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1Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
2Mapillary Research, Graz, Austria

3Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux, France

Abstract

We propose a method for predicting the 3D shape of a

deformable surface from a single view. By contrast with

previous approaches, we do not need a pre-registered tem-

plate of the surface, and our method is robust to the lack

of texture and partial occlusions. At the core of our ap-

proach is a geometry-aware deep architecture that tackles

the problem as usually done in analytic solutions: first per-

form 2D detection of the mesh and then estimate a 3D shape

that is geometrically consistent with the image. We train

this architecture in an end-to-end manner using a large

dataset of synthetic renderings of shapes under different lev-

els of deformation, material properties, textures and light-

ing conditions. We evaluate our approach on a test split of

this dataset and available real benchmarks, consistently im-

proving state-of-the-art solutions with a significantly lower

computational time.

1. Introduction

Motivated by the current success of deep learning meth-

ods for estimating a depth map from a single image of a

scene [18, 19, 20], in this paper we tackle the related prob-

lem of estimating the underlying parametric model defining

the shape of a non-rigid surface from a single image. This

problem has been traditionally addressed in the context of

the Shape-from-Template (SfT) paradigm [9], requiring a

reference template image of the surface for which the 3D

geometry is known, and a set of 3D-to-2D point correspon-

dences or a mapping between this template and the input

image. This approach, however, may be difficult to hold in

practice, specially when considering low-textured surfaces.

In this work we relax previous assumptions and present

a learning-based approach that allows for globally non-rigid

surface reconstruction from a single image without relying

on point correspondences, and which in particular, shows

robustness to situations rarely addressed previously: lack of

surface texture and large occlusions. Our model is based on

a fully differentiable Deep Neural Network that estimates

a 3D shape from a single image in an end-to-end manner,

and builds upon three branches that enforce geometry con-

sistency of the solution.

More exactly, as illustrated in Fig. 1, a first branch of

the proposed architecture (the ‘2D Detection Branch’) is re-

sponsible for localizing the mesh onto the image, and for

fitting a 2D grid to it. The 2D vertices of this grid are

then lifted to 3D by the ‘Depth Branch’, a regressor that

combines the 2D detector confidence maps and the input

image features. Finally, a ‘Shape Branch’ is responsible

for recovering the full shape while ensuring that the esti-

mated 3D coordinates correctly re-project onto the image.

During training, this branch also incorporates a novel fully-

differentiable layer that performs a Procrustes transforma-

tion and aligns the estimated 3D mesh with the ground

truth one. This branch is important as it was proven impor-

tant to perform Procrustes alignment in previous approaches

for adapting to datasets with different reference frames and

metrics. It also favors convergence of the learning process.

Since there is no dataset large enough to train data-

hungry deep learning algorithms such as ours, we have cre-

ated our own using a rendering tool. We have synthesized

128,000 photo-realistic pairs input 2D-image/3D-shape ac-

counting for different levels of deformations, amount and

type of texture, material properties, viewpoints, lighting

conditions and occlusion. Figure 3-Top shows some exam-

ples. Evaluation on a test split of this dataset demonstrates

remarkable improvement of our network compared to state-

of-the-art SfT techniques, which typically rely on known

3D-to-2D correspondences, especially under strong occlu-

sions and poorly-textured surfaces. Furthermore, our model

learned with synthetic data can be easily fine-tuned to real

sequences, using just a few additional real training samples.

Results on the CVLab sequences [48] with a bending paper

and a deforming t-shirt again clearly show that our method

outperforms existing approaches.

In summary, our main contributions are: 1) the first—

to the best of our knowledge—fully-differentiable model

for non-rigid surface reconstruction from a single image

that does not require initialization, accurate knowledge of
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Figure 1. Overview of our approach. The proposed architecture consists of three main branches. The ‘2D Detection Branch’ is responsible

for the 2D location of the mesh and the associated belief maps. The ‘Depth Branch’ lifts the 2D detected mesh by leveraging on image

cues and the detection uncertainties. Finally, the ‘Shape Branch’ fuses the 2D detections and their estimated depths to obtain 3D shape in

such a way that perspective projection is enforced. An additional ‘Procrustes Layer’ is used during training to align the estimated mesh

with the ground truth one.

the template, 3D-to-2D correspondences, nor hand-crafted

constraints; 2) a geometry-aware architecture that embeds

a pinhole camera model and encodes rigid alignment dur-

ing training; and 3) a large photo-realistic dataset of images

of non-rigid surfaces annotated with the corresponding 3D

shapes, which will be made publicly available, and we hope

it will inspire future research in the field.

