios is rather small1. To

overcome these difficulties, we introduce a formulation that

models deformation using a union of subspaces, allowing to

automatically represent a wide range of deformations, from

simple low-rank solution spaces to highly expressive ones.

We mathematically write this model as:

X = XQ+E1 , (2)

where E1 is a 3P ×I residual noise matrix, and Q is a I×I
similarity matrix which should have higher entries for pairs

of images of the same object. In essence, by doing this, we

bring the standard scenario of the rigid SfM problem to the

non-rigid domain, with the additional outcome of cluster-

ing the input images into different objects, with no a priori

knowledge about the dimensionality of the subspaces nor

which data points belong to which subspace. As we shall

see later, once the similarity matrix Q is estimated, spectral

clustering algorithms [13] can be applied on it to discover

and match the different objects within the collection.

4.2. Case 2: Non­Rigid Objects with Small Defor­
mations

We next consider the case in which the objects, besides

a rigid motion, also undergo small deformations or a partial

deformation of some of their points. Figure 2-Middle shows

an example of such situation for faces, where most of the de-

formation is concentrated around the mouth and eyes areas.

Existing solutions address this case by enforcing a single

low-rank subspace [9, 16, 34], when only considering one

object, or through a dual low-rank shape representation [4]

when multiple objects appear in the set of images. Most

these approaches, however, still require accurately adjust-

ing a priori the dimensionality of the subspace.

In order to account for such small and sparse deforma-

tions we will introduce a matrix Y ∈ R
3P×I in our model.

1Note that defining the same semantic points in all objects of a category

is a difficult task. In this paper they were manually annotated for some

collections, and the exact position can be very subjective in certain cases.

In contrast to the aforementioned approaches, no low-rank

constraint will be enforced, but only a sparsity constraint

that allows the deformation of just a few points.

4.3. Case 3: Non­Rigid Objects with Large Defor­
mations

We finally consider the case in which the images corre-

spond to a number of non-rigid objects of a given category,

that can potentially undergo large deformations. The artic-

ulated motion of humans or animals (see Fig. 2-Right) are

examples of this scenario. Again, we consider the number

of objects in the category is not known.

In order to model this situation, we require a model with

large expressibility. This is achieved by introducing into the

model a matrix Z ∈ R
3P×I which is enforced to be formed

by another union of subspaces:

Z = ZQH+E2 , (3)

where H is again a I × I similarity matrix, and E2 is a

residual noise one. Note that in this case we are considering

the total similarity to be defined by the product QH, that

is, we jointly consider similarity between objects and types

of deformation. Like mentioned before for the matrix Q,

applying spectral clustering on the similarity QH will yield

clusters of objects with similar deformation (e.g., person ‘A’

or ‘B’ smiling, person ‘A’ or ‘B’ with closed mouth).

5. 3D Shape and Clustering per Object and De-

formation Type

Our goal is to jointly recover 3D shape, camera motion,

and object and deformation type from partial 2D observa-

tions. In this section we formulate this problem by inte-

grating the three deformation cases discussed above into the

3D-to-2D projection model defined in Eq. (1). We then de-

scribe the optimization scheme we propose to solve it.



5.1. Problem Formulation

Let W̄ be a possibly incomplete matrix of 2D detec-

tions (recall that I is the number of images of an object

class and P the number of points defining the class), and

O the corresponding I × P observation matrix with {1, 0}
entries indicating whether a specific point in an image is

observed or not. Given W̄ and O, we aim at recovering:

1) the 3D locations of all points in all images, encoded by

the shape matrices X, Y and Z defined in Section 4; 2)

the object specific Q and deformation specific QH similar-

ity matrices which we shall use later for clustering; 3) the

camera pose parameters (G,T) in all images; and 4) the

complete 2D detections matrix W. We denote all these un-

known parameters, plus the corresponding noise matrices

by Ψ ≡ {W,G,T,Q,H,X,Y,Z,E1,E2}.

In order to tackle this problem we propose optimizing a

cost function that enforces the correct reprojection of the es-

timated 3D shape onto the image and incorporates the shape

constraints we mentioned when describing the model in

Section 4. In particular, the matrices X and Z are enforced

to lie in low-rank subspaces. Since rank minimization is a

non-convex NP-hard problem [36], the nuclear norm is used

as a convex relaxation [12, 14]. Sparsity on the component

Y is encouraged through l1-norm minimization. Addition-

ally, we consider the mixed l2,1-norm over the matrices of

residual noise E1 and E2, as this type of norm favors struc-

tured sparsity. Note that structured noise patterns may occur

on the shape matrices X and Z when specific data points are

missing or corrupted by noise. Taking all this into consid-

eration we formulate the optimization problem as follows:

argmin
Ψ

‖ (O⊗ 12)⊙
(
W − W̄

)
‖2F + β‖W‖∗ + φ‖Q‖∗

+ γ(‖X‖∗ + ‖Y‖1 + ‖Z‖∗) + φ‖H‖∗

+ λ(‖E1‖2,1 + ‖E2‖2,1) (4)

subject to W = G q(X+Y + Z) +T

GG⊤ = I2I
X = XQ+E1

Z = ZQH+E2

where ⊗ and ⊙ represent the Kronecker and Hadamard

products, respectively. 1 is a vector of ones, and I the iden-

tity matrix. ‖·‖F indicates the Frobenius norm, ‖·‖∗ denotes

the nuclear norm, and ‖ · ‖1, and ‖ · ‖2,1 are the l1-norm and

l2,1-norm, respectively. Finally, {β, φ, γ, λ} represent the

set of penalty weights.

We approximately solve Eq. (4) in three stages: 1) com-

plete missing entries ; 2) estimate camera pose parameters,

and 3) recover the 3D shape reconstruction, and perform

clustering per object and type of deformation. We next de-

scribe each of these stages.

5.2. Complete Missing Entries

To complete the unobserved 2D detections of W̄ (zeros

in the observation matrix O), we independently optimize

W in the first two terms of Eq. (4) while enforcing this ma-

trix to be low rank. As shown in [6, 8, 11], this optimiza-

tion can be done by means of bilinear factorization, defining

W = UV⊤. We write the equivalent problem as:

argmin
W,U,V

‖ (O⊗ 12)⊙
(
W − W̄

)
‖2F+

β

2

(
‖U‖2F + ‖V‖2F

)

subject to W = UV⊤

This can be efficiently solved via ALM. To improve con-

vergence, the missing entries of W̄ are initialized in every

image as the mean value of the observed data points.

5.3. Camera Pose Recovery

Once the missing observations are estimated, the camera

translation ti and rotation Ri in every image can be inferred

from the rest of model parameters. For this purpose, we

first estimate the translations in T as ti = 1

P

∑P

p=1
wi

p.

The rotations matrices in G can then be jointly estimated

by solving the following non-convex problem:

argmin
G

1

2
‖W −T−GX̂‖2F (5)

subject to GG⊤ = I2I

where the constraint enforces the camera rotation matrices

to be orthonormal. This optimization is solved by factor-

ization, using different values of rank and stopping auto-

matically when there is no additional improvement in the

average camera orthonormality.

5.4. Joint 3D Reconstruction and Clustering

We finally formulate the problem of simultaneously re-

covering 3D shape in all images as well as the type of object

and deformation clustering. Assuming the matrices W, G

and T to be known, the optimization problem that needs to

be solved becomes:

argmin
Ψ

′

γ(‖X‖∗+‖Y‖1+‖Z‖∗) +‖Q‖∗ +‖H‖∗

+λ(‖E1‖2,1+‖E2‖2,1) (6)

subject to W = G (A+B+C) +T

X = XQ+E1

Z = ZF+E2

q(X) = A

q(Y) = B

q(Z) = C

F = QH

where Ψ
′

≡ {Q,H,F,X,A,Y,B,Z,C,E1,E2}. Note

that compared to the original Eq. (4) we have included three



additional constraints, namely q(X) = A, q(Y) = B and

q(Z) = C, where q(·) simply rearranges the elements of

a matrix as discussed in Section 3. Furthermore, to reduce

the computational burden, we have included the constraint

F = QH. Without loss of generality we have also reduced

the number of weight parameters originally appearing in

Eq. (4), by setting φ = 1 and re-scaling the rest. In or-

der to solve this optimization problem, we again resort to

the ALM method.