2. Related Work

Reconstructing non-rigid surfaces from monocular im-

ages is known to be a severely ill-posed problem which re-

quires introducing different sources of prior knowledge in

order to be solved. In this section, we will split related work

into methods that define these priors based on pre-defined

models (either physically-based or handcrafted) and tech-

niques that learn them from training data.

Early approaches described non-rigid surfaces using

models inspired by physics, such as superquadrics [33],

thin-plates [31], elastic models [24] and finite-

elements [32]. These representations, however, could

not accurately approximate the non-linear behavior of large

deformations.

More complex deformations can be captured by SfT ap-

proaches [9, 12, 35, 37, 38, 40, 42, 43, 49], which aim at

recovering the surface geometry given a reference configu-

ration in which the template shape is known, and a set of

3D-to-2D correspondences between this shape and the in-

put image. On top of this, additional constraints enforcing

isometry [43], conformal warps [9] and photometric consis-

tency [35, 37] are considered. While effective, SfT methods

are very sensitive to the initial set of matches, which may be

difficult to establish in practice, especially under occlusions,

low textured surfaces and varying illumination.

Temporal information is another typically exploited

prior. Non-rigid-shape-from-motion techniques gener-

ally extend Tomasi and Kanade’s rigid factorization algo-

rithm [46] to recover deformable shape and camera mo-

tion from a sequence of 2D tracks, exploiting physical [3]

and low-rank constraints on the shape [1, 4, 25, 47], trajec-

tory [5] or the forces inducing the deformation [2]. Again,

these methods rely on the fact that 2D point tracks can be

readily computed, limiting thus their general applicability

to relatively well-textured surfaces.

The need of point correspondences is circumvented by

template-free approaches that perform a per-point 3D re-

construction by minimizing an objective function on geo-

metric and photometric cues [6, 16, 51, 53]. The shading

models considered by these approaches, however, use to be

oversimplifications of the reality, either considering bright-

ness constancy [51] or Lambertian surfaces lit by point light

sources [53].

More realistic deformation and appearance models can

be learned from training data. The first attempt along

this line corresponds to the active appearance models [13],

which learned low-dimensional 2D models for face track-

ing. This was later extended to 3D by the active shape

and morphable models [10, 30], and by methods integrat-

ing these models into the SfT formulation [36]. Yet, all

these approaches still rely on feature points detected over

the whole surface or at its boundary [44], which are diffi-

cult to obtain in practice.

Following the success of recent deep convolutional net-

works in related topics such as 3D human pose recov-

ery [29, 34, 39], depth [17, 18, 19, 27, 41, 54] and sur-

face normal reconstruction on rigid objects [7, 8, 17, 50],

we introduce a unified formulation for the problem of es-

timating non-rigid shape from single images, that simul-



taneously performs 2D detection and 3D lifting while en-

forcing geometry consistency. The framework we propose

allows tackling a series of situations which, to the best of

our knowledge, are not jointly addressed by existing ap-

proaches for reconstructing deformable surfaces: it does

not require pre-computing point correspondences, it is ef-

fective on poorly textured surfaces, it is robust to partial oc-

clusions and corrupted object boundaries, and works well

under varying lighting conditions. Moreover, 3D shape in-

ference is fast as often with deep networks.

Probably the most closely related work to ours is that of

Tewari et al. [45], which trains a deep auto-encoder model

for monocular face reconstruction. However, this work re-

lies on a low-rank shape model that limits their feasible so-

lutions to shapes with relatively small deformations. Fur-

thermore, the range of textures for face reconstruction is

limited while we consider general textures.

3. Our Approach

Our framework for estimating a non-rigid shape from a

single image is shown in Fig. 1. We have devised an archi-

tecture with three branches, each responsible of reasoning

about a different geometric aspect of the problem. The first

two branches are arranged in parallel and perform proba-

bilistic 2D detection of the mesh in the image plane and

depth estimation (red and green regions in the figure, re-

spectively). These two branches are then merged (blue re-

gion in the figure) in order to lift the 2D detections to 3D

space, such that the estimated surface correctly re-projects

onto the input image and it is properly aligned with the

ground truth shape. In the results section we will show that

reasoning in such a structured way provides much better re-

sults than trying to directly regress the shape from the input

image, despite using considerably deeper networks.

4. Geometry-Aware Network

In this section we formulate the problem and describe

the network architecture we propose, which is made of

three main branches named 2D Detection Branch, the Depth

Branch, and the Shape Branch. We also define the loss layer

for learning the whole model.

4.1. Problem Formulation

We aim at designing a deep learning framework that di-

rectly estimates a non-rigid 3D shape from an input RGB

image I ∈ R
Ho×Wo×3. The shape is represented as a tri-

angulated 3D mesh with Nv vertices X = (x1, . . . ,xNv
),

where xi = (xi, yi, zi) are the coordinates of the i-th ver-

tex, expressed in the camera coordinate system. In the fol-

lowing, we assume the structure of the mesh to be known,

being a N ×N rectangular grid, i.e., Nv = N2.

We also assume the calibration parameters of the camera

t=1 t=2 t=3
Figure 2. Refinement of the 2D vertices position. Output (for

one specific vertex) of the regressor Φt for three consecutive time

steps. Note how the uncertainly in the vertex location is progres-

sively reduced.

to be known, namely the focal lengths, fu and fv , and the

principal point (uc, vc).

4.2. 2D Detection Branch

Given an input image I, the first step consists in extract-

ing image features from a pre-trained network, in our case

we concatenate two Resnet V2 blocks [22]. For each block,

the stride of the last unit is set to one, in order to keep the

same spatial resolution for the two units. Let us denote these

features as Ψ(I) ∈ R
H×W×C .

The image features are then fed into the 2D detection

network, which is responsible for estimating the 2D loca-

tions of the mesh vertices U = (u1, . . . ,uNv
) ∈ U , where

ui = (ui, vi) and U is the set of all (u, v) pixel locations

in the input image I. Drawing inspiration on the convolu-

tional pose machines [52] for human pose estimation, the

2D location of each vertex ui is represented as a probability

density map Bi ∈ R
H×W computed over the entire image

domain as:

Bi[u, v] = P (ui = (u, v)) , ∀ (u, v) ∈ U . (1)

As in [52] these belief maps are estimated in an itera-

tive manner. In particular, let B
t = (Bt

1, . . . ,B
t
Nv

) ∈

R
H×W×Nv be the concatenation of all belief maps at it-

eration t. This tensor is estimated by a regressor function

Φt, which takes as input the image features and the con-

catenated belief maps at the previous stage t− 1:

Φt(Ψ(I),Bt−1) → B
t . (2)

In the first step, the regressor is only fed with the image

features, that is Φ1 ≡ Φ1(Ψ(I)). We denote by Tmax the

maximum number of iterations. As it is shown in Fig. 2,

after each iteration, the location of the vertices is progres-

sively refined.

In order to implement the regressor Φt(·) we use again

ResNet V2 blocks followed by two convolutional layers.

The output of each Φt is normalized with respect to H

and W to guarantee that
∑H

u=1

∑W

v=1 B
t
i[u, v] = 1, ∀i ∈

{1, . . . , Nv}, and ∀t ∈ {1, . . . , Tmax}.



Finally, it is worth noting that the 2D Detection Branch

we have just described is fully differentiable. The output

ui = (ui, vi) for the i−th vertex can be estimated as the

following weighted sum over the last belief map B
Tmax :

ui=

∑

(u,v)∈U

u ·BTmax

i [u, v]

∑

B
Tmax

i

, vi=

∑

(u,v)∈U

v ·BTmax

i [u, v]

∑

B
Tmax

i

where
∑

B
Tmax

i sums over all elements of BTmax

i . These 2D

estimates will be forwarded to the ‘Shape Branch’ described

in Section 4.4, while the belief maps in B
Tmax will be used

to infer the depth value for each of the vertices in the ‘Depth

Branch’ described in Section 4.3.

4.3. Depth Branch

The belief maps BTmax

i of the 2D vertex locations in the

above section are forwarded to the ‘Depth Branch’, to esti-

mate the depth coordinate zi for every vertex. Note that pre-

vious works in related problems like 3D human pose esti-

mation [29, 34] have not taken advantage of the uncertainty

typically associated to the feature detectors.