6. Experimental Evaluation

We now present our experimental results for different

types of scenarios, including synthetic and real image col-

lections of rigid and non-rigid categories. We provide

quantitative and qualitative evaluation and compare our ap-

proach against state-of-the-art solutions on several synthetic

datasets with 3D ground truth. For quantitative evaluation,

we provide the reconstruction error in terms of the normal-

ized mean 3D error eX used before in [7, 16, 22].

To evaluate the object clustering accuracy, we apply

spectral clustering [13] over the estimated matrix Q, and

retrieve the I−dimensional vector C, where each entry is an

integer representing the cluster index. To this end, we define

aC = 1− 1

I

∑I

i=1
I(Ci 6= CGT

i ), where I(v) is the indicator

function, i.e., I(v) = 1 if v is true, and 0 otherwise, and

CGT
i is the ground truth cluster index of the i-th image.

6.1. Synthetic Images

We first evaluate our approach on synthetic collections of

images of rigid object categories, where the 3D ground truth

is obtained from the CAD models of the PASCAL VOC

dataset [18]. We choose the categories which are defined

by at least eight points. Based on this, we evaluate our ap-

proach on eight categories which contain between seven and

ten objects each (see Table 2). The penalty terms were tuned

with the Bicycle collection, and then kept fixed for the rest

of experiments. Specifically, we use λ = 0.03 and γ = 10.

We compare the 3D reconstruction accuracy of our ap-

proach, dubbed MUS (Multiple Union of Subspaces), with

two SfM baselines: TK [38] and MC [31]; as well as

with seven NRSfM solutions: the shape-trajectory meth-

ods CSF [22] and KSTA [23]; the block matrix approach

BMM [16], the probabilistic-normal-distribution method

EM-PND [26], the temporal union of subspaces TUS [41],

the grouping-based NRSfM of GBNR [19] and the consen-

sus NRSfM of CNR [27]. We also include the baseline

LRR [30] to obtain the object clustering from 2D annota-

tions. The parameters of these methods were set in accor-

dance to their original papers. We manually set the rank

of the subspace for the methods CSF [22] and KSTA [23],

using the value that gave the best results. As the source

code for TUS [41] is not publicly available, we used our

own implementation. In this particular case, we also used

our annotation completion and camera motion estimation,

as the method did not address any strategy to solve these

problems. We would like to recall that our approach does

not need manually tuning any subspace rank parameter, nei-

ther assigning which images belong to which object class.

Table 2 summarizes the reconstruction errors for all

methods and the object clustering accuracy of ours and

LRR [30], considering both noise-free and noisy annota-

tions. For the noisy case, we corrupt 2D detections with

a zero mean Gaussian perturbation with standard deviation

σnoise = 0.01maxi,j,k {|dijk|}, where dijk represents the

maximum distance of an image point to the centroid of all

the points. Note that MUS consistently outperforms the

rest of competing techniques in terms of 3D reconstruction

accuracy for both cases, reducing, for instance, the 3D er-

ror of other methods by large margins between the 5% and

380% for the noise-free case. Note also that GBNR [19] and

CNR [27] do not provide solutions for all collections, as the

number of points is not sufficient for their formulation. In

addition, our approach also estimates the object clustering,

as seen in the right-most column, resulting in very accurate

segmentations compared to the LRR [30] solution. Figure 3

shows a few sample images for the Bicycle and Chair cate-

gories, and the 3D reconstructions we obtain.

6.2. Real Images

We next evaluate our approach on several real image

collections either deforming linearly (faces) or highly non-

linearly (animal motion). Since no ground truth is available

for these datasets we only provide qualitative evaluation.