To do so, the proposed layer produces new feature maps

V(BTmax ,Ψ(I)) ∈ R
N×N×C , that condition the input fea-

ture maps Ψ(I) ∈ R
H×W×C with the probability maps

B
Tmax ∈ R

H×W×Nv , that is:

V[j(i), k(i), c] =
∑

(u,v)∈U

B
Tmax

i [u, v] ·Ψ(I)[u, v, c] (3)

∀i ∈ {1, . . . , Nv}, c ∈ {1, . . . , C}, where (j(i), k(i)) con-

verts the i-th input of an Nv-dimensional vector into a

two dimensional input of an N × N matrix (recall that

Nv = N2).

These image features conditioned on the vertices 2D lo-

cations are then used as input of a regressor Ω(·) to estimate

the vertices’ depth:

Ω(V(BTmax ,Ψ(I))) → (z1, . . . , zNv
). (4)

Again, the regressor Ω(·) consists in two ResNet V2 blocks

followed by two convolutional layers and the full branch

(conditioned features + regressor) is fully differentiable.

4.4. Shape Branch

The 2D locations and depth estimates are merged in or-

der to estimate the shape while enforcing the projection con-

straints and rigid alignment consistency.

Given the estimates (ui, vi, zi) in Eqs. (3) and (4) of the

two first branches, the 3D position xi = (xi, yi, zi) of each

vertex is recovered with a differentiable layer that models

the pinhole reprojection model:

xi = zi ·
ui − uc

fu
, yi = zi ·

vi − vc

fv
, zi = zi . (5)

This gives us an estimate of the deformable shape X, and

we could train the network by considering the L2 loss

||X−X
∗||22 where X

∗ is the ground truth 3D shape. How-

ever, we propose introducing an additional layer, which

computes the Procrustes alignment error between X and

X
∗ in a fully differentiable manner, and build our loss func-

tion based on this error. Although this layer is removed at

test time, we observed that it favors the convergence during

training, helps adapting to different datasets, and most im-

portantly, it improves the capacity of the rest of the network

to capture the non-rigid component of the shape.

The Procrustes layer (‘Procr’ box in Fig. 1) is imple-

mented by first normalizing X and X
∗ with respect to trans-

lation and scale. Let us denote by X̂ = (x̂1, . . . , x̂Nv
) and

X̂
∗ = (x̂∗

1, . . . , x̂
∗
Nv

) these normalized versions.

Following [14], we can then compute the alignment error

between X̂ and X̂
∗, without having to explicitly estimate

their relative rotation and translation as follows:

Err Align(X̂, X̂∗) =

√

∑Nv

i=1 |x̂i|2 + |x̂∗
i |

2 − 2λmax

Nv

(6)

where λmax is the maximum eigenvalue of a 4 ×
4 matrix built in terms of the elements of X̂ and

X̂
∗. Since there exist differentiable approximations

of the eigendecomposition (for example, the function

tf.self adjoint eigvals in Tensorflow), the full

‘Shape branch’ is again differentiable.

4.5. Learning the Model

The cost function that we aim to minimize is a combina-

tion of the 3D alignment error in Eq. (6) and the 2D detec-

tion error produced at the output of each regressor Φt, for

t = {1, . . . , Tmax}:

L = Err Align(X̂, X̂∗) + γ

Tmax
∑

t=1

‖Bt −B
∗‖22 , (7)

where B
∗ is a heat-map generated by placing Gaussian

peaks at the ground truth 2D locations (u∗
i , v

∗
i ) of the mesh

vertices. γ denotes a weight used to give similar orders of

magnitude to each of the terms of the loss function.

Training Details. The model is trained with the syntheti-

cally generated dataset described in the next section, made

of Ho×Wo = 224× 224 images. The image features Ψ(I)
are obtained from a Resnet V2 network pre-trained on Im-

ageNet, resulting in feature maps of size H × W × C =
56× 56× 768. In all our experiments we consider meshes

of spatial resolution N×N = 9×9, thus, Nv = 81. The re-

sulting belief maps Bt will be therefore of size 56×56×81.

In the ‘2D Detection Branch’, we fixed the maximum num-

ber of iterations to Tmax = 3, as further stages did barely

change the resulting belief maps distributions.