The MUCT collection [32] is made of 72 images of faces

of seven people, both men and women, of different ages

and races, and under varying poses and expressions. The

2D annotations are obtained by using an off-the-shelf 2D

active appearance model [15]. This model consists of 68

2D points, which are all visible in all frames. The results

we provide in this dataset are shown in Fig. 4. Despite no

quantitative estimates are available, the 3D reconstruction

we obtain seems very realistic. We can, however, manu-

ally annotate the results of the object segmentation. Even

though the 2D shapes are very similar (recall that object

segmentation is computed based just on the 2D location of

points) we obtain a segmentation accuracy aC = 0.68(7).

In order to validate our approach against missing anno-

tations, we process the ASL collection [23], consisting of

229 images of a man and a woman. The number of 2D fea-

ture points is 77, but some of them are not visible due to

structured occlusions (by the hands or face self-rotation).

In total, 14.43% of the points are missing. The 3D recon-

struction results are shown in Fig. 5. Note that the inferred

shapes seem to be very accurate, even when hallucinating

the occluded points. In this case, the object segmentation is

computed with no error, i.e., aC = 1.0(2). For this experi-
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Data

Algorithm
TK [38] MC [31] CSF [22] KSTA [23] BMM [16] EM-PND [26] TUS [41] GBNR [19] CNR [27] LRR [30] Ours (MUS)

Metric: eX eX eX eX eX eX eX eX eX aC eX aC

Aeroplane 0.679 0.584 0.363 0.145 0.843 0.578 0.294 – 0.263 0.39(7) 0.261 0.95(7)

Bicycle 0.309 0.440 0.424 0.442 0.308 0.763 0.182 0.221 – 0.39(10) 0.178 0.95(10)

Bus 0.202 0.238 0.217 0.214 0.300 1.048 0.129 0.214 – 0.44(10) 0.113 0.75(10)

Car 0.239 0.256 0.195 0.159 0.266 0.496 0.084 0.217 0.099 0.36(10) 0.078 0.87(10)

Chair 0.356 0.447 0.398 0.399 0.357 0.687 0.211 – – 0.39(10) 0.210 0.87(10)

Diningtable 0.386 0.512 0.406 0.372 0.422 0.670 0.265 0.351 – 0.41(10) 0.264 0.86(10)

Motorbike 0.339 0.346 0.278 0.270 0.336 0.740 0.228 0.268 – 0.41(10) 0.222 0.91(10)

Sofa 0.381 0.390 0.409 0.298 0.279 0.692 0.179 0.264 0.214 0.44(9) 0.167 0.85(9)

Average error: 0.361 0.402 0.336 0.287 0.388 0.709 0.196 0.256∗ 0.192∗ 0.40 0.186 0.88

Relative error: 1.93 2.15 1.80 1.54 2.08 3.80 1.05 1.37∗ 1.03∗ – 1.00 –

Aeroplane 0.677 0.583 0.233 0.183 0.566 0.760 0.297 – 0.294 0.41(7) 0.271 0.87(7)

Bicycle 0.308 0.442 0.455 0.457 0.307 0.808 0.195 0.231 – 0.38(10) 0.188 0.93(10)

Bus 0.204 0.241 0.227 0.218 0.255 1.197 0.139 0.223 – 0.44(10) 0.122 0.80(10)

Car 0.241 0.259 0.169 0.164 0.161 0.624 0.100 0.222 0.122 0.36(10) 0.093 0.92(10)

Chair 0.358 0.447 0.398 0.396 0.258 0.818 0.221 – – 0.41(10) 0.220 0.91(10)

Diningtable 0.392 0.522 0.414 0.383 0.358 0.807 0.268 0.370 – 0.38(10) 0.267 0.89(10)

Motorbike 0.342 0.348 0.295 0.290 0.299 0.748 0.237 0.277 – 0.41(10) 0.233 0.89(10)

Sofa 0.384 0.392 0.303 0.294 0.240 0.726 0.188 0.271 0.228 0.42(9) 0.174 0.91(9)

Average error: 0.363 0.404 0.312 0.298 0.305 0.811 0.206 0.266∗ 0.215∗ 0.40 0.196 0.89

Relative error: 1.95 2.17 1.67 1.60 1.64 4.35 1.10 1.42∗ 1.15∗ – 1.05 –

Table 2. Evaluation on synthetic collections for several object categories under noise-free and noisy annotations. The table reports

the 3D reconstruction error eX for the following SfM baselines: TK [38] and MC [31]; and the NRSfM baselines: CSF [22], KSTA [23],

SPM [16], EM-PND [26], TUS [41], GBNR [19] and CNR [27]; and ours (MUS). In all cases, we consider full and clean 2D annotations.