Known Texture New Texture Non-Textured Known Texture New Texture Non-Texture

with Occlusion with Occlusion with Occlusion

2.42 3.15 2.90 3.28 2.88 2.83
Figure 3. Results on synthetic data. Reconstructions samples in each of the six cases we consider (surfaces with known, new or no-texture,

and with and without occlusions). First Row: Input image. Second Row: 3D estimated mesh projected onto the input image. Third Row:

3D estimated mesh seen from the camera view. Last Row: Side view of the ground truth mesh and our estimation (green and blue meshes,

respectively). The reconstruction error is indicated at the bottom, to give significance to the errors in Table 1.

The training procedures is split in two stages: initially,

only the regressors Φt are trained. Then, regressors Φt and

Ω are jointly trained. In both cases, the parameters of the

feature extractor Ψ(I) are kept fixed. In Eq. (7) we set γ =
5 · 10−3. We use Adam solver [23] with a batch size of 3

images and weight decay of 4 · 10−5. Every 2 epochs we

exponentially decay the learning rate, which is initially set

to 2 · 10−4.

5. Dataset

It is well known that deep networks require large

amounts of training data. However, the only existing dataset

we are aware of that contains non-rigid surfaces annotated

with ground-truth 3D shape is [48], which includes 505 im-

ages of a bending paper and a deforming t-shirt. This is far

below what is needed, specially if we expect our network to

generalize to non-observed textures. For this purpose, we

have created a large synthetic dataset with 128,000 samples

rendered with AutodeskTM- Maya. Each sample consists of

a 224 × 224 image and a 9 × 9 deformed shape. A few

examples of the dataset are shown in Fig. 3-Top.

We generated our dataset by varying textures, deforma-

tions and lighting conditions. Concretely, we have chosen

200 different textures from [15] which is formed by repet-

itive patterns, rich, poor and plain textures. The deforma-

tions were generated for 40 different meshes (same topol-

ogy but varying aspect ratios and sizes). The mesh dynam-

ics were rendered by simulating a hanging piece of material

held with up to 4 pins and moving with the wind. Four

different materials, defined with four different stiffness ma-

trices, were considered. The scene was lit by one point light

source of high intensity with a random position, plus a com-

ponent of ambient illumination. In all cases, we assumed a

Lambertian reflectance.

The rendered dataset was augmented with all three possi-

ble flips of each image. Additionally, for each image, three

new ones were generated by applying a random rigid trans-

formation on the corresponding deformable surface. At

training time, the dataset was further augmented with ran-

dom color changes at pixel level (hue, saturation, contrast

and brightness). The dataset will be made publicly avail-

able.

6. Experimental Validation

We now present results on synthetic and real data.

We compare our approach, which we dub DeformNet,



Method Known Text New Text No-Text Time (ms)

Ba15Iso 8.54 / - 8.72 / - - / - 495

Ba15Iso-It 5.65 / - 6.78 / - - / - 15,507

Ba15Conf 30.50 / - 31.91 / - - / - 11,232

Ch14IsoLsq 6.74 / - 6.95 / - - / - 2618

Ch14IsoLsq-It 4.85 / - 5.3 / - - / - 14,813

Resnet-50 V2 0.92 / 3.83 11.23 / 18.50 8.39 / 9.43 152

DeformNet 2.64 / 4.57 3.28 / 4.09 2.86 / 4.62 219

Table 1. Evaluation on synthetic data. Euclidean average dis-

tance between 3D ground-truth and estimated 3D reconstruction.

Each pair ‘err1 / err2’ indicates the error without and with occlu-

sions, respectively. Execution time in the last column is computed

as the average time (in ms) to reconstruct a sample. Symbol ‘-’ in-

dicates that the method was not evaluated on this scenario, as they

correspond to situations (no texture or large occlusions) that can

not be addressed by template-based analytical solutions.

with the following state-of-the-art template-based solu-

tions: Ba15Iso, the isometry-based solution proposed in [9];

Ba15Conf, a conformal-based approach, also from [9];

Ch14IsoLsq, the least-squares isometric reconstruction

of [12]. We denote by Ba15so-It and Ch14IsoLsq-It the

same previous methods after executing 25 iterations of the

non-linear refinement proposed in [11]. This refinement

step could not be applied to Ba15Conf due to computational

time constraints. [12] showed that Ch14IsoLsq-It system-

atically outperformed the same baselines we consider here

and also the methods introduced in [11, 40, 42]. We there-

fore consider Ch14IsoLsq-It to be the best current analytic

approach to assess the potential of our solution. Addition-

ally, we also compare against a deep network baseline, con-

sisting of a ResNet-50 V2 architecture [22] directly infer-

ring 3D mesh coordinates.

In the following, we will report the reconstruction error,

computed as the L2 distance between the estimated and the

ground truth shapes (dimensionless for the synthetic results

and in mm for the real ones). As common practice, the es-

timated meshes are aligned to the ground truth before eval-

uation using a Procrustes transformation. Additionally, in

order to make a fair comparison, all methods requiring the

pixels coordinates of the mesh, are fed with the estimates

U = (u1, . . . ,uNv
) obtained with our network, augmented

to a few hundreds of template-to-image correspondences by

interpolation. We would like to point that our network pro-

duces an error of approximately 2 pixels in these 2D detec-

tions, and computing them using feature descriptors such as

SIFT [28], generally led to worse results as these type of

descriptors are prone to fail for non-textured surfaces with

repetitive pattens and self-occlusions.

6.1. Evaluation on Synthetic Data

We evaluated all methods on a test set of our dataset con-

sisting of 1208 independent samples generated with random

values of shape and camera pose. These test samples are

split into three subsets: 553 unknown shapes with a tex-

ture seen at training time (‘Known Texture’), 553 unknown

shapes with a texture not seen at training time (‘New Tex-

ture’), and 102 unknown shapes without texture or very

poorly textured (‘Non-Textured’). Additionally we have

simulated occlusions by covering the input images with a

number of gray rectangular patches randomly distributed.

Examples of the type of input images for each test case are

shown in Fig. 3-Top.

Template-based analytical methods (Ba15Iso,

Ba15Conf, Ch14IsoLsq and their iterative versions)

were only evaluated on the textured and non-occluded

cases, as they are methods that by construction can not

realistically address the lack of texture or strong occlusions.

Alternatively, to make the learning approaches (Resnet-50

V2 and DeformNet) robust to occlusions, the two net-

works were retrained with the ‘gray-patched’ images. No

retraining was done to handle the lack of texture.

Table 1 summarizes the results of the synthetic evalu-

ation. When dealing with textured and non-occluded im-

ages, Ch14IsoLsq-It is, as expected, the most accurate so-

lution among the analytical methods. Regarding the learn-

ing approaches, Resnet-50 V2 turns to work very well un-

der known textures. However, its performance suffers a big

drop when dealing with textures not seen during training

and with poorly textured surfaces. DeformNet performs

consistently well in all situations, outperforming in all cases

the analytical solutions. commentParticularly interesting is

the case when dealing with new textures that are occluded,

in which we obtain an accuracy very similar to the best

analytical methods (we obtain 3.62mm versus 3.57mm for

competing methods) when dense non-occluded correspon-

dences are provided.

Figure 3 shows examples of the reconstructed meshes

obtained by our approach. Note that when there are no oc-

clusions, the recovered shape highly resembles the ground

truth, even for non-textured surfaces and not previously

seen textures. When the input image is corrupted by oc-

clusions, our solutions turn to be noisier, but even in this

case, they are very close to the ground truth.

Computation Times. Another advantage of learning based

approaches is that once they are learned, they are much

faster than the analytical solutions. The last column of Ta-

ble 1 shows that computing the shape can be done in a frac-

tion of a second for either Resnet-50 V2 and our approach,

between one and two orders of magnitude faster than ana-

lytical methods.

6.2. Evaluation on Real Data

We also evaluate all methods on two real datasets pro-

vided by CVLab [48], which consist in video sequences

of a bending paper and a deforming t-shirt, with 193 and

312 frames, respectively. As common practice, the back-
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Figure 4. Evaluation on the CVLab sequences [48]. The two graphs plot the 3D reconstruction error per frame (in mm) for all methods

in the two real sequences (Left: Paper bending sequence, Right: T-shirt sequence). The results of Resnet-50 V2 are not plotted as it was

not able to generalize to these sequences. Right. Mean reconstruction errors of all methods.