The symbol “−” indicates the algorithm did not manage to process the sequence, and ∗, that the summary is obtained considering only

the successful cases. Relative error is always computed with respect to MUS reconstruction, on average, the most accurate solution. In

addition, for LRR [30] and our approach we also show the clustering accuracies aC , and the number of object clusters in parentheses.

Figure 3. Bicycle and Chair collections. The same information is shown for the two experiments. Top: Images

{#2,#31,#53,#70,#83,#148} and {#21,#37,#49,#63,#93,#139} for the bicycle and chair collections, respectively. The

semantic 2D point measurements fed to our model are represented by cyan circles. Bottom: Color-coded dots correspond to our 3D

estimation where every color represents a different object, and empty circles represent the 3D ground truth.

ment, we also display the clustering in terms of type of de-

formation (colored lines in the 3D reconstruction of Fig. 5).

These clusters seem to have a clear physical meaning indi-

cating face deformations with closed or open mouth.

We finally evaluate our approach on a challenging col-

lection of dog images [17] with 33 dog instances. This col-

lection is made of 52 images, and we define a model with

19 points, which was manually annotated. Not all points are

visible in all images. Concretely, 11.34% of the points are

missing. The 3D reconstruction and clustering results are

shown in Fig. 6. Again, the 3D shapes we obtain seem very

plausible, even for the points that are not observed.

7. Conclusion

In this paper we have extended NRSfM to a new scenario

in which we can retrieve 3D shape of either rigid or non-

rigid categories from collections of RGB images. Consider-



Figure 4. MUCT collection. Top: Images #3, #26, #32, #46, #65 and #70 of the dataset. Input 2D detections and reprojected 3D shape are

shown as cyan circles and red squares, respectively. Bottom: Camera viewpoint and side views of the estimated 3D shape. The colored

dots indicate the object cluster index estimated by our approach, i.e., a different person in the manifold of faces. Best viewed in color.

Figure 5. ASL collection. Top: Images #29, #47, #100, #142 and #228 of the dataset. Input 2D detections and reprojected 3D shape

are shown as cyan circles and red crosses, respectively. Blue crosses correspond to reconstructed (hallucinated) missing points. Bottom:

Camera viewpoint and side views of our 3D reconstruction, where colored dots (red and green) indicate every human in the collection. The

colored lines indicate a specific deformation cluster that was recovered by our approach. These estimated clusters have a clear physical

meaning and correspond to open/close mouth (shown in orange/magenta for the woman, and red/dark green for the man). In all cases, 3D

reconstructed missing points are represented by blue crosses. Best viewed in color.

Figure 6. Dog collection. Top: Images #4, #14, #15, #24, #25 and #51 of the dataset. Input 2D detections and reprojected 3D shape are

shown as cyan circles and red crosses, respectively. Bottom: 3D reconstruction from a novel point of view, where colored dots indicate

the object cluster index estimated by our approach. In both cases, missing points are shown as blue crosses. Best viewed in color.

ing only partial 2D point annotations per image, we propose

an approach that besides reconstructing 3D shape, it also

estimates camera pose per image, as well as segments the

collection of images into different objects and each object

geometry, into several deformation primitives. For this pur-

pose, we have introduced a unified formulation that mod-

els object shape using multiple unions of subspaces, able to

render from rigid motion to highly non-rigid deformations.

The model parameters are learned via an ALM scheme in a

completely unsupervised manner. We have evaluated our

approach on synthetic and real collections of images, of

both rigid and non-rigid categories. 3D reconstruction re-

sults outperform existing state-of-the-art solutions by large

margins. An interesting avenue for future research is to ex-

tend our formulation to collections of images of multiples

categories, exploring the union of several solution spaces.
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