Figure 5. Reconstructed meshes on the ‘paper bending’ and ‘t-shirt’ CVLab sequences. Results on Resnet-50 are not included as it

did not generalize to real sequences. Each shape is color coded according to its reconstruction error. Larger errors appear in red, and small

errors in dark blue. Below each reconstructed shape we indicate the mean reconstruction error (in mm).

ground of the sequences was subtracted. Additionally, both

for Resnet-50 V2 and DeformNet, we performed a finetun-

ing of the networks with a very small portion of the dataset

(15% first frames). This finetuning was necessary to cap-

ture the bounds of the real deformations and adapt to the

true illumination conditions that were not rendered by the

synthetic dataset. In all methods we evaluated with the rest

of the 85% of the frames. Again, for the fairness of com-



parison, the analytical solutions were fed by the 2D inputs

of the mesh obtained by DeformNet, augmented to 500 cor-

respondences using interpolation. The mean 2D location

error (in pixels) obtained using DeformNet was 1.24 (paper

bending sequence) and 2.28 (t-shirt sequence).

In Fig. 4 we plot the 3D reconstruction error per frame

for all methods. The table on the right of the figure summa-

rizes the results. Again, our DeformNet is the most accu-

rate approach. In the bending paper sequence the analytic

solution of Ch14IsoLsq-It is very close to ours, although

DeformNet improves this method by a larger margin in the

t-shirt sequence. In any event, recall that DeformNet per-

forms inference per image in a fraction of a second while

Ch14IsoLsq-It requires about 15 seconds. For these se-

quences, Resnet-50 V2, the other deep learning baseline

we considered, performs very poorly demonstrating that

the specific architecture we use in DeformNet allows for

a much better generalization.

Finally, Fig. 5 shows a few reconstructed shapes ob-

tained for each of the methods. Below each sample, we indi-

cate the reconstruction errors. Note that samples with errors

of about 4mm (in the paper bending sequence) or 6mm (in

the t-shirt sequence) are already very good solutions. This

is the magnitude of the error obtained by DeformNet.

6.3. Discussion

One of the most significant aspects of our network is its

ability to generalize to unknown textures (see results in Ta-

ble 1). We conjecture that this is the result of two factors:

1) training with a large variety of textures, and 2) separating

the network into two input branches, one for performing 2D

detection and the other to modulate input image features us-

ing the belief maps of the 2D detections. That is, our two

branches allow us to correctly combine appearance and ge-

ometry. Note that the Resnet-50 V2 baseline we evaluated

was also trained with a variety of textures, but it was not

capable to generalize to new textures.

It is well known that on developable surfaces one may re-

construct shape from only the image boundaries [21]. One

might therefore think that the robustness of DeformNet to

new textures might be because our architecture learns to in-

fer shape from the boundaries. In order to evaluate this, we

performed the following experiment.

Blurred contours. In order to lower the dependency of De-

formNet on the contours, we retrained it on a training set

in which the surface boundaries of the input images were

artificially corrupted by both adding random noise to the

2D coordinates of the boundary vertices and then blurring

the contours. This strategy was also used in [26] to evaluate

planar homographies. We then tested our architecture on the

full dataset and obtained an error of 3.77mm, which is just

slightly above the results reported in Table 1. Therefore, we

can conclude that our network does not highly depend on

Figure 6. Reconstruction under artificial specularities. As in

Fig. 5, each shape is color coded according to its reconstruction

error.

the boundaries and exploits the whole image.

Relaxing Lambertian reflectance assumptions. To fur-

ther test our model limits Fig. 6 presents an evaluation of

the model under synthetic specularities. The network also

shows robustness to this scenario, and the overall recon-

struction error (2.82) remains very similar to the case with

Lambertian assumptions.

7. Conclusion

We have proposed the first deep network that estimates

the 3D shape of a non-rigid surface from a single image. For

this purpose we have designed an architecture that can be

trained in an end-to-end manner, but that internally splits the

problem in three stages: 2D detection, depth estimation and

shape inference. The three stages are intimately connected

and are executed by ensuring the satisfaction of geometric

constraints such as correct 3D-to-2D reprojection and 3D-

to-3D alignment between the estimated and the ground truth

shapes. In order to train this network, we have rendered a

large synthetic dataset of shapes under different levels of de-

formation, varying textures, material properties and illumi-

nation conditions. We have shown this network to outper-

form existing analytical solutions while being much more

efficient, being able to tackle situations with large amounts

of occlusion and very poorly textured surfaces. As part of

future work, we aim at extending this solution to more com-

plex deformations and further exploring the connections of

our solution with analytic photometric methods.
